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Abstract

Reverse-engineering a machined part to generate a CAD model requires range
data to be collected and registered from many views then segmented into surface
primitives. Correctly computing the intersections of these surface primitives is
a critical part of building the CAD model. We describe a method for correcting
the ragged boundaries often found with region-growing algorithms and show
examples of its application. This method is useful for a large subset of the
surface intersections that regularly appear in manufactured objects.

1 Introduction

Reverse-engineering a machined part to generate a CAD model requires range
data to be collected and registered from many views then segmented into sur-
face primitives. One method of performing this segmentation is to use some
form of iterative surface-growing algorithm, for example [1, 4] and [8], in either
23D images or complete 3D data clouds. Behaviour at patch boundaries is
rarely discussed though, except in terms of over-segmentation and under seg-
mentation. Even comparisons of these types of algorithms, using several other
objective tests, do not discuss surface intersections (for example [2]) directly.
In our experience, although surface parameterization may be good, the inter-
section boundary is often very ragged and rarely very accurate (that is in the
correct place) or at the correct angle. This makes its usefulness limited for the
generation of CAD models. For example, the images in figure 1 shows the seg-
mentation of noisy synthetic data representing a part where a cylinder meets a
plane with tangent continuity. It can be seen that the segmentation boundary
is poor and cannot be used to generate the CAD model, which in this instance
would require the line of intersection.

One reason for the poorness of the boundary line is that region growing
based segmentation schemes often have poor or unstable surface parameteriza-
tions at run-time. This may be due to either due to the growing algorithm itself
or the stability of convergence of the fitting algorithms when using low num-
bers of points. This means that an accurate intersection line cannot be found



'
(a) (b) (c)

Figure 1: Example cylinder/plane segmentation showing resultant ragged
boundary (a) Noisy data set (b) Segmented cylinder (¢) Segmented planar
part

analytically unless the parameterization is improved substantially or more con-
straints on the surfaces can be employed. In this paper we have developed a new
method based substantially on the evolutionary approaches we have sucessfully
employed previously [8, 7]. This allows us to simultaneously segment, param-
eterise and accurately intersect two surfaces.

2 Algorithm

2.1 Surface Extraction by Region Growing

Surface segmentation by region growing is a well known and often used ap-
proach. The method, whether employed in 2%D or 3D is generally composed
of the following elements:

e Local curvature estimation

e Local shape classification, pixel or polygon characterization
e Generation of growth seed patches

e An iterative growth scheme

— Estimate competing surface parameters

— Assess suitability of surrounding elements (often by computed resid-
ual) for agglomeration

— Grow surfaces into suitable elements

— Re-fit surface
e Assessment of end criterion, for example stability occuring

There are, of course, many variations on this scheme [2]



2.2 Boundary Correction Algorithm

What we require is a better method for performing all of the following functions:
e Correct surface boundary identification

e Incorporation of a priori surface information, for example surface type,
to get the best parameterisation

e Given that boundary and type, optimal re-parameterization of the sur-
faces

e Incorporation of a priori geometric constraints on surfaces and/or bound-
aries

To fulfill this set of requirements requires an algorithm that can perform
constrained optimization over a large solution space. The boundary correction
algorithm we have employed, a GENOCOP III hybrid, is a floating point evolu-
tionary algorithm as outlined in Michalewicz [5]. We have previously employed
this approach for constrained surface fitting, as described in [8]. In this case
we have used a splitting plane that splits the two data into groups of points
which then have the relevant error function evaluations performed on them.
This evaluation gives the goodness of fit for the particular chromosome.
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Figure 2: Boundary correction algorithm formulation

We assume that there are two surfaces present whose intersection can be
represented by a segmenting plane. For our examples, we have used the follow-
ing combinations:

e Convex cylinder meeting plane with tangent continuity
e Concave cylinder meeting convex cylinder with tangent continuity
e Cylinder meeting sphere with tangent continuity

e Concave cylinder meeting convex cylinder with tangent continuity, using
different radii.

There are clearly many other examples which fit these constraints.



2.3 Shape Representation

In this version of the algorithm, models of degenerate quadric surfaces are used.
This is a small subfamily of surfaces of the following types: spheres, cylinders,
right circular cones etc. The machined surfaces that we address rarely contain
whole pieces of these shapes so the surfaces are often fragmentary or partial.

In standard GAs binary encoding forms the chromosomes in the solution,
however in an evolution program each gene is a floating point number. Genes
for each of the present surfaces are then concatenated to form a chromosome.

