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Abstract

This paper examines the application of an evolutionary algorithm (GENO-
COP 111) to the problem of fitting surfaces and lines to both 2D synthetic and
real 3D range data. The fitting is performed with both non-linear (domain)
constraints and with non-linear (geometric and relational) constraints. Fx-
ample fittings are given as well as an explanation of experimantal caveats
that should be addressed when using this kind of approach. We have discov-
ered, for example, that the time to generate starting reference points on the
solution manifold is a significant part of the experiment time.

1. Introduction

Shape analysis of objects from range data (captured three dimensional co-
ordinates of surface points) is a key problem in computer vision with several
important applications in manufacturing, such as assembly, quality control
and reverse-engineering. The problem is generally formulated as a nonlinear
programming problem (NLP), which tries to optimally fit the data to candi-
date shape descriptions. The NLP optimises a function subject to several con-
straining equations and inequalities. Especially with nonlinear constraints, it
is notoriously difficult to optimise and there is no known method to guarantee
a satisfactory solution. Only if the optimisation function and the constraints
are satisfied are the optimal point (or points) likely to be found. Traditional
techniques, such as gradient descent, are unsatisfactory for the solution of
NLPs, due to the local nature of their search methods and the reliance on
smooth derivatives in the search-space. The formulation of constraints and
the application of constraint-based correction and optimisation of surface fit-
ting has been achieved previously [1] with notable success using the optim1
and optim2 constraint application strategies. There are, however, some as-
sociated problems with this approach, such as the complex formulation of
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the objective function and reliance on the convexity of the solution space.
The first problem is addressed here by using only the least-squares metric
as an objective and using the constraints to define the manifold of allowable
solutions. In this work we examine the applicability of evolutionary strategies
to the problem of fitting lines and surfaces to both synthetic and acquired
object range data. This is a traditional NLP since a priori constraints ex-
ist between the fitted surfaces and lines. The GENOCOP III algorithm [2,
Ch.7] was used in this paper. It is an evolutionary algorithm system which
is specialised to handle constrained function optimisation. GENOCOP III
uses real-valued genes, and included methods to deal with linear, non-linear,
domain and inequality constraints. We have examined the use of GENO-
COP 111, with a specialised fitness function (described later), applied to the
problems of fitting both 2- and 3- dimensional surface equation constructs
to range data while simultaneously applying several necessary geometric and
domain constraints. The constraints cover the two typical types : domain, the
restriction on the parameter size; relational, relationships between surfaces
that are known a priori.

2. Chromosome Representation and Fitness Functions

Fig. 2.1 is a typical example of the kind of data that is derived from a laser
range-finder. The data is from a typical engineered part comprising a number
of planes and degenerate quadric surfaces arranged in a fairly well defined
way. There are, for example, several places where angles of 90° have been used
as relationships. There is also a cylinder at one end whose axis lies orthogonal
to the normal of some planes and parallel to the normals of others. It is these
kinds of relationships we are seeking to preserve.

Fig. 2.1. Example 3d range data points

We use a real-valued chromsome representation in which each gene corre-
sponds to a coefficient in a shape equation. In the cases we have investigated
typical chromosomes are shown in Fig 2.2(a)-(c).
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Fig. 2.2. Chromosomes representing (a) a line (b) a plane (c) a general quadric

The surfaces were fitted using a standard least-squares metric over a large
number of surface points. The value at each point gives an indication of
the probability that the point belongs to the parameterized surface; when
summed this gives a good overall estimation of how well the parameterized
surface matches the data.
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Fig. 2.3. Line and surface parameterization and error measures

For lines, the best line is defined as the least squares fit through the
observation data:

i=N
E = min Z(yz —maz; —c)? (2.1)
i=1

In this case the parameterized line is (m,c) and the observation data is
(xi, yi). In the case of two separate lines, where some constraint exists, this
error is expressed as the sum of the two errors. In the case of planes, the
least-squares error is given by :

i=N
E = min Z(v.xi +d)? = minF(v,d) (2.2)

