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Abstract

In this paper, we compare two distinct primal sketch fea-
ture extraction operators: one based on neural network fea-
ture learning and the other based on mathematical models
of the features. We tested both kinds of operator with a set
of known, but previously untrained, synthetic features and,
while varying their classification thresholds, measured the
operator’s false acceptance and false rejection errors. Re-
sults have shown that the model-based approach is more
unstable and unreliable than the learning-based approach,
which presented better results with respect to the number of
correctly classified features.

1 Introduction

Primal sketch features, like Edges, Bars, Blobs and Ends
are part of Marr’s [7] hypothesis for the human visual sys-
tem, and are believed to take part in early visual processes
providing a representation that captures invariant primitives
from the object’s surface as well as providing cues for an
attention mechanism. Marr’s original idea was to use differ-
ential operators, such as the Laplacian of Gaussian operator,
to detect intensity changes (or zero-crossings) at different
scales, which would later be used to form these features.

Inspired by Marr’s ideas, Grove and Fisher [4] conceived
a vision system based on primal sketch features. Instead of
traditional Cartesian sensor geometry, they decided to use
a biologically inspired representation, a log-polar image,
which brought a number of advantages into their system but
had a unusual geometry and computation. They proposed
an alternative method to detect the features which was based

�

This author received financial support from CNPq (Conselho Nacional
de Desenvolvimento Cientı́fico e Tecnológico, Brazil)

on operators defined as small windows containing weights
associated with each of the feature classes.

Later, Gomes and Fisher [2, 3] identified some prob-
lems with the way feature extraction was made in this sys-
tem. Since the operators were heuristically defined, there
is no guarantee that they will work correctly with all the
possible cases and that they will allow graceful degrada-
tion. Moreover, whenever one needs a different window
size or window shape it will be necessary to design new
logical expressions for the operators which can lead to mis-
takes as the operators are defined by hand. In order to im-
prove the previous feature extraction method, they proposed
a learning-based approach, which is described, later in the
paper, alongside the previous approach.

Although they performed a subjective evaluation of both
approaches based on the visual output of the operators on a
set of real images, which showed some improvement when
using the learning-based approach, to date, there was no ob-
jective or numerical comparison between both approaches.
Thus, the main purpose of this paper is to objectively com-
pare these two distinct primal sketch feature extractors: one
based on neural network feature learning and another one
based on descriptive models of the features. A secondary
objective is to improve on the subjective analysis by means
of applying the operators to a set of simpler (synthetic) im-
ages, which made easier a subjective evaluation of the op-
erators’ visual output.

Section 2 presents some details as well as the motiva-
tions for a log-polar image representation, followed by a
discussion of the model-based operators (Section 3) and the
learning-based ones (Section 4). In Section 5, we show
and analyse the results of an objective comparison (based
on classification errors from synthetic features). Section 6
contains a more meaningful way of subjectively comparing
both approaches.



2 Log-polar representation

Traditionally, the photometric information of images is
acquired from sensors that have a uniformly distributed
rectangular array of sampling units. As a consequence of
the sensor architecture, most machine vision applications
tend to use Cartesian representations to manipulate images.

However this is not the way images are acquired in
the mammalian visual system. A biologically inspired ap-
proach to vision is to transform the original 2-D image into a
retina-like representation and then to use this representation
as the main data for the vision processes, like feature extrac-
tion, matching and attention. There is already a reasonable
number of related work previously published on this kind of
image representation [8, 9, 4, 6, 5].

The retina is responsible for the reception and transmis-
sion of the input light signals to neuron layers located on the
photoreceptive surface. Each of these neurons receives the
outputs of a group of photoreceptors on an approximately
circular area of the retina called the receptive field. Typ-
ically, the input image is re-sampled through the use of a
mask consisting of concentric rings of overlapping circu-
lar receptive fields whose centres are geometrically spaced
from the centre of the mask. The central region of the retina
(fovea) is formed by receptive fields with approximately
constant size and hexagonally organised, while in the most
external region, the receptive fields are distributed circularly
with an area exponentially increasing as a function of the
distance to the retina centre. There is a certain degree of
overlap (typically 60%) between a receptive field and its
neighbors, which prevents some Cartesian areas from not
being covered by the retinal transformation (due to the cir-
cular geometry of the receptive fields).

