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Abstract

We present a process to improve the structural quality of automatically acquired ar-
chitectural 3D models. Common architectural features like orientations of walls are
exploited. The location of these features is extracted by using a probabilistic technique
(RANSAC). The relationships among the features are automatically obtained by la-
belling them using a semantic net of an architectural scene. An evolutionary algorithm
is used to optimise the orientations of the planes. Small irregularities in the planes are
removed by projecting the triangulation vertices onto the planes. Planes in the result-
ing model are aligned to each other. The technique produces models with improved
appearance. It is validated on synthetic and real data.
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1 Introduction

The processof 3D recorstructionis oftenaffectedby noisein the measurens. Fur-
thermae, inaccuaciesare createdby view meming, segmenation andsurfacefitting.
Oneway to improve the recorstructionis to usemore sophisticatednethalslike pho
togrammetry technigqies.Another way is to exploit propertiesof the scene Architec-
tural scenesreparticdarly suitablefor theapplicationof constraits sincethe geone-
try is typically vety structurel. Architectual constraits canbe usedfor 3D reconstrg-
tion from single[15,7] or multiple [4, 1] intensityimages Featuresisedfor archtec-
tural corstraintsaretypically straightlines, large coplanarregions andthe parallelism
andorthogorality of linesor planes.Thesekinds of feature canbe easilyfound in ar
chitecturesceneslin [3] researchis describedhatimprovesarchite¢ural 3D models
by automaticallystraight@ing edges.The work presentd in this paperconceirates
on extractirg planarregions andapplying coplarar, parallelismandorthayonalitycon-
straintsmore compehensie thenin previouswork to the full 3D mockl. We applythe
constraifts to thedatafollowing meshingZabradsky concluadin [16] thatcorredions



following meshinggeneally give a greaterimprovemen. Our methodis independent
of the calculationof the 3D structue unlike the work presentedn [15,7,4,1] where
constraims areusedin combinationwith reconstration from intensityimages.

This work corsists of three steps.First, architectual feature are extracted from
alreadytriangulated3D mockls (Section2). We usea RANSAC techniqe [5] to find
planesin the mocel (similar to [2]). The next stepis the autonatic extraction of the
constraims outof thesceneFew papes have dealtwith theautanaticextractionleaving
it to the userto specifythem[11,14]. Theinterpetationof the scends formalisedas
aconstraim satishctionprodem[13]. Liedtke useda semantimetfor interpretation of
architectual scene$8]. His interpreationis hypothesigdriven Hypathesesareveiified
or falsified by matchirg the 3D objectsagainstthe image.In our work we matchthe
planesagainsta semantimetof ahouseby usinga backtackingtreesearchSection3).
The semantimetconcetrateson the definition of the 3D objectsandits relations.We
checkthe interpetationsonly by verifying the relatiorshipsbetweenthe 3D objects.
Constraintsare assignedo almost-rgularities like parallel or orthagonalwalls. The
last andfinal stepconsistsof applyirg the constraintso the model (Section4). The
original modelis fitted to the new constraied model. Optimising the model can be
donein a nunber of ways (e.g. numeically [2,14] or evolutionary [11]). We usean
evolutionary apprach. The mocel and the constraintsare passedo the GenoCop5
algoritim, propsedby Michalewicz [9]. The vertices are prgectedonto the planes
afterfindingthe optimalparaneters.Theresultis amodelwith fewerirregularities(e.g.
edgesnwalls) andalignedwalls.