In the case of planes, we used the 4 gene parametric representation A :<
n,d > where n is the unit normal describing the plane and d is the constant
defining its minimum distance from the origin. In the case of spheres, we
used the 4 gene parametric representation A :< P,r > where P is the centre
point and r is the sphere radius. In the case of cylinders, we used the 7 gene
parametric representation : A :< P, 7,7 > where P is the start point of the
cylinder, n is the axis direction and r is the radius. For cones, the 7 gene
representation used is : A :< P, 7, a > ,where P is defined as the start point
(or tip) of the cone, 7 is the axis direction and « is the half-angle between the
axis and the slope of the cone.

A full chromosome, G, describing a given object, is then a set of concate-
nated part-chromosomes: G = {A;}. The parametric representation of a set
of degenerate quadrics as a chromosome is much shorter than a set of general
quadrics as explored in [8]. This cuts down the complexity of constraint repre-
sentation and makes it amenable to straighforward manipulation without the
need to employ geometrical constraints on the surfaces’ form, only on pairs of
forms taken as systems.

The parameterisation chromosome is augmented with the parameterisation
of the segmenting plane, S, to form the final optimisation chromosome: G =

{Ajvs}'

2.4 Constraint Formulation

In virtually all cases, domain constraints on individual genes are used to narrow
the search space for that gene. These are represented as one permanent part
of the sequential quadratic penalty function matrix [6] used in the evaluation
function. A good example of where domain constraints can reduce the search
space is in the case of the three parameters describing a unit normal. Each of
these parameters can never be outside the range [—1, +1] so these make good
domain constraints.

In-chromosome relational constraints are straightforward to formulate if a
parametric form is used. For example, consider two planes:

P =< nw1,ny1,nz1,d1 > and

Py =< ngyo, Ny2,M22, dg >
which are known a priori to be orientated orthogonally. In this case, the
chromosome would have the form :

G = {nz1,ny1,M21, d1, Ng2, Ny2, Nz2, da}



and the orthogonality constraint would then appear as a non-linear inequality
of the form: |(nz1 X ng2)+(ny1 Xny2)+ (121 Xns2)| < € where € is the constraint
tolerance value. Similar formulae can be used to represent continuity, parallel
axes, etc.

All surface normals are naturally subject to a unity constraint.

In order to perform the optimisation, Genocop requires a set of starting
position on the constrained solution manifold. These are the seeds for the ref-
erence and search points which are then mutated around them. In our case this
means designing a chromosome which is both close to being a concatenation of
the individual least-squares results for the part-chromosomes as well as fulfill-
ing the domain and relational constraints. Starting conditions for increasingly
complex solutions with increasingly complex constraints have previously been
found to be difficult [8] for the general quadric. However, when a parametric
representation is used, start conditions become simple to generate, even when
many constraints are used.

2.5 Algorithm

The internal workings of Genocop III are beyond the scope of this paper, suffice
to say that it is an evolutionary optimisation scheme which can handle multiple
constraints, in the form of inequalities, of both linear and non-linear types. It
is described fully in [5] and [6].

The segmenting plane passes through the data and all points lying on one
side are said to belong to surface 1, all points on the other side are said to
belong to surface 2. These two data sets are then passed to the relevant distance
evaluation function to compute the sum of all points to the surface represented
in each chromosome. The sum of each of the distances then represents the
fitness for that surface parameterisation. Populations fitting each of the a priori
constraints are then generated in the usual way by Genocop until stability or
some other stopping criteron is reached. The approach is illustrated in figure
2.

The evaluation function for the chromosomes is formulated as follows: As-
sume a segmentation plane parameterization, S and the two surface parame-
terizations, A; and As the point set P is split by S into the two sets P; and
P, of sizes m; and my. Given that we are able to use geometric distances for
our error calculations we now wish to minimize the error function E:

E= Z D(AlaPL:)+ Z D(AQaPQi) (1)
i=0 1=0

D is the Euclidean distance function appropriate for each of the surfaces. It is
also clear to see how this approach can be generalized to additional surfaces
and constraints.



2.6 Boundary Uncertainty and Individual Error Contributions

Presuming that the surface intersection boundary is fixed and that points be-
longing to both surfaces will be scattered around it, it is interesting to examine
how individual points contribute to the overall algorithm error. Shown in fig-
ure 3(a) are the points from a cylinder meeting another cylinder with tangent
plane continuity. In figure 3(b) are the residuals generated by applying two
perfect cylinder models to the same data, that is the distances from the points
to the known cylinder models. Generating a segmentation plane that correctly
assigns both sets of points is clearly very difficult. The conclusion drawn from
this result is that even given a perfect surface parameterization, the assignment
of points on the boundary will never be perfect and at best we can expect a
reasonable approximation for the segmentation plane position and parameter-
ization.

