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Abstract

One of the goals of image feature extraction is to extract features from
an image that are dependent on the scene, rather than the image, which
also includes intensity information. In theory, a logarithmic transfor-
mation allows the extraction of many different types of image features,
with the magnitude of the extracted feature being more representative
of the scene property. Unfortunately, the magnitude of the effect is
usually dominated by quantisation and image noise. This paper out-
lines the theory and demonstrates the special cases where there is an
advantage to using the log transform.

1 Introduction

One of the goals of image feature extraction is to extract features from an image
that are dependent on the scene, rather than the image, which also includes in-
tensity information. A standard image model describes a digitally recorded image
as:

P = a(pﬂcywﬂcylﬂcy)’y (1)

where:

P;; measured intensity value at pixel (7, j)
a  a scale factor
pzy  surface albedo at point (z,y) corresponding to pixel (i, 5)
2y surface orientation dependent reflectance scaling at point (z,y)
I, incident illumination magnitude at point (z,y)
v gamma factor of the camera

Here, we assume that there is a linear relationship between the quantised image
value and the analog input value (so that we can amalgamate all of the linear
scale factors into «). Also, by reflectance, we mean both albedo (intrinsic light
reflecting ability) and surface orientation dependent effects.

What is apparent from Equation (1) is that the measured pixel intensity value is
a non-linear function of several factors. However, what is most commonly desired
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from image feature extraction are estimates of properties related to the surface
reflectance pgy, independent of the current illumination. Applying the standard
feature detectors, such as edge detectors, bar detectors, blob detectors, corner
detectors, etc. to an observed intensity image results in feature strengths that
depend on the illumination as well as the underlying surface reflectance. This is
almost axiomatic in the computer vision community and is taught to most students
in their first course (e.g. [1], Sec 2.2.3 and Sec 3.2.4).

The usual recognition of this issue leads to the topic of color constancy and
lightness ([3], Ch 9), whereby one assumes that the illumination is slowly vary-
ing, to allow separation of illumination and reflectance. The presumption behind
the exploitation of lightness theory is that one uses the theory to reconstruct an
image with the illumination removed. (This theory also requires many restrictive
assumptions (planar world, no mutual illumination, uniform color patches, etc.).

However, rather than working on the reconstructed image, we can instead
extract illumination independent features from a transformed image: by use of
the logarithmic transformation exploited in the lightness computation, one can
extract many different types of image features (or correspondingly, scene descrip-
tions), with the magnitude of the extracted feature being a function of the un-
derlying scene property. This paper describes this method and demonstrates its
performance (or lack thereof) on a variety of scenes illuminated with different
illuminants.

2 Theory

The feature extraction process begins with the same local logarithmic transforma-
tion as the lightness computation:

log(Pij) = log(a(payPayley)”)
= log(a) +ylog(Lsy) + 710g(vay) + Y108(pay) (2)
This has the effect of changing the multiplicative effect of the illumination into an

additive effect.
If the local feature extraction/transformation operator 7; satisfies the property:

TL=0

when L is an image whose values fit a linear model over the same scale as the
operator 7;, then 7; is able to remove a linear scaling of another image (e.g., as
occurs when a scene is illuminated). Then, the operator applied to an image of a
scene V' with scaling S gives:

Tilog(VS) = Ti(log(V) + log(S))

Tilog(V') + Tilog(S)
= Tlog(V)

3)

if log(V) is locally linear.
Appendix A demonstrates that the logarithm of the % function is locally
linear. Thus, 7; is able to remove the normal “%” illumination component from
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an image (which may also be a constant illumination, as in the case of a distant
point light source). 7; is also able to remove the linear intensity variation arising on
locally curved Lambertian surfaces. Appendix B demonstrates that the logarithm
of the brightness on a curved patch is locally linear.

Examples of the 7; class of operator are the Laplacian, its discrete approxima-
tions, and the difference of Gaussian operators.

A second class of interesting operators is 7., have the property:

T.C=0

when C' is a locally constant image. Then, 7, is able to remove a constant illumi-
nation component from an image, as the log(L) component is also constant in Eqn
(3). Examples of this class of operator are the Roberts’ Cross, Sobel and Canny
operators, as well as the operators in 7;.