=1
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where v is the plane parameterization and z; is the observation range
data. Notice that F' is homogeneous with respect to the parameters of v and
d. This means that the solution must be constrained in order to avoid the
trivial null solution. The most natural constraint is | v |= 1, the unit normal,
which also has the advantage of being invariant with respect to translations
and rotations. For quadrics the geometric distance from a point the surface is
non-trivial to compute so the most straightforward distance measure to use
as an error measure is the algebraic distance:

i=N
E =min Z(foxi +x;.v+d)? = F(A,v,d) (2.3)
i=1
where the quadric parameters are given as a symmetric matrix A, the
vector v and the constant where :
aq a4/2 a5/2
A= a4 /2 as a6/2
as /2 a6/2 as
v = [a77 as, ag]
d=ai

Once again, it can be seen in equation 2.3 that the function F' is homoge-
neous with respect to the parameters a;..a1g. This means that the problem
of fitting must be constrained to avoid the trivial null solution. The con-
straint we have employed is the same as suggested in [3], where the first six
parameters of the quadric essentially the shape parameters) are constrained
to be unity: Tr(AAY) = 1. Again, this is invariant with respect to a rigid
transformation, rotation or translation.

3. Geometric Constraints

In the real world all optimization problems are constrained. We need to em-
ploy constraints in our fitting for the following reasons :

— Awoiding null solutions. To avoid convergence of parameter values to zero,
virtually every surface parameterization has a unit normal constraint or
equivalent.

— Improved fitting. They improve the overall fit of the data since boundary
constraints can be used to ensure that solutions do not fall outside a re-
quired range. This means that virtually every parameterization requires a
set of inequality constraints.

— Inclusion of a priori information. For example, if two planes are known to
be orthogonal then the chromosome represents a complex form as shown
in Fig. 3.1. This means that although the two lines of best fit may be at
some angle F to each other, the actual value may be known and used in
order to fix the value at the correct one. Usual examples are ¢ = 90° or
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¢ = 0°. Such errors often result from mis-registration of multiple views of
data, which is also known to be a difficult problem. In the case of reverse-
engineering, these kinds of constraints are very often known, whereas the
parameterization of the actual system components are not.

Y A chromosome 1 observation

/s
4

chromosome 2

Best fitlines

chromosome 3

Fig. 3.1. Candidate chromosomes for an orthogonally-constrained line-fitting case

3.1 The GA Constraints Strategy

Overall flow of control in a GA normally consists of the following operations:

1. Random generation of initial population

2. Evaluation of fitness of chromosomes in the population
3. Application of genetic operators

4. Repeat 2-4 as required

The question of how constraints are implemented as a method of popula-
tion shaping, (keeping solutions on the constraint manifold), is slightly more
complex. If non-conforming chromosomes are simply culled, the populations
can become severely reduced at each cycle, thus scuppering the diversity
needed for effective search. A penalty function can be introduced into the
fitness function which inhibits the growth of individuals straying from the
constraints or dependent upon the number of constraints violated. This is
the most common approach, but is difficult to implement effectively since
the penalties for all constraints must be considered independently. The use
of repair operators, to re-map infeasible chromosomes back to the feasible
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space has also become popular recently. It is sometimes (but not always)
easy to repair chromosomes and those repaired may be used for evaluation
or may be placed (with some probability) back into the population.

GENOCOP III uses a repair and replace heuristic as well as a specialized
set of operators. In [2, Ch. 7.5], Michalewicz suggests an empirical figure of
15% replacement seems optimal for repaired individuals. GENOCOP III
also uses operators that ensure that any mutation operation or crossover
operation always produces a child that is from the constrained solution space.
Example operations are:

— Uniform mutation. Where the value of a gene may mutate, but only into
the range specified by its domain constraint.

— Boundary mutation. Where the mutation pushes the gene toward its do-
main boundary.

— Arithmetical crossover. This is the linear combination of two vectors such
that closure is guaranteed.

There are several other such operators. As well as these, GENOCOP III
maintains two sets of populations, a search population and a set of refer-
ence points. The feasibility of the search population is maintained by using
appropriate operators. A set of search points is also generated and repaired
as necessary to provide new potential reference points. If the search point
generated is better than one of the currently held reference points then it is
replaced.

4. Experiments

This section details some of our experiences performing fittings for both 2D
and 3D data with constraints. Note that the 3D points were all scaled into a
unit sphere.