MNoisy cylindec-oylinder data Residusls for the eylinder parsmetcrisations

Figure 3: (a) Noisy cylinder meets cylinder data, (b) Residuals of perfect
cylinder model fitting (grey is surface 1, black is surface 2)

2.7 Data Preprocessing

Unusually for evolutionary approaches, the GENOCOP III algorithm needs
a point on the constrained solution manifold from which to build its initial
reference population. In order to efficiently generate this first solution we first
preprocessed our data as follows:

e For each point we found its M nearest neighbours

e Through this point, we derived a surface normal by fitting a local plane
through it and its M neighbours

e By back-projecting random groups of three normals we were able to ap-
proximate cylinder axes and sphere centres (the point which is closest to
all three vectors is co-incident with the axis). We used three normals for
extra robustness although only two are necessary.



e We then use a RANSAC based [10] 3-d line finder and ‘node’ finder to
find the axis lines and the sphere centres. In our definition a node is a
position in space which has points scattered about it. In our examples
this is generally a sphere centre.

Once we have performed these relatively simple pre-processing operations
we have topological information as well as an approximate set of parameteri-
zations for the surfaces present.

3 Results
3.1 Trial Data

Trial data was generated based on three different figures:
e Cylinder meets plane with tangent continuity
e Cylinder meets cylinder with tangent continuity
e Cylinder meets sphere with tangent continuity

Each data set was subjected to Gaussian noise in the x,y and z components at
different levels between 0 units and 2 units standard deviation in a total image
size of 128 x 128 x128. All primary segmentations in this section were performed
using our proprietry range segmentation algorithm rangeseg described in [4]
which is generally considered to be the best of its kind (as documented [2]).

It should also be noted that these results are for artificially generated data
with applied Gaussian noise in X,Y and Z. The noise level on our range scanner
is around 3 orders of magnitude smaller than these levels in each dimension if
the units are considered to be in millimetres.

Tests were conducted over 5 random data sets.

3.2 Constraints Applied

In all trial cases we constrained the normal vectors to be units and applied
domain constraints on the parameter values. Also in some cases the segmenting
plane is constrained to having a surface normal that is orthogonal to the axis
of the cylinder and the plane.

3.3 Cylinder meets Plane with Surface Continuity

These results demonstrate that although the correction algorithm has prob-
lems with regions of high noise, the boundary is corrected from very ragged to
straight and fulfils all of the contraints correctly. See table 1.



Table 1: Errors on Boundary Position After Correction - Cylinder /Plane Data
Percentage noise  Mean boundary position error(units)

0 0.0units
0.5 0.1units
1 0.1units
0.2units

3.4 Cylinder meets Cylinder with Surface Continuity

Again, the results show a major improvement over the optimized segmentation.
All constraints are fulfilled. See table 2.

Table 2: Errors on Boundary Position After Correction - Cylinder/Cylinder
Data

Percentage noise Mean boundary position error(units)

0 0.0units
0.5 0.3units
1 0.8units
1.2units

3.5 Cylinder meets Sphere with Surface Continuity

These results show the ambiguity of points around the sphere-cylinder interface
where the surface fit of points has a residual so low that they could belong to
either surface. See table 3.

Table 3: Errors on Boundary Position After Correction - Cylinder/Sphere Data
Percentage noise Mean boundary position error(units)

0 0.0units
0.5 0.4units
1 1.0units
2 1.4units

3.6 Notes on Robustness

The most notable influence on the boundary correction results is surface noise.
As was shown in section 2.6, there are serious surface allocation problems in
the boundary region which mean that any boundary surface that is applied
will tend to either misclassify points or converge to an incorrect position in the
presence of too much noise. This would be clearly true of any algorithm.



Correct boundary positioning is more difficult (takes longer to converge) in
the case of cylinder meets cylinder and cylinder meets sphere due to the slow
and ambiguous transition from one surface to another.

4 Conclusions and Further Work

4.1 Conclusions

The evolutionary approach is only one possible approach to boundary correc-
tion. The results are good, having a low mean deviation from the true values,
but it is difficult to get high precision sub-pixel boundary estimates due to the
individual error contributions of single points being very small. This causes
even this simple, essentially linear, boundary to occasionally migrate some
small distance from the a priori known best position. This is also a function of
the quality of the surface parameterisations which, given second order surface
estimations, are sometimes good locally but not globally.

4.2 Further Work

Since boundary correction is subject to errors from the segmentation scheme
as well as the surface fitting the results are exceptionally good. One way to
improve this scheme though might be to apply a run-time adaptive weighting
that favours the contributions of points near the boundary. We also are seeking
to extend the approach to other second-order meeting second-order blending
for other degenerate surfaces.
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