Most local neighborhood arithmetic operators have approximately linear form.
For example, doubling the values of the image pixels typically results in the dou-
bling of output values. A typical example is the basic vertical gradient operator
| pit1 —pi |, where p;11 and p; are the intensity of adjacent pixels. Thus, strength
of output is proportional to the contrast between the pixels, and doubling the
illumination doubles the pixel values, and hence doubles the contrast and gradient
magnitudes.

When working in the log domain, a different interpretation arises, wherein the
output value has a character more like the contrast ratio (as compared to the
absolute contrast). In the case of the vertical gradient operator, the function is
now: ( )

Di+1 mar{pi+1,Pi
| log(pit1) — log(p:) |=| log( o) log(mm(pi+1,pi)
Doubling the pixel values now has no effect on the output.

While this theory looks promising, for most real images, the potential effects
are more limited. For example, assume that there is an illumination contrast
across a 2562 image with a strong gradient creating a brightness of 255 at one
edge and 128 at the other edge. The expected variation in average illumination
across a 3 X 3 operator is 2% = 1, which is likely to be dominated by pixel
noise. Thus, in practice, with current 8 bit cameras, there is unlikely to be any
significant general benefit to using the logarithm transform. In effect, the local
operators are generally too small to be affected by what is essentially a global
phenomenon. On the other hand, as cameras move to 12 and 16 bits, the use of
the logarithm transformation is likely to be of greater use, as then the expected
variation might be more like 2(%) = 128, assuming that the noise level
is on the order of a few low order bits.

However, in the course of evaluating the use of the log transform, we did observe
several cases where some slight benefits might be achieved, and some where it is
not advised to use the log transform.

3 Experiments

This section will look at several applications of this approach:
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1. a small mask vertical gradient operator (a first-order operator), with the
goal of assessing if the use of the log function does reduce the illumination
gradient effects.

2. the Sobel operator (a first-order operator), with the goal of assessing the
elimination of shading effects on curved surfaces.

3. a small mask horizontal dark bar operator (a second-order operator), where
we investigate the effect of different strong illumination gradients on the
same scene, with the goal of assessing the elimination of the illumination
gradient using a second-order operator.

4. a small mask horizontal dark bar operator (a second-order operator), where
we investigate the effect of different illumination levels on the same scene,
with the goal of assessing the elimination of the illumination differences using
a second-order operator.

In the experiments below, all input images were normal intensity images ob-
tained by a standard CCD camera, which then had the conservative smoothing
operator [2] applied to reduce point noise.

In all of the comparison experiments there is a problem of establishing the
basis for comparison of an operator on two different types of images. The output
values, when an algorithm is applied to the log image are much lower than when
applied to an intensity image (because of the compression of input values given
by the log function). The log image output also has a compression relative to
the intensity values, and this requires nonlinear scaling to relate the two output
images, as most operators are linear on their input data.

In addition, the log image output has a much higher noise distribution arising
from quantisation effects in dark areas. Appendix C discusses this effect. The
source of the problem can be seen by comparing the difference of adding 1 quanta
noise to an underlying signal of 10 compared to adding it to an underlying signal
of 100. In the intensity image, the difference is 1 in both cases; in the log image,
the difference is log(11/10) = 0.09 versus log(101/100) = 0.009, or about 10 times
worse at the low signal levels. In the future, if the data were from a 16 bit scanner,
then there would be a larger dynamic range and so a few quanta of noise would
have a smaller effect.

So, in general, to relate the two images for display and comparison, we have
scaled the log image output so that the features detected in a small test image
are comparable to the features detected in the corresponding intensity image (i.e.
that the same features were extracted when the same threshold was chosen). The
experiments reported here then used this rescale factor when the operators were
applied to the test images.

3.1 Vertical Edge Detection

Figure 1 (right) shows an intensity image of a test pattern (left) with bars of
intensity 1, 63 and 255 illuminated from the above. Figure 2 (left) shows the test
image operated on by the | p;+1 — p; | vertical gradient operator (scaled by 4 and
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Figure 1: Synthetic and illuminated real image.

Figure 2: Vertical edge detector (inverted image) on intensity image and thresh-
olded at 75.

clipped at 0 and 255). The right image shows the gradient image thresholded at
75.