2 Featuredetection

At all stagef theprocessthemocdel is ameshconsistingof verticesV = {(z,y, 2)'}

andtrianglesT = {(v1,v2,vs)}. Thefirst stepis to extract planesfrom the raw tri-

anguatedmockel. Beforestartingthe extradion the modelis normalised.It is mappe

into anunit sphereattheorigin. A robustRANSAC algoithm [5] is thenusedto obtain
a setof planes.The algorithm geneatesa numkber of randm planehypothesisfrom

thepointsin V. The distanceof a triande centroidto the hypotheticalplaneis calcu-
lated by computing the differencebetweenthe distanceof the planeto the origin D

andthe dot praductbetweerthe triande centroidC' = (¢, ¢y, ¢.)’ andtheunit plane
normal N = (n,,ny,n;)". Triangles thatsatisfythefollowing inequality belorg to the
hypotheticalplane.

|C - N — D| < tolerance (1)

The size of a hypotheticalplaneis calculatedoy addingup its triangle sizes.The
hypothesisthat createshe largestplaneis selectedThe exact number of planesin a
modelis notknown. So,we repeathe RANSAC algoiithm until thesizeof theresulting
planefalls undera certainthreshdd. (An EM algoiithm couldinsteadhave beenused
to selectthe numter of planesandfit them,but we chosea simplertechnige to focus
ontherecorstructionissues.)

This techniaie gives reasonableesults.However, it sometimesprodicesa plane
thatcorsistsof smalldisconnetedpatche distributedover the scene An architectual



plane(e.g. awall) is notusuallyseparate by alarge gap.Howeversmallgaps frequently
occurfor examge dueto thepresencef pipesor decoations.Therefae, theplanes are
analysedby single linkage clustering[6] to ensue that the trianglesof a planeare
closelyconrected.Theclustertechniaie startswith theindividual trianglesandgroups
themtogethe to form larger andlarger clusters(hierarchicalclustering. The distance
betweertwo clusterss definedastheminimd Euclideandistanceof ary two triangles
belongng to different clusters(nearst neigtbor method. The clusteringterminates
afterreacting a certaindistanceThis distancespecifieshow far apartpartsof theplane
canbe.

3 Sceneinterpretation

We interpiet the sceneusing the features (planes)found previously. A modé of an
architectwal sceneis describedn a semanticnet (seefigure 1). The model entities
are represeted as nodes in the net. The nodes are conneted via differenttypes of
relationslips. A semanticallyneanindul descriptionis assignedo the scenefeatures
by matchinghemto thesemantiaet.A backtackingtreesearclis usedto find thebest
match.Thealgorithmtakesasinputa setof featured, a setof possiblemodellabelsL
anda setof binaly mocel relationsiips R which limits the possiblelabelling. Thetree
searclstartswith thefirst featue from F andassignsll labelsfrom L. A secondeature
is fetchedfrom F andall labelsareassignedAt this level someof thelabelsmight be
ruled out becausehey violate the givenrelationslips. This processcontiruesuntil all
featureshave beenlabelled A consistentabellingthenexistsif eachfeatueis assigned
avalid labelthatis alsoarc consistentvith adjacennodes.Therelatiorshipsbetween
featuresareusedto selectappr@riategeomérical constraits for enfoicing parallelism
or orthagonalitylaterin the optimisationstep.

The modelentities(labels)andthe relatiorshipsamory the entitiesrepresentthe
knowledgeof atypicalarchitectual scenePossibldabelsareL = {SdeWall, End Wall,
Base Plane, Ceiling/Floor, Roof, No Feature}. Thebinaryrelatiorshipfunctionscheck
if thearchitectual relatiorship betweentwo featuesandtheir labelsis valid (e.g. hor
izontal andvettical walls arealmostperpeadicular) Angle relatiorshipsbetweenwo
featuresarechecledwith a certaintolerance(3 degrees). The "Above” relationshipis
satisfiedif 99% of the verticesof oneplaneareabove a secondplanedefinedby sur
facenomal anddistance No Feature doesnot have ary relationwith a normal feature
andcantherebrebeassignedverywhere.Thefinal labellingis obtairedby findingthe
solutionthatmaxinisesthe nunberof architectual labels.