If an image is accessed by using the rings (logarithm of
the distance of the rings to the retina centre) and sectors
of this type of mask then this is called a log-polar image
representation. This essentially simulates the mapping be-
tween the retina and neurons in the visual cortex [10, 12].
Each receptive field value is computed through the integra-
tion of a function over a region of the input image. This
non-uniform sampling can be realised either by software or
by a space variant sensor. Figure 1 illustrates the mapping
of a hypothetical 5 ring retina containing a 3 ring fovea.
In our experiments, we used a retinal image containing 48
rings and 60 sectors (outside the fovea).

An important reason for the log and polar elements of
our representation is the property that scaling and rotating
an object located at about the centre of the retinal mask cor-
responds to translating the object in the log-polar image.
This has been used to design systems that are scale and ro-
tation invariant [9]. In another work [1], we specially took
advantage of this property when creating visual models con-
taining relative scale and orientation measurements for all
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Figure 1. Log-polar mapping of a 5 ring retina
containing a 3 ring fovea. To simplify the fig-
ure, no overlapping was used. Only the out
of fovea area is log-polar.

pairs of the models’ internal objects.

Some factors motivated the choice for a biologically in-
spired representation in the log-polar form. This does not
necessarily mean that we want a representation that pre-
cisely mimics in size and complexity all the (sometimes
not yet understood) structures found in a biological system.
We are mainly looking at structural and functional similar-
ities. One factor is the inherent reduced spatial complexity
and log-polar property of the retinal image, which favours
the implementation of faster matching algorithms. When
used in conjunction with an attention mechanism, the space-
variant nature of this representation may lead to a more ro-
bust matching process, when compared to conventional uni-
formly sampled images, since objects or parts of objects are
more likely to be found in the high resolution centre. The
low resolution periphery, which occupies only a small num-
ber of pixels, but covers a large area, will usually include
parts of the background that are not so important for match-
ing. There is much research on visual attention, including
recent work by our group [11], but the operators discussed
in this paper are concerned only with the features extracted
after the saccade has occurred.

Although the image representation discussed has some
interesting properties, more has to be done if one needs a
system capable of performing high level vision tasks, such
as locating, recognising or learning models of visual ob-
jects. More specifically, raw colour and intensity informa-
tion are not sufficient for vision as their sole use would im-
ply in a large conceptual gap between data and models and,
therefore, this would complicate the design of algorithms.
Both Machine Vision and Biology have proved that extract-
ing properties and features from images, by means of build-



ing intermediate representations, is a useful way of reducing
this conceptual gap. The following sections describe two
distinct methods for extracting primal sketch features from
log-polar images: model-based and learning-based.

3 Model-based operators

In Grove and Fisher’s system [4], feature extraction op-
erators were manually modelled as logical expressions in-
volving the pixels of a 3x3 window which is applied through
the log-polar image. Figure 2 illustrates the original 3x3
mask used in a rectangular retinal tessellation (i.e., the re-
ceptive fields are radially aligned). Some operators defining
-Corner, +Blob and +Bar features are exemplified in the fol-
lowing Equations:
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Figure 2. The 3x3 mask used by the Grove and
Fisher system [4] to detect features. Each
pixel in the mask corresponds to a particu-
lar receptive field output in the polar coordi-
nate system. A rectangular retinal tessella-
tion was used in this example.

They also proposed a set of operators for use in a trian-
gular tessellation (i.e., when the receptive fields are shifted
by half a sector every 2 rings in order to minimise the gaps
in the mask. Instead of a 3x3 window, this version of the
operators had a hexagonal layout of a central receptive field
surrounded by its 6 neighbours (see Figure 3). This was the
kind of tessellation and operators used in this paper. Exam-
ples of detectors for Blobs and Edges in triangular tessella-
tion are shown in the following Equations:
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Figure 3. Triangular retinal tessellation.

Since the operators’ outputs are continuous, any output
below a given empirical positive threshold was set to zero to
indicate the absence of a feature pattern. Originally, a fixed
threshold equal to 8 was used for all operators, provided
that image intensities were within the range [0 dWd�d 255]. Dur-
ing the comparison carried out in this paper, we varied this
threshold in order to plot a classification error graph of the
operator’s output.

