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Abstract

Raw images are more useful than JPEG images for machine vision
algorithms and professional photographers because raw images preserve a
linear relation between pixel values and the light measured from the scene.
A camera is radiometrically calibrated if there is a computational model
which can predict how the raw image is mapped to the corresponding
rendered image (e.g. JPEGs) and vice versa. Our method makes use of
the observation that the rank order of pixel values are mostly preserved
post color correction. We show that this observation is the key for getting
a compact and robust radiometric calibration model. Since our method
requires fewer variables, it can be solved for using less calibration data.
An additional advantage is that we can derive the camera pipeline from
a single pair of raw-JPEG images. Experiments demonstrate that our
method delivers state-of-the-art results (especially for the most interesting
conversion from JPEG to raw).

1 Introduction

Many computer vision algorithms (e.g. photometric stereo [21], photometric
invariants [12], shadow removal [15, 16], and color constancy [2]) rely on the
assumption that the captured RGBs in images are linearly related to the actual
scene radiance. However, mostly, the actual output of a digital camera imag-
ing pipeline is necessarily non-linear in order to produce perceptually-pleasing
photos as opposed to their physically-meaningful counterparts. In this paper,
we present a compact rank-based radiometric calibration method which solves
for the bi-directional mappings between the camera’s raw responses and the
rendered RGBs produced by digital cameras.

There is prior art in this field which models the pipeline with a large number
of parameters (up to several thousand [5]) which both means a large corpus of
data is required to uncover the pipeline and that there is at least tacitly the
premise that the underlying pipeline is quite complex. The key insight in our
approach is that post-color correction (a 3 × 3 matrix correction) the linear
corrected raw RGBs are to the greatest extent in the same rank order as the



final rendered RGBs. Based on this insight, we develop a compact rank-based
radiometric calibration model that models the camera pipeline with many fewer
parameters and concomitantly needs much less training data.

In Fig. 1, we illustrate a typical image reproduction pipeline which is repre-
sentative of many cameras [18]. An exemplar raw image, Fig. 1a, is mapped by a
3×3 color correction matrix to give a color corrected image (Fig. 1b). The color
correction matrix implements several processing steps (e.g. illumination correc-
tion [4, 23], display RGB mapping [1], and color preference adjustments [23]).
It is well-known that a display device cannot show all captured image colors
and some RGBs will fall outside the RGB cube after mapping (e.g. the pixels
marked in light purple in Fig. 1b). Gamut mapping is therefore required, e.g.
[5, 13, 18], to move the colors back inside the cube as shown in Fig. 1c. Fi-
nally, the gamut mapped image is tone mapped to arrive at the final rendered
output [4, 18, 23] shown in Fig. 1d. Tone mapping accounts for the display non-
linearity [1], dynamic range compression and some aspects of preference [24].

a) RAW b) Colour Corrected d) Tone Mappedc) Gamut Mapped

M⇢⇢ �(M⇢) f(�(M⇢))

Figure 1: a) a raw input image is color corrected to give image b). Non-
displayable colors are highlighted in purple pseudo color. Gamut mapping, in
step c), brings colors within gamut. Finally, in d), a tone mapping step results
in the final rendered image. The image is taken from [10].

In general, the camera color processing pipeline can be written as Eqn. 1.

P = f(Γ(Mρ))︸ ︷︷ ︸ = Γ(f(Mρ))︸ ︷︷ ︸ ≈ LUT(ρ)︸ ︷︷ ︸
(1a) (1b) (1c)

(1)

where ρ denotes a camera raw and P refers to its rendered RGB counterpart.
Respectively, the 3×3 correction matrix, gamut mapping and tone mapping are
denoted by the matrix M and the functions Γ() and f(). The function f() can
implement a single or three per-channel tone curves. Since gamut mapping only
implements a small change in comparison with color and tone mapping steps,
the order of gamut mapping and tone mapping may be switched (Eqn. 1b &
c), a property that we exploit in this paper. Equally, we can also merge three
processing steps into one and directly solve for a 3-D LUT (Look-Up-Table)
that maps raw to rendered counterparts. This LUT interpolation function is
denoted LUT() [19] in Eqn. 1c. Readers may refer to the top row of Fig. 1 to
link each mathematical function to our example processed image.

In radiometric calibration, given a set of ρ and P , we solve for the parametrised
pipeline parts (e.g.M , Γ(), f() and LUT()). A disadvantage of the current best



performing methods is that a great deal of data may be required to fit their as-
sumed models. In Eqns. 1a and 1b, the gamut mapping step could be modeled
by 1000s of Radial Basis functions [5, 18, 19] and in Eqn. 1c, the deployed LUT
interpolation function could also have several thousand control points.