The semantimetmodelsa reasonale subsewf all houseslt includesthe interior
andextetlior structureof housesThe modelcanincludean arbitrarynunber of walls.
They canbe onthesamelevel or ondifferert ones(thenseperatetby a Floor/Ceiling).
Thebaseplaneis below all otherpartsof thebuilding. It representtheground onwhich
the housestandsTherod is modelledasa typical sharproof. Errors in the scenede-
scriptionareresolhed by labellingthemasNo Feature. The semantimetcanbe easily
extencedwith featuredik e windows anddooss. Thesefeatuescanbe modelledaspar
allel andcloseto the actualwalls. However, the previous planedetectiom concettrates
onfinding big planes So,mocklling windows anddoors is not necessaryat this step.
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Fig. 1. Themodelof thearchitecturabcends representedy asemantimet. Nodesrepresenthe
modelentitiesandarelinked by architecturallymeaningfui relationships.

4 Model optimisation

Optimisingthe mockl by enforcing the constraintsound previously is formulatedas
a norlinear progammingprodem. Thereare mary algorithns which aredesignedo
searchspacedor anoptimum solution.Someof thembecone ill-conditioned andfail
with nonlinea prodems.We usethe GendCop 5 algorithm developedby Michalewicz
[9]. It is ageneticalgorithm (GA) which usesreal-\aluegenesandincludesmethod to
dealwith linear, nontlinear, inequdity anddormain constraints.

The GA usesthe paranetervectorp which conatenatesll the paranetersfor the
individual planesasthe chranosomeThe evaluationfunction consistsof the squarel
residualof thevetticesandthecorstraintfunctions. Thesquaedresiduals thesquare
geomdric distancefrom the meshvertices{z; ; } to their planes{ P;}. Theresidualof
every planeis nomalisedwith its numker of verticesV;. Thus, mocel size does not
affectresults Every constrainis representé by a corstraintfunction c(). Thevaluesof
thesdunctionscorrespondo thedegreethattheconstraiis aresatisfied Theconstraint
functions can be seenas a penaltyfunctions. A is a weight factor which scalesthe
constraims to theresiduals.

1 . i
> 2 dist(Pi(),@i)? + 23V (p) (2)
1 b 1

Additionally, constraintsare usedto narrav the searchspaceof the evolutionary
algorithm. Doman constraits areappliedto individual compamentsof the surfacenor-
malsandthe distancesEachof the paraneterscannever be outsidethe range[-1,+1]



sincethe 3D modelis mappednto a normal sphereat the origin. Furthernore, unity
constraims areappliedto thesurfacenormalsN.

Sofarwe have obtainel the optimisedmodé parametes. We now prgect the ver
ticesof theplanesontotheirplanesWe calculatehenew coordnatesV, = (2, yp, 2p)’
of thevertex with theoriginalvertex V = (z, y, z)', theunit surfacenomal of theplane
N = (ng,ny,n;)" andthedistanceD of theplaneto theorigin as:

V, =V —tN 3)
where
V-N-D
=N 4)

5 Experimental results

The proposedtechniqe descriled above is generalllt is indegendentof the way the
3D modelwascreated(i.e. from range or intensity data)andof mocel propertieslike
variarce of thetriande size.It hasbeenappliedto severd trianguatedmodels We will
herepresenresultsfor a syntheticmodelandfor two reconstratedrealmocels.

First, we appliedthe descrited technigue to the syntheticmodel. The modé con-
sistsof a perfectmeshof threewalls at 90 degrees (1323 vertices & 2400triandes).
Two walls areparallel.A varying amour of Gaussiardistributed3D noiseis addedo
the vertices.The first graphshaows the angleerror from planeextraction (top curwe),
improving the planefit (middle curve) and applicationof constraits (bottom curve,
nearnoiselevel axis).Improving the planefit is dore without usingary constraits in
theevaluationfunction. Theangleerrorfrom planeextractionis aresultof therandon
natureof RANSAC. Improving thefit usingall datapointsfrom the planesgivesmuch
betterresults Finally, usingthe constraiits givesanangleerrorvery closeto zero.The
secondgrafh shaws the meansquaredesidualafter planeextraction (top curve), im-
proving thefit (dashe curve) andcorstrainingthemodel(solid curve). Theparaneters
obtainel from RANSAC shawv the biggesterror The meanresidualsfrom improving
thefit andfrom apgying the constraits arefairly similar andarebothsignificantlybe-
low thethe RANSAC cune. Thetwo grapts shawv thatapplying constraintsmproves
theorientatian of thewalls withoutworseninghefit.