4.1 2D- Line Fitting with Constraints

In the first instance, 2-dimensional linear features with orthogonality and
parallel-ness were fitted to noisy synthetic data. With conventional techniques
this is not a particularly hard problem when low numbers of lines are used. In
our case we examined sets of two lines at various constrained angles to each
other. Gaussian noise was applied to the data at varying values. In each case
there were 400 (x,y) data points in two sets of 200. The initial population of
100 chromosomes can be seen to converge to a useful fit after about 35000
evaluations, taking around 12 seconds on an average load 200MHz Sun Ultra-
sparc 1. It should also be noted that convergence in the case of parallel lines
was not made more difficult by the fact that local solutions where the two
lines are the same were reached. Whilst constraints could have been applied
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Fig. 4.1. Orthogonal Line Fitting

to avoid these solutions, it was not found necessary. In each case the degree
to which the chromosome could stray from the constrained solution manifold
was defined to be e = 0.000001 units. Example data and graphs are shown
in figures 4.1 and 4.2.
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Fig. 4.2. Parallel Line Fitting

4.2 3D- Plane and Quadric Fitting with Constraints

In the 3-dimensional case the following sections describe the fittings that have
been performed.

4.2.1 Plane with unit normal constraint. A single plane with a unit
normal constraint, chromosome with 4 genes representing the plane param-
eters was fitted. This plane data is from a real object and has a error of
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around 0.3mm. In this case the following chromosome was used: v = (v1, ..,
v4), where (v1, v2, v3) represented the surface normal. The constraints were
as follows:

1. (V¥ +0vi4+0v3)=1

2. |vr ]| va|<1

The original plane is shown in Fig. 4.3(a) and the surface fitting error is
shown in Fig, 4.3(b). Experience has shown that in the case of plane fitting
often the first parameter to stabalize is the constant, followed by the rotation
of the normal. This can be seen in the error graph in Fig. 4.3(b) where the
initial steep descent is the fixing of this parameter.

Real object plane Single Plane Fit with Unit Normal Constraint: Epsilon=0.0001
2 T T T T T
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(a)Plane from real object (b)Errors at each evaluation step
Fig. 4.3. Plane fitting

4.2.2 Two Planes with Angle Constraint. Two planes with an orthog-
onality constraint and two unit normal constraints, chromosome with 8 genes
representing the 2 plane parameters, was fitted. In this case, the chromosome
was v = (v1, .., Ug), where (v1,v2,v3) and (vs,ve,v7) were the surface normals.
The constraints were as follows:

L (v +vs+v3)=1

2. (V2 +0vi+03)=1

3. v1 xvs + v *xvg + v3 *v7 = 0 - two plane orthogonality constraint

4. |vr ], vs|<1

It can be seen from the graph in Fig. 4.4(b) that the errors in the fitting
decrease to a very good level after only 2000 evaluations.

4.2.3 Degenerate General Quadric with Unit Constraint. A general
quadric fit of a sphere with a unit constraint on the first six parameters, chro-
mosome of length 10 genes representing the quadric parameters, was fitted.
In this case there was no explicit use of the fact that the data represented
was from a sphere.
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Fig. 4.4. Two constrained planes fitting with orthogonality constraint

In this case, the chromosome was a = (a1, .., a1g) where each gene was
one of the quadric parameters. The constraints used were as follows :

1. (a?+a2+a2+a2+a2+a2) =1 -unity constraint to avoid null solution

2. | ai |,...,| aio |< 1

After the constant terms found a good approximation to their best values
each of the shape and pose genes (ay, ..., ag) in the fittest solution chromosome
converged gradually to their optimal value.
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Fig. 4.5. Noisy synthetic sphere fitting

4.2.4 General Quadric (Ellipsoid) with Unit Constraint. A general
quadric fit of an ellipsoid with a unit constraint on the first six parameters,
chromosome of length 10 genes representing the quadric parameters. The
methodology was as in the last section. The data is shown in Fig. 4.6(a)
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and the resultant graph of fitting errors for the winning chromosome at each
evaluation is shown in Fig. 4.6(b).