Our proposed method exploits the simple observation [8] that, assuming the
gamut mapping step slightly changes image colors and the tone curves are always
monotonically increasing, we expect mostly the rank ordering of the rendered
P to be the same as ρ multiplied by the correction matrix M . Suppose that
two rendered (JPEG) responses – in the 1st color channel – are denoted P a

1 and
P b
1 and that P a

1 > P b
1 . The rank order of two corresponding raw red channel

measurements post color correction is written as M1ρ
a > M1ρ

b (where M1

denotes the first row of M and ρa and ρb are a pair of raw RGBs). This implies

that M1(ρa − ρb) > 0 which defines a half-space constraint.
The row vector M1 can be considered as a point in 3-space and this inequality

(ranking constraint) forces the point to be located in only one half of 3-space.
Because we have multiple pixels, each pair of pixels (2 raw and 2 JPEG RGBs)
generates a half space constraint and intersecting all these constraints delimits
the region in which M1 must lie. Our experiments demonstrates that a small
number of patches suffices to estimate M accurately.

Once we have M we then find the best rank preserving tone curves f(). At
this stage, only using M and f() we have a good approximation of the pipeline.
Indeed, we argue that our construction of M and f() also incorporates, to a
first order, gamut mapping. Now we adopt (Eqn 1b) and find a 125-parameter
per channel LUT interpolation to reduce any remaining errors due to gamut
mapping (higher order terms).

Below, we review radiometric calibration paying special attention to methods
which adopt Eqns. 1. Rank-based radiometric calibration is then described
and is shown to provide leading performance on a public dataset. Finally, an
application of one-shot radiometric calibration without the access to raw is
shown.

2 Related Work

Using the pipeline form of Eqn 1b, Chakrabarti et al. [5] first solve for M and f()
in iteration and then solve directly for Γ(). In their approach, f() is constrained
to be a 7th order increasing polynomial. They model Γ() by the radial basis
function (RBF) method of [18] where several thousands of RBFs are potentially
used. A restriction of the above calibration is presented in [4] where the gamut
mapping Γ() is ignored. This less general model works tolerably well on many
real pairs of raw and rendered images and this is a point we will return to later in
this paper. In either version ([5] or [4]), the coupled nature of the minimization
indicates that a global minimum is not guaranteed. Therefore, a random start
point search is implemented to find a better set of parameters.

Kim et al. [18] solve for the pipeline in the form of Eqn. 1a and makes addi-
tional assumptions to decouple the optimization. They assume that images of
the same scene are captured with respect to two or more exposures and their Γ()
is a multi-thousand set of RBFs. Regarding solving for f(), Debevec et al. [6]
showed how relating corresponding pixels under known exposure differences suf-
fices to solve for f() (assuming there is no gamut mapping step). Importantly,



in [18], it was argued that for the set of desaturated pixels (i.e. raws far from the
RGB cube boundary), the gamut mapping step has little or no effect and can
be ignored. Relative to this assumption, f() can be solved using the Debevec
method. Given f() then the color correction matrix M can be found (again
using desaturated pixels).

We point out that for most off-shelf capture devices (e.g. for most mobile
phones), manual exposure control is usually unavailable and the requirement of
multiple exposures is impractical. We also note that, in [18], the adopted gamut
mapping RBF network requires a large number of parameters and thus a large
corpus of data [5, 18].

In [19], it was shown that it is possible to ignore the underlying structure
of the color processing pipeline and directly solve for the best 3-D surjective
function – implemented as a LUT interpolation function that maps the raws to
rendered RGBs (Eqn. 1c). Finally, in [20], a method is presented for solving for
f() by examining the edge distribution in an image. This method has the ad-
vantage that the method works for a single image (without multiple exposures)
but the method is sensitive to processing steps such as image sharpening which
is used extensively in mobile phone image processing.

3 The Rank-Based Method

In this paper, we are interested in calibrating in the most general circumstances
when the amount of training data is modest and there is only a single calibration
image. Assuming that the rank order of intensities are almost preserved after the
camera processing steps, we present a method that solves for an accurate rank-
preserving camera pipeline model. This paper extends our previously published
rank-based method [17] with more details and experiments.