We shav an experimentwith the recorstructedmodelof Arenkerg castle(in Bel-
gium) recorstructedby the CatholicUniversity of Leuven[10]. The modéd wasrecon
structedfrom animagesequencef 20 images(622 vettices& 12263 triandes). The
walls andthe ground on the original solid modelshaow clearlyalot of smallirreguar-
ities (seefigure4). 5 planesareextracted(3 walls, 1 floor and 1 roof). The planesare
constraied by 7 constraims. The andes betweenthe planesvary from the optimum
by 1.5 degreeson averag befae optimisatian. After optimisationthey differ lessthan
0.01degrees. The resultshovs the modelwith removedirreguarities andconstraind
planesTheaveragedisparityof the movedverticesasa fractionof themodeldiameter
is 0.33%. Theoptimisationsteptook 54 second on anintel Celeronwith 400MHz.
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Fig. 2. Resultdor the syntheticmodel.Theleft graphshavs theangleerrorin degreesversusthe
noiselevel. Thegraphon theright shavs the meansquaredesidualversusthe noise.

Next, we briefly describeresultsfor a Bavarian farmiouserecorstructedby the
EurgpeanCommissionJoint ResearctCentre(JRC) [12]. It wasreconstrated from
multiple range datascang 12504 vertices& 1639 triangles).Thisis afull 3D mockl.
The planeextractian finds 4 walls andtwo planesfor theroof. The orientatiors of the
walls arealreadyfairly good The anglesbetweerthe planesdiffer on average by 0.5
degreesin the original model. After optimisationthey differ lessthan0.01 degrees.
The original solid modé showvs small edgeson the walls. The resulthastheseedges
projectel ontothewall (seefigure 3 for a closeview of awall).

Fig. 3. A closeview of awall of the farmhouseOn the left is the uncorstrainedmodel.Surface
ripplesaremosteasilyseenin the circledareasOn theright is the optimisedmodel.



6 Conclusion and future work

Previous work usedarchitectual constraims mainly for scenerecorstructionfrom in-
tensityimagesThis work shavs how architectual constraintsanbe usedfor improv-
ing the recorstructionof full 3D modelsindepeentof the sensordata.Only 3D in-
formationis used.The constraiils make archtecturalfeatures moreregularin termsof
their architectwal properties.We exploit comnon architectual featueslike walls and
theirrelationslips to eachother

Initially, a RANSAC technque obtainsa setof planesfrom the 3D data.We auto-
matically discover the gragh of constraintsbetweenthe planes by usinga treesearch
strat@yy. Evenconseratively loosethreshold on anglesandpositionleadto a correct
labelling of the planesin the sceneThemodé paraméersareoptimisedwith arobust
evolutionary algoithm. A numerical normdisation of the mocdel befaehandleadsto
domainconstraintson the paraneterswhich speedsaup the searchalgorithm. The ex-
perimetal resultsshav how imperffectionslike smallirregularities on planes andthe
orientatics of walls arecorreded. Thevisualappearaceof the mockl is enharwed.

Futue work aims at incorporating edgesinto the processof mocdel optimisation
This includes extradion of edgesin the model, straighteing of edgesandthe useof
parallelismor orthogorality constraims whereapplicathe.
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Fig. 4. The textured model (top/left), the original solid model (top/right), the extractedplanes
(bottom/left)and the resultingmodel after optimisation(bottom/right)from the castle.The ex-
tractedplanesaredisplayeda bit darker thanin the solid model.