4 Learning-based operators

Figure 4 illustrates the architecture of the learning-based
operators, which is based on a MLP-backpropagationneural
network minimising a least square error metric.

The architecture receives receptive field windows al-
ready orientation normalised. This normalisation was
achieved via a set of very simple symmetrical operators. At
the top of the architecture is a PCA pre-processing stage
which consists in projecting a normalised receptive field
window onto a subset of the training set’s principal compo-
nents. This stage was needed in order to spread out the fea-
tures, thus increasing the inter-class variability, which orig-
inally was too small due to the existence of similar feature
shapes and due to the low dimensional input space.

At the bottom of the architecture is a neural network
module with 17 inputs, 9 hidden neurons and 2 output neu-
rons ( e and fe ) used to discriminate between feature and
non-feature classes. Seven neural network modules like
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Figure 4. Architecture of the learning-based
operators.

this were trained, one for each of the seven feature classes:
Edge, +Bar, -Bar, +Blob, -Blob, +End, -End.

The networks were trained using a set of synthetic fea-
tures so that a large number of feature variations could be
easily generated. It is important to emphasise that the syn-
thetic patterns are drawn in the Cartesian space and there-
fore this does not contradict our assumption that to build a
model for the features in the retinal space is a difficult task
which has justified the use of a learning based approach.
Features were drawn using multiple contrasts, orientations,
sizes and additive Gaussian noise levels, thus allowing a
wide range of variation. Table 1 shows some of the training
features generated. A total of seven different training sets
was built, one for each neural network module designed to
classify the feature classes. Each training set was built from
an equal number of feature examples and counter examples.
The same generator that was used to draw these features was
also used to generate test features. Care has been taken so
that the test features were different from the training ones,
and thus completely new to the neural network modules.

More details about the learning-based operators and how
they were trained can be found in two previous works [2, 3].
It should be pointed out that, in these previous works, the

Edge +Bar -Blob +End
Counter
Example

Cartesian
inputs

does not
apply

Retinal
outputs

Table 1. Some examples of the synthetic train-
ing features.

performance of the learning-based operators was not quan-
titatively compared with the model-based operators, only
some real images were presented for subjective evaluation
(which proved to be a difficult task, since real images have
too many details to examine). Besides contributing with
an objective (numerical) comparison between both kinds of
operators, the present paper also confronted their outputs
when submitted to simpler, synthetic images, making easier
the job of performing a subjective evaluation of the visual
output of both operators.

5 Objective Comparison

The strategy we adopted in order to have an objective
way of comparing the performance of both approaches pre-
sented in this paper was to vary their classification thresh-
olds and measure the resulting classification errors when
processing synthetic testing features. We tested both kinds
of operator with a set of untrained synthetic features. We
employed the same feature generator used to build the ini-
tial training sets with the difference that here the features
were generated at sizes, orientations, contrasting intensities
and noise level different from those used during neural net-
work training.

We generated 80 test exemplars per class by varying the
contrast in the range 0.21 to 1.0, with a step of 0.01 (-0.21
to -1.0, with a step of -0.01, for negative features). The in-
tensities used to produce the above contrasts were chosen
randomly as well as the remaining parameters specifying
orientation, noise level and size. The first 80 patterns of
the testing set are exemplars of the feature class in order of
increasing contrast, and are generated as discussed above.
The following 83 patterns are counter examples (the first 40
were randomly generated and the remaining 43 were ran-
domly chosen from other class examples).

In previous works [2, 3] we discussed the ability of the
learning-based operators to correctly estimate the feature
class identities and to accurately predict their contrasts. The
overall results were promising for all feature classes. There
were just a few errors, mainly related to low contrasting fea-
tures, to prediction errors of the orientation detectors (sepa-



rate module), and to counter examples coming from similar
feature classes. However, no comparison of these results
with related approaches has been made.

In the experiments that follow we do not consider con-
trast prediction errors, and focus only on the classification
errors. The contrast errors are directly linked to the classi-
fication thresholds chosen to be varied in the experiments,
thus measuring contrast prediction errors would not allow
reaching any significant conclusion.

Error type I (false acceptance) occurs whenever the clas-
sifier accepts a non-class sample as belonging to the class.
Error type II (false rejection) occurs whenever the classi-
fier considers a member of the class as not belonging to the
class. The sum of these two errors gives the total error pro-
duced by the classifier and, in our specific case, we want to
minimise the sum of these two errors.