To make the rank-based method work we need to assume that the gamut
mapping step Γ() only changes color slightly. In fact our assumption is more
nuanced. We assume that – to a first order – gamut mapping can mostly
be implemented as an affine transform and that this affine transform can be
folded into the color correction matrix M and the monotonically increasing
tone mapping functions f().

3.1 Gamut Mapping as An Affine Transform

After color correction, some colors are mapped outside the color cube and be-
come non-displayable. To address this, gamut mapping in Eqn. 1b is applied.
A Taylor expansion to model Γ() around a point a inside the gamut is used:

Γ(Mρ) ≈ Γ(a) + J(a)(Mρ− a) (2)

where J is the 3×3 Jacobian (matrix of derivatives of Γ). Not only does Eqn. 2
show that, to a first approximation, gamut mapping is an affine transform it is
also one of the gamut mapping algorithms proposed in [13]. We solve for the
affine mapping that maps all pixel colors into the unit RGB space cude.

min
T,o

Σi||TMρ
i
+ o−Mρ

i
||2 s.t. 0 ≤ TMρ

i
+ o ≤ 1 (3)

In Eqn. 3, T and o are respectively a 3×3 matrix and 3×1 offset vector defining
the affine gamut mapping algorithm, i is the index of an input RGB vector. The



3-vectors of 0s and 1s are denoted 0 and 1. Eqn. 3 is solved directly by Quadratic
Programming [14]. The gamut mapping shown in Fig. 1c is the result of solving
Eqn. 3.

Here, we make two important remarks about affine gamut mapping: 1)
Gamut mapping and color correction combined can be represented by the single
affine transform: 3 × 3 matrix TM and offset o; 2) It follows that the rank-
based method presented in the next section will actually solve for TM . The
offset term can be incorporated directly in f().

Our hypothesis is that the part of gamut mapping that is not described by
an affine transform will be small and the remaining error can be modeled with
a function that has fewer parameters (100s in contrast to the prior art 1000s).

3.2 Rank-Based Estimation for Color Correction

Denote the kth row of M as Mk. We assume that given two color corrected
raws, Mkρ

a and Mkρ
b, that the rank order is the same as for the corresponding

rendered RGBs:

P a
k > P b

k ⇒ Mkρ
a > Mkρ

b ⇒ Mk(ρa − ρb) > 0 (4)

Defining the difference vector dj = ρa − ρb:

Mkd
j > 0 (5)

where it is understood the superscript j denotes the difference vector from the
jth of

(
n
2

)
pairs of image pixel values (n is the total number of image pixels).

Suppose that we have a vector Mk where Eqn. 5 holds, then the inequality
cannot be true for −Mk. That is, Eqn. 5 defines a half plane constraint [3, 8].
The vector dj is perpendicular to the half-plane: any Mk less than 90 degrees to
dj is a possible solution. Given multiple difference vectors then we have multiple
half-plane constraints which taken together delimit a region in 3-space where
Mk must lie. Denoting the half-plane as H(dj), Mk must satisfy:

Mk ∈
⋂
j

H(dj) (6)

The intersection in Eqn. 6 defines an unbounded cone, anchored at the origin,
in 3-D space. Clearly, if Mk is in the intersection region defined by Eqn. 6 then
αMk (where α is a positive scalar) is another solution. Using ranking we solve
for each row of M up to an unknown scalar multiplier.

Let us visualize the computation of Mk using ranking. Without loss of
generality let us assume that Mk,3 = 1. We rewrite Eqn. 5 as

Mk,1d
j
1 +Mk,2d

j
2 + dj3 > 0 (7)

If [a b c] is a solution to Eqn. 6, then [a/c b/c c/c] for Eqn. 7 is also true since
Mk,1 = a/c and Mk,2 = b/c. Solutions for [Mk,1,Mk,2] lie on one side of the line,
i.e. the 3-D half-space constraints maps directly to a 2-D half-plane constraint.
Or, if we consider the whole set of intersections, the cone in 3-D, defined by
Eqn. 6, maps to a 2D convex region [7]. Denoting half-planes as P(dj) we,
equivalently, solve for

[Mk,1,Mk,2] ∈
⋂
j

P(dj) (8)



The intersection problem of Eqn. 8 is easily visualized. In Fig. 2a we show the
intersection of 4 half plane constraints and indicate the solution set where Mk

must lie.

a) b)

Mk,1

Mk,2

Mk,3

(a, b, c)

Mk,3 = 1

Mk,1

Mk,2

P1

P2

P4 P3

(a/c, b/c)

Mk = [a/c, b/c, 1]

Mk,3 = 1

Figure 2: a) The region where 4 half-plane constraints intersect delimit the
region where [Mk,1,Mk,2] must lie where the black point is a feasible solution.
b) On an unit sphere, each vector represented by the origin and a blue surface
point is a probe for a possible solution (e.g. the black arrow). All 3-D points
and constraints are projected to a 2D plane Mk,3 = 1.