Figure 3 shows the effect of the same operator on the log of the intensity image
(scaled by 400). The right image shows the gradient image also thresholded at
75. Obviously, the choice of threshold is relatively arbitrary; however, here it was
chosen to be the same as the intensity image threshold, and the operator scaling
was adjusted to produce approximately the same set of edges for a thin horizontal
test window across the real image. Comparison of the thresholded images shows
slightly more edge detected in the log images, which arises because the effect of
the illumination gradient has been reduced.

Comparison of the two unthresholded edge gradient images also verifies that
the log image exposes the weaker edges at the top of the image more clearly, but
at the cost of also increasing the noise.

Figure 4 (left) shows the histogram of a subset (near the edge at column 113
— out of 256) of the gradient values from the vertical gradient operator applied to
the intensity image and (right) shows the corresponding histogram from the log
image. The histograms verify one of the effects of the use of the log operator:
the gradient magnitude values along the edge are more tightly clustered in the
log image. In theory they should be constant, but in both cases, the histogram
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Figure 3: Vertical edge detector (inverted image) on the log of intensity image and
thresholded at 75.
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Figure 4: Histogram of intensity image vertical edge at column 109 (left) and
histogram of corresponding log image edge (right).

peaks are spread out because of the aliasing between the edge position and image
bluring. In the intensity image case, the gradient values are more spread out (with
larger gradient values at the bottom of the image and smaller gradient values at
the top of the image), resulting from the varying illumination leading to different
contrasts across the edges.

3.2 Shading on Curved Surfaces

Figure 5 (left) shows a matte cylindrical surface illuminated to have shading across
its surface. The middle image shows the inverted Sobel operator output on the
intensity image and the right image shows the same for the Sobel operator on the
log image. The log image output was scaled by 60.0 to produce a nearly identical
set of edges when thresholded at the same level on a small test pattern placed near
the cylinder.

In both the middle and right images, the point to note is that the smoothly
shaded region on the cylinder has much lower gradient estimates in the log image.
There is also a region on the right of the cylindrical surface where the measured
intensities are low and so noise is increased. However, this effect is partly related
to the operator scaling.

Applying a Laplacian of Gaussian operator to both the intensity and log im-
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Figure 5: Original image (left), invert of Sobel on intensity image (middle), invert
of Sobel on log image (right).

ages produced virtually identical (approximately) zero mean gaussian output value
distributions, as predicted by Appendix B.

3.3 Horizontal bar detection with varying illumination
direction and strong contrast

This experiment looked at applying a 5 x 5 bar detection operator:

2121222
-1)-1)-1]-1]-1
2 1-21-2]-2]-2
-1)-1)-1]-1]-1
2121222

to the image in Figure 6 (left), with results from the intensity image in (centre)
and the log image at (right). Both bar operator images are inverted for clarity.
The same operator was applied to another image where the strong illumination
contrast was now from the upper right (results not shown here). As seen in the
two figures, there is virtually no difference in the bar detector output images.

3.4 Horizontal bar detection with varying constant
illumination magnitude

This experiment applied the same 5 x 5 bar detection operator as in the previous
experiment, except to two images with no illumination gradient, but with a large
difference in average illumination levels. As seen in Figures 7 and 8, there is
virtually no difference in the bar detector outputs, except that there is more noise
in the dark image outputs (Figure 8), which is amplified in the log image outputs
(Figure 8 (right)).
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Figure 6: Bright image with strong illumination from the lower right (left), invert
of bar detector on intensity image (middle), invert of bar detector on log image
(right).
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Figure 7: Bright image with constant illumination (left), invert of bar detector on
intensity image (middle), invert of bar detector on log image (right).

4 Discussion and Conclusions

To summarise the results of the experiments presented above, these are the areas
where operator output differs most significantly between the two approaches:

e Strong illumination gradients: If there is a strong illumination gradient
across the image, then the output of a gradient operator on the log image
is slightly less dependent upon the illumination than when applied to the
intensity image. This can improve the consistency of operator results across
an image, or improve the consistency of operator results between images of
the same scene under changing illumination (when varying the illumination
gradient direction).

e Strong surface shading effects: If there is a strong surface shading vari-
ation arising from oblique lighting on a curved surface, then the first-order
operator outputs on the log image are more representative of the underlying
scene.
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Figure 8: Dark image with constant illumination (left), invert of bar detector on
intensity image (middle), invert of bar detector on log image (right).

e Low intensity values: If the image intensity values are low then, because
of the finite quantisation of intensity values, image noise becomes much more
significant in the log image.