We varied the threshold of the learning-based operators
from 0.0 to 1.0, in steps of 0.01, and measured the classifi-
cation errors. Figure 5 shows the results of the threshold ex-
periment for Edges, +Bars, +Blobs and +Ends. The graphs
for the -Bars, -Blobs and -Ends features were removed to
save space, since they were virtually identical to the graphs
of their corresponding ‘+’ features.

In order to provide a quantitative evaluation of the rela-
tive performance of the method shown here and the model-
based approach described in the previous section, we used
the same testing sets described above to generate classifica-
tion statistics (likewise the ones presented in Figure 5) for
the model-based approach. Since the classification thresh-
old of the model-based approach is a function of the intensi-
ties found in the images, we decided to vary their threshold
from 0 to 100 in steps of 1. This yielded exactly 101 sequen-
tial thresholds which is compatible with the range of varia-
tion used before to test the neural network approach (thresh-
olds varying from 0 to 1 in steps of 0.01). We later dis-
covered that this was a good choice, since the error curves
converged near the higher thresholds to the same levels ob-
tained before. Figure 6 shows the errors of the Edge and
Bar operators. The results of the remaining operators are
presented on Figure 7.

By contrasting Figure 5 with Figures 6 and 7 it is pos-
sible to see that all of the learning-based operators had no
type I errors for all tested thresholds, whereas, when using
the model-based approach, only +Ends had no type I errors.

This excellent type I error performance by the neural net-
works may be partially explained by the fact that the clas-
sification rule decides based on the output of two neurons
(one responsible for representing features and the other,
non-features) that are mutually exclusive. Moreover, there
was a reasonable threshold range (typically between 0 and
0.15) for which the learning-based operators had almost
zero errors of type II (optimum performance). No such
range could be found in the graphs of the previous approach,
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Figure 5. Errors type I and II vs. the clas-
sification threshold for Edges, +Bars, +Blobs
and +Ends for the operators using the new
method. The type I error curve allways lies
on the horizontal axis.
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previous approach of Grove and Fisher [4].
The type I error curve is not allways zero.

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

R
at

e 
(%

)

Classification threshold

+Blobs

Error I
Error II

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

R
at

e 
(%

)

Classification threshold

-Blobs

Error I
Error II

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

R
at

e 
(%

)

Classification threshold

+Ends

Error I
Error II

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

R
at

e 
(%

)

Classification threshold

-Ends

Error I
Error II

Figure 7. Errors type I and II vs. the classifica-
tion threshold for the operators using the pre-
vious approach of Grove and Fisher [4]. The
type I error curve is not allways zero, apart
from +Ends.



which indicates that the previous approach is more unstable
and unreliable.

The above experiments also provided an effective way of
determining the best classification thresholds for both ap-
proaches. The idea is to choose the highest classification
threshold that produces best overall performance. The rea-
son for this is that we want high performance while are not
interested in detecting very low contrast features.

From Figure 5 it is easy to see that a 0.15 threshold meets
this requirement for the learning-based operators. More-
over, Figures 6 and 7 indicate that a threshold equal to 8,
originally (and empirically) determined for the model-based
operators, would not be a bad choice since it meets the
above requirements for most of the feature types, apart from
Ends, which would need a nearly 0 threshold, and Edges,
which would need a threshold equal to 4.

6 Subjective Comparison

In order to help the reader to have a clearer view of the
outputs generated by the feature extraction operators de-
scribed in this paper, and before applying it to any real im-
ages, which may contain complicated textures and features
not easily spotted by the eye, a number of synthetic images
were used. Input images containing horizontal, vertical and
diagonal edges at varying contrasts were used to test the out-
puts of the Edge operators of both approaches compared in
this paper. The Bar operators were tested against images
containing vertical, horizontal and diagonal bar patterns.
The Blob operators were tested against images containing
blob-like features at varying sizes and contrasts. Finally,
images containing simple polygons at varying contrasts and
orientations were used to test the End operators (the vertices
of these polygons are the features to be detected).

These examples are shown on Figures 8 and 9. From
a subjective evaluation of these figures, apart from some
small uncertainty with regards to the feature location, it is
possible to conclude that the neural classifiers are doing a
reasonable job at detecting the features they have been de-
signed for.