We solve for Mk one sensor channel at a time. Due to noise or small devia-
tions in real camera data, it is likely that no common intersection can be found
that satisfies every half-plane’s constraint. To solve this problem, we generate
100,000 unit length vectors that are uniformly distributed on the surface of the
unit sphere [22], which is visualized in Fig. 2b. With respect to this sampling,
the furthest distance between any point and its nearest neighbor is less than 1.15
degrees. Therefore, the orientation of the rows of M are found to this accuracy.
For each point on the sphere (i.e. a possible row of Mk), we count how many
half-space constraints are satisfied. The point on the unit sphere that has the
largest number of satisfying half-plane constraints – or the median of multiple
points if there is a tie – defines Mk.

To maintain a reasonable computational cost, we have to be careful not to
generate too many half planes. We simply select 200 random RGB-JPEG pairs
for estimating M . Since it is not guaranteed that these 200 random pairs are the
optimum selections, we practically generate 25 random sets of 200 RGB-JPEG
pairs and select the “best luck” set which gives the lowest training error. Note
that the other pipeline components introduced later are also applied to evaluate
the training error.

Overall, we find the M that places all the corresponding raw and rendered
image RGBs in the most similar rank order. That is, if we plot the mapped
raw red responses, for example, against the rendered red JPEG corresponding
values then the graph should be a monotonically increasing function. How well a
monotonically increasing function fits our data can be used to judge the efficacy
of each M .



3.3 Rank-Preserving Optimization of Tone Curves

We now solve for the optimal per-channel tone curves which map color corrected
raws to corresponding rendered RGBs. Let us denote the ith color corrected
raw and rendered RGB pixel pairs for the kth channel as (Mkρk,i, Pk,i). Then,
the kth-channel rank-preserving tone curve fk() is optimized as a 7th order
monotonic and smooth polynomial function as follows:

min
fk()

Σi||fk(Mkρk,i)− Pk,i||2 + λ

∫
t

||f ′′k (t)||2dt s.t. f ′k() ≥ 0. (9)

where the first term is for data fitness, the second term is for curve smoothness
and λ is a small weight (e.g. 10−5). The constrain enforces monotonicity. This
polynomial fitting is solved by Quadratic Programming [14]. Note that these 7th

order polynomials already include the Affine gamut mapping offset parameters
described previously. In this paper, we further denote the combination of all
3-channel mappings f1−3() as f().

3.4 Gamut Correction Step

As argued previously, we propose that f(Mρ) has the expressive power to im-
plement color correction, tone correction and gamut mapping (to the first order
in a Taylor expansion). However, we wish to add a further gamut mapping
step for the higher order terms. But, since our hypothesis is that much of the
gamut mapping will have been accounted for we are going to adopt a simple
small parameter solution. Further, this additional correction is going to be car-
ried out at the end of the process, we adopt Eqn. 1b. Specifically, we find a
5× 5× 5 LUT interpolation function by using lattice regression [11] that mini-
mizes minLUT () Σi||LUT(g(f(Mρ

i
)))− P i||2 where g() is a non-linear function

that stretches highlights. We found empirically there was an advantage in de-
ploying more LUT resolution in the highlight region where gamut mapping is
created. We implemented this not by changing the sampling structure of the
LUT control points (which is uniform) but by stretching our data, by apply-
ing the function g() shown in Figure 3. The function g() is fixed for all our
experiments.

3.5 Rank-Based Recovery of Raw

Suppose we wish to map rendered RGBs to raws. Using the previously described
method, M has already been solved in the RAW-to-JPEG forward estimation
phrase. Now, in a least-squares optimal way, we use the same polynomial fitting
method (Eqn. 9) to find f−1 by optimizing minf−1() Σi||f−1(P i) −Mρ

i
||. Fi-

nally, we solve for the backward LUT() by optimizing minLUT () Σi||LUT(g(M−1f−1(P i)))− ρi||
where the LUT interpolation function is fitted by a 5×5×5 lattice regression [11].

3.6 Parameter Counting

Assuming we solve for 3 independent tone curves then our method requires 9
(for M) + 8× 3 (for f()) + 125× 3 (the LUT for Γ()) = 408 parameters which
is significantly less (even an order of magnitude less) than [5, 18, 19].
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Figure 3: Plot of a non-linear function g(x) where g(0) = 0 and g(1) = 1.