Noisy Elipsoid with Fitted Ellpscid Elipsoid Fitwith Unity Constraint: Epsilon = 0.0001
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(a) ellipsoid (+) fitted sphere (.) (b) Fitting errors
Fig. 4.6. Noisy synthetic ellipsoid fitting

4.2.5 Compound - Degenerate Quadric and Plane with Geomet-
ric Constraints. In this experiment we fitted a cone with a planar bottom,
where the cone is constrained to be both right and circular with axis along the
normal of the plane. A chromosome of 14 genes represents the quadric param-
eters of the cone and the parameters of the plane, G = (vy,..,v4, a1, ..., a10),
where (v1,v2,v3) is the normal of the plane, v4 is a constant and ay, ..., a10
are the quadric parameters.
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(a) Real object data (b) Fitting errors
Fig. 4.7. Cone and plane fitting

The constraints used in fitting the two surfaces in this object were::
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1. (a?+a2+a2+a2+a?+a2) =1 -unity constraints to avoid null solution
2. (W+vi+od)=1

3. a1 —az = v? — v - circularity constraints

4. a1 — a3 =vf—v§

5. az —az =v3 —v3

6. a4 = V1.0

7. as = V1.V3

8. g = V2.U3

9. |’U1|, ey |’U4|, |a1|, ey |(l10| <1

4.3 Experiment Summary and Caveats

The following table summarises the experiements performed, where ‘DC’
stands for ‘Domain Constraints’ and ‘GC’ stands for ‘Geometric Constraints’.

Type No. points | e value DC | GC | Evaluations
Lines 400 0.000001 | 4 1 | 30,000
Plane 2217 0.0001 4 1 | 10,000

Two planes 4913 0.0001 8 3 | 5,000
Sphere 1941 0.0001 10 1 | 70,000
Ellipsoid 1776 0.0001 10 1 | 70,000
Cone + plane | 8199 0.0001 14 8 | 250,000

One typical problem is that given a large chromosome with many param-
eters it is often particularly hard to find an initial start condition unless the
original least-squares fitting for each of the surfaces is available. Even if so,
a start-point may sometimes not be readily calculated. Several fixes for this
were tried, for example using vector cross-products to ensure orthogonality,
but in the future a more rigorous approach will be formulated. Another prob-
lem was that given an arbitrary quadric surface from a range image, the data
origin may be some distance from the origin. This means that the traver-
sal distance in the search-space of the last 4 parameters of the quadric is
high relative to the first six (which are unit normalized). Often this makes a
satisfactory solution unlikely. In order to achieve a fitting, all of the sampled
range data were normalized to a unit sphere, centred at the origin, and a scale
factor extracted. This proved a good remedy since the traversal distances for
all parameters was at least the same order of magnitude.

5. Conclusions

First and foremost, this paper represents a proof of concept - an evolutionary
algorithm can be used to fit surfaces where a priori domain and geometric
constraints are important. All of the fittings in the last section satisfied both
the constraints and the least-squares fit to a high degree. This initial success
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has indicated to us that evolutionary strategies are feasible in this domain,
but the time complexity to convergence (each fitness evaluation involved cal-
culations for each of several thousand coordinate pairs or triplets) has sug-
gested possible poor scaling to larger and more complex surfaces. To deal
with these we did further experiments which involved evaluating candidates
in early stages against only a small proportion of the available data. This
succeeded in significantly speeding up the process without unduly misleading
the future direction of search. One other approach we are investigating in-
volves the off-line computation of datasets and parameterisations which has
been shown [1] to significantly speed up least-squares fitting. Work so far
thus indicates the viability of evolutionary approaches to fitting range data
from complex real-world components with engineered surfaces. Future work
in this area is as follows:

— Segmentation. We are assessing whether a 3-dimensional segmentation of
the data (that is the decision of which points belong to which surfaces)
may also possible using a priori constraints on the range of possible shapes
and their relationships.

— Fuailure points. We are assessing at what point the system breaks down
under the constraint loading and surface complexity.

— Feature identification. We are examining the explicit coding of constraints
for surface features, such as a slots or a drilled hole. This is a particularly
difficult problem in 3D segmentation because often sufficient surface data
does not exist to segment each of the individual elements of, say, a drilled
hole. If constraints are taken into consideration then it may be possible to
code the individual feature elements into a single chromosome and search
for it in a scene.
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