The mathematical and empirical demonstrations in the paper assumed that the
operators were being applied to smooth surface regions, where the illumination
function was continuous across all pixels in an operator’s input neighbourhood.
This assumption is invalid across depth and orientation discontinuities and across
illumination discontinuities (e.g. shadow boundaries). However, what we observed
in these situations is that operator outputs did vary between the log and intensity
images, but not in a significant manner. It is unclear of the consequences in image
regions where surfaces are mutually illuminating.

In summary, the analysis and experiments presented above demonstrate that
there are situations to consider the use of the first and second order operators on
the logarithm of the intensity image, rather than on the intensity image directly.
The cases where the differences are of significance are limited to special situations
of strong illumination contrast, and strong shading and require bright images.
The benefits might be even greater if 12 and 16 bit images become common. The
paper also showed that, in more typical situations, the output images of the two
approaches did not differ in obviously significant ways.
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A Logarithm of point source illumination is
locally linear

Simplify the problem to lie in two dimensions, with the light source and image both
lying in a plane. Suppose that we have a point light source at (0,0) and observe
the illumination at points (x —6,y), (z,y), (x+9J,y). Then, the illumination at the
three points is proportional to:

1 1 1
Y2+ (x—0)2" 92 + 227 y? + (2 + 0)?

Taking the log gives:
—log(y* + 2% — 226), —log(y® + x?), —log(y® + ° + 2x6)
The first order Taylor expansion of log(1l + x) = x gives:

226

—log(y* + 2*), —log(y” + 2°) — R

- 2 2 _cro
og(y* +x )+x2+y2,

which is clearly linear for small offsets §.

B Shading on cylindrical surface is locally linear

§implify the problem to lie in two dimensions, with the light source direction
I = (1,0). A locally circular surface fragment with local radius R has center
of curvature at the origin (0,0). The image plane is at (0,d) and orthographic
projection occurs perpendicular to the image plane.

Suppose that we observe the surface at points (x — &, y1), (z,y2), (z + 6, y3).
(where 2 +y2 = R2). The surface normals 77; at these points are:

1 1 1
—(iC - 51 yl)a _(xayZ)v —(iC + 67 y3)

R R R
The Lambertian shading law says that the observed brightness is proportional
to 7 - I. So, the expected brightness of the pixels is:

1 1 1
E(m - 5)3 Exv E('x—i_&)

Thus, the brightness is locally linear. If we now look at the log image, and again
apply the Taylor expansion log(1 4 ) = x, we get:
x ) x x

R) - ;,log(—)alog(ﬁ,

log( 7

é
)+Ev

which is also locally linear for small offsets §, but has greater variation when x = 0
(i.e. when the light direction is nearly tangential at the surface boundary).
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C Noise in low intensity regions is more
consequential in the log image

We look at how the vertical gradient operator | p;+1 — p; | is affected by image
noise. Assume that pixels p; 11 and p; are sampled from a constant image region
with mean value p and Gaussian noise ¢; with variance o2.

Then, the expected (mean) value of | p;4+1 —p; | is 0, and the expected variance
is:

2 .2
0.|;Di+1*pi| =20

To calculate the variance of | log(pi+1) — log(p;) |, we first approximate this

function by:

pi
log(pi1) = log(p) = log(= =)
J % S
= 1
09(/hL 62)
€1 €2, _1
= log((1+—)1+ —=
(( . ) u) )
. €1 €2
= log((1+—)(1—-—=
(( m ) . )
. €1 €9
= log(1+—)+log(l——
( u) ( u)
= a_ &
pooop
1
= —(€1 — €2
u( )
(4)
From this, we can see:
9 _ 202
Oltog(piy1)—log(pi)| = 7

Thus, the noise in the vertical gradient of the log image is a function of the
underlying intensity level, with the noise variance increasing as the brightness
decreases.

The practical implication of this analysis is that, for the operator scaling that
produces comparable edges selected in the intensity and log images, the back-
ground noise level in the log image is much higher than that of the intensity image
in dark regions of the image, and is lower in bright regions.