4 Evaluation

Our evaluation is based on two challenging datasets from Harvard [5] and
NUS [18]. The Harvard dataset [5] contains the RAW/JPEG intensity pairs
of 140 color checker patches viewed under multiple viewing conditions. The
color chart is captured by 8 cameras and under 16 illuminants across many
different exposures. Compared with the Harvard dataset, the NUS dataset con-
tains large data captured with a 24-patch color checker and 31 camera sensors
though its capture conditions (i.e. light and exposure) are relatively limited.

We carried out the same experiment described in [5, 18]. We are interested in
validating whether our method, with much reduced number of parameters can
produce, similar or even better results compared with the state-of-the-art [5].
We evaluate both RAW-to-JPEG and JPEG-to-RAW. The Harvard dataset [5]
captures a sort of “worst-case” viewing conditions. Normally, when we capture
a picture there is a single prevailing illuminant color. In the Harvard dataset, all
camera processing parameters are turned off and then the same reflectances are
viewed under multiple colored lights. As Forsyth observed [9], the reddest red
camera response cannot be observed under a blue light. And, then he exploited
this observation to solve for the color of the light. In real imaging conditions, the
greenest green and the bluest blue do not typically appear at the same time. A
pipeline that suffices for the combinations of all lights and all surfaces is unlikely
to be needed. This means the prior art pipelines are probably more complex
than they need to be. As described in [5], for each camera, we estimate the
parameters of a calibration model using different subsets of the available RAW-
JPEG pairs. For each subset and a selected camera, the root mean-squared
error (RMSE) between the prediction and ground truth is validated by using all
available RAW-JPEG pairs.

Figure 4 (top half) shows the raw-to-JPEG mapping error plot (where pixel
intensities are coded as integers in the interval [0, 255]. In both forward and
backward tests, our RB (Rank-Based) method [17] is significantly better than
the independent polynomial method (IndPoly) [4]. IndPoly is a simple model



which only contains 3 per-channel tone mapping (or linearization) curves and a
3 × 3 gamut mapping matrix. We also found that our RB’s forward errors are
close to the results of the state-of-the-art ProbRC [5], especially for the condition
of less than 3 illuminants which are more likely to occur in the real world.
Evidently, for the many illuminant case the prior art has a small advantage.
Remembering that JPEGs are coded as integers in [0,255] the RMSE is typically
1 or less. Practically, when the “fits” are viewed visually (by looking at images)
it is hard to see the difference. For computer vision, we are more interested in
the performance of JPEG-to-RAW mapping which is shown in Figure 4 (bottom
half). In ProbRC [5], a probabilistic framework for mapping rendered RGB to
raw was presented. Here we take their mean estimates as the most likely raw
predictions. We found that our methods generally reduce the errors of [5] by
∼ 34%.

We also verify the results with a wider range of camera sensors using the NUS
dataset [18] by a 4-fold cross validation. Since IndPoly [4] performs significantly
worse, we omit it in our NUS dataset test. The data in [18] contain an uneven
number of capture modes for each camera sensors. Therefore, in Figure 5, we
show the overall performance categorized by camera sensor. We found that the
results in general shows a similar trend for the forward raw-to-JPEG mapping.
For the backward JPEG-to-raw mapping our RB has a significant advantage
over [5] as our backward mapping errors are only ∼ 10% of [5].

The reader might be interested in why our simple method seems to work
so well going from rendered to raw (better than [5]) but not quite as well as
the prior art in the forward direction (albeit visually almost indistinguishable).
Our hypothesis here is that the LUT interpolation in the forward direction is
applied post the tone curve. This curve (at least for dark values) has a very
high slope and, consequently, the coarsely quantized 5× 5× 5 per-channel LUT
interpolation cannot capture gamut mapping well. Yet, in the reverse direction
(JPEG to RAW) the LUT interpolation is applied in linear raw where a coarse
uniform quantization is more justified. The full calibration results maybe found
in our supplementary materials.

5 Calibration Stability of Random Sample Se-
lection

We are also interested in how the randomly selected samples for estimating the
3× 3 color correction matrix affects the calibration results. We select the most
common “1 illuminant + 10 exposures” data from the Harvard dataset and
repeat the calibration experiment for 50 times. This calibration stability test
results are shown in Table 1. As shown, the variation for forward estimation is
about 15% of the mean value while that of the backward estimation is about
3%.