Note that, in some of the pictures, the Edge and Bar op-
erators eventually fail near the centre or near the periphery
of the images, which is expected since the scale of an im-
age feature does not always match the scale of the receptive
field window. The last columns of Figures 8 and 9 illus-
trate the results of the previous approach when applied to
the same set of synthetic input scenes. Overall, the previous
approach had poor contrast sensitivity and a greater number
of features not being detected (discontinuities) when com-
pared to the learning-based approach.

Retinal image Learning-based Model-based

Figure 8. Edge operators on synthetic images.

7 Conclusions

The main contribution of this paper was to present an
objective comparison of two distinct approaches to primal
sketch feature extraction from log-polar images. In the
first approach [4], features were detected using a number
of manually defined logical operators within a fixed retinal
window. A second approach [2, 3] took advantage of the in-
herent learning (from examples) and generalisation proper-
ties of neural networks. Instead of designing feature extrac-
tion operators from scratch, the basic idea was to use a set
of exemplars of features and non-features to train a MLP-
backpropagation neural network. If the operators were ap-
plied to a Cartesian image, then probably analytic methods
would have been possible, as in the Canny edge detector
design. However, here the unusual receptive field geometry
and sampling computation were sufficiently complicated
that we chose the learning-based approach.

Performance evaluation experiments (error type I and II
measured under varying classification thresholds) applied
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Figure 9. � Bar operators (lines 1-6), � Blob op-
erators (lines 7-8) and � End operators (last
two lines), on synthetic images.

both kinds of operators to a set of synthetic features. These
experiments were complemented by a subjective evaluation
of the operator’s visual output on a set of simple scenes,
containing mostly features of interest.

As a result of the experiments, it was observed that the
new approach (learning-based) presented better results with
respect to the number of correctly classified features, pro-
vided a richer description for the image data with the addi-
tion of an estimate for the feature’s contrast, and became
a more flexible solution to the problem in the sense that
whenever a new feature class is required, only its training
set needs to be provided.

Moreover, there was a reasonable threshold range (typi-
cally between 0 and 0.15) for which the learning-based op-
erators had practically no errors of types I and II (optimum
performance). No such range could be found in the graphs
of the previous approach, which indicates that the previous
approach is more unstable and unreliable.

References

[1] H. Gomes and R. Fisher. Structural learning from iconic
representations. Lecture Notes in Artificial Intelligence,
1952:399–408, 2000. Springer.

[2] H. Gomes and R. Fisher. Learning and extracting primal-
sketch features in a log-polar image representation. In Proc.
of Brazilian Symposium on Computer Graphics and Image
Processing, pages 338–345. IEEE Computer Society, 2001.

[3] H. Gomes and R. Fisher. Primal sketch feature extrac-
tion from a log-polar image. Pattern Recognition Letters,
24:983–992, 2003.

[4] T. Grove and R. Fisher. Attention in iconic object matching.
In Proc. of British Machine Vision Conference, pages 293–
302, 1996.

[5] F. Jurie. A new log-polar mapping for space variant imaging:
application to face detection and tracking. Pattern Recogni-
tion, 32:865–875, 1999.

[6] F. Lim, G. West, and S. Venkatesh. Use of log polar space
for foveation and feature recognition. IEE Proc. of Vision,
Image and Signal Processing, 144(6):323–331, Dec 1997.

[7] D. Marr. Vision. W. H. Freeman and Co., 1982.
[8] A. Rojer and E. Schwartz. Design considerations for a space-

variant visual sensor with complex-logarithmic geometry. In
Proc. of Int. Conference on Pattern Recognition, pages 278–
285, 1990.

[9] G. Sandini and M. Tristarelli. Vision and space-variant sens-
ing. In H. Wechsler, editor, Neural Networks for Perception,
volume 1, chapter II.11, pages 398–425. Academic Press,
1992.

[10] E. Schwartz. Spatial mapping in primate sensory projection:
analytic structure and relevance to perception. Biological
Cybernetics, 25:181–194, 1977.

[11] Y. Sun and R. Fisher. Object-based visual attention for com-
puter vision. Artificial Intelligence Journal, 146(1):77–123,
May 2003.

[12] S. Wilson. On the retino-cortical mapping. Int. Journal on
Man-Machine Studies, 18:361–389, 1983.