6 Calibration Error Distribution

To better understand how well the proposed algorithm performs w.r.t. input hue
and saturation, we visualize the distributions of forward and backward mapping
errors (RMSE) over the hue and saturation gamut (HSV color space [25]) which
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Figure 4: Test RMSE bar chart of the Harvard dataset [5] for IndPoly [4],
Prob [5], and our RB [17]. The figure shows RMSE between ground truth and
prediction for bidirectional raw and JPEG mappings. “Exp.” and “Illu.” are
respectively short for “Exposure” and “Illuminant”. Each bin color indicates a
capture condition. The horizontal and vertical axes indicate camera sensor and
calibration error respectively. The displayed forward and backward errors are
clipped at 15.0 and 0.20 respectively.

is shown in Fig. 6. The distributions are generated for the common capture
condition set – “1 illuminant + 10 exposures” – as the examples. Specifically,
the complete distribution data is interpolated for a 400 × 400 uniform grid.
This grid (as an image) is then filtered by a 41× 41 Gaussian kernel with a 20
standard deviation.

In addition, in Fig. 7, we also plot the RMSE distributions for the same
capture condition – “1 illuminant + 10 exposures” – w.r.t. lightness (i.e. value
channel of the HSV color space). Similarly, the complete distribution data are
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Figure 5: Test RMSE bar chart of the NUS dataset [18] for Prob [5] and our
RB [17]. The figure shows RMSE between ground truth and prediction for
bidirectional raw and JPEG mappings. The horizontal and vertical axes indicate
camera sensor model code and calibration error respectively. The displayed
forward and backward errors are clipped at 25.0 and 0.015 respectively. The
displayed errors are the mean errors of all capture conditions.

interpolated for a 400-tick uniform 1-D space. This interpolated 1-D space data
is then filtered by a 41× 1 Gaussian kernel with a 20 standard deviation.

Overall, higher forward and backward errors are observed when saturation
is high and hue is close to 0 or 1 (i.e. reddish colors). Value (of the HSV color
space) does not seem to have a great impact for the forward errors although
lower forward errors are found near both clipping boundaries of 0 and 1.

7 Calibration with Small Numbers of Parame-
ters

We wished to visually validate our claim that we can calibrate with few pa-
rameters. We took 4 RAW+JPEG pairs (for different cameras) from [4]. We
then uniformly selected 140 corresponding pixels from the RAW and JPEG. We
solved for all the 408 parameters in our rank-based method. We then applied
our model to the rest of the image. The result of this experiment for 4 images
(JPEG-to-RAW) is shown in Fig. 8.



a) RAW-to-JPEG 40D G9 S90 D7000 LX3
mean 10.52 8.85 4.92 14.19 9.74
std 1.65 2.54 0.41 3.14 1.00

b) JPEG-to-RAW 40D G9 S90 D7000 LX3
mean 0.073 0.106 0.058 0.124 0.071
std 0.002 0.003 0.001 0.004 0.001

Table 1: Table 1: RMSE of our rank-based method between ground truth and
prediction for bidirectional RAW and JPEG conversions. The results are based
on 50 repeated tests.
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Figure 6: Distributions of forward and backward mapping RMSE of our method
over the input hue and saturation gamut. It is tested with the “1 illuminant +
10 exposures” set from the Harvard dataset [5].

8 Conclusion

In this paper we have shown how the rank order of image responses is a powerful
tool for solving for the individual steps in a camera processing pipeline (color
correction, gamut and tone mapping). A simple ranking argument, relating
color corrected raws to corresponding rendered RGBs suffices to solve for the
color correction matrix. Then, the rank-preserving tone map is found and,
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Figure 7: Distributions of forward and backward mapping RMSE of our method
w.r.t input lightness (value channel of the HSV color space). It is tested with
the “10 Exps. and 1 illum.” set from the Harvard dataset [5].
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Figure 8: Visualization of one-shot radiometric calibration through a simulated
140-patch color checker, shown at the top-right corner of each Rendered JPEG
image. The error maps in the 4th and 5th columns respectively visualize the
per pixel RMSE for our rank-based method with & without the gamut mapping
LUT interpolation. The RMSE of each whole image is shown at the top-right
corner of each error map. All raw images are shown with a 0.5 gamma.

finally, a simple gamut correction step is derived. Compared with the prior art,
our rank-based method requires the fewest assumptions and delivers state-of-
the-art radiometric calibration results. Experiments also show that excellent
calibration is possible given a single image exposure and limited color diversity
(e.g. a color chart).
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