
Primal-Sketch Feature Extraction from a Log-Polar Images

Herman M. Gomes
Departamento de Sistemas e Computação, Universidade Federal da Paráıba,

Av. Apŕıgio Veloso s/n, 58109-970 Campina Grande, PB, Brazil
hmg@dsc.ufpb.br

Robert B. Fisher
Division of Informatics, Edinburgh University

5 Forrest Hill, Edinburgh EH1 2QL, UK
rbf@dai.ed.ac.uk

Abstract

We present a novel approach 1 for extracting primal sketch features (edges, bars, blobs and
ends) from a log-polar image. Symmetry operators and a PCA pre-processing module precede
a set of neural networks that learn the feature’s class and contrast. Experiments show the
process accurately extracts the desired feature-based image description.

Keywords: primal sketch, log-polar, neural networks, principal component analysis

1 Introduction

Traditional image feature extraction operators have usually been designed by hand and act on
Cartesian images (an artifact of the sensor architecture). However, the organisation of the primate
visual system seems to be quite different and we can use this to produce interesting results in
artificial vision systems. The mapping from the retina to the visual cortex can be mathematically
approximated by a log-polar representation (Schwartz (1977)). This transforms rotation and
scaling in the Cartesian domain into translation in the log-polar domain and can reduce the
complexity involved when recognising objects at different scales and orientations. Moreover, the
representation is space-variant, i.e., there is a high resolution centre surrounded by a progressively
lower resolution periphery, allowing a more compact representation for the image data. There are
several examples in the literature of vision systems that take advantage of log-polar images (e.g.
Grove and Fisher (1996); Lim et al. (1997); Jurie (1999)). Similar image representations have been
constructed from receptive fields modelled as multiple Gaussian derivative filters at a number of
orientations and scales (Rao and Ballard (1995)).

Our goal is to extract low level features in a retina-like (log-polar) representation using a
different approach. The features (oriented edges, bars, ends and center-surrounded blobs) are
based on the primal sketch hypothesis for the human visual system proposed by Marr (1982).
Trying to manually build a model for completely describing the features could be error prone and
present some difficulties because of the unusual sensor geometry and the receptive field integration
at retinal level. Instead, learning the features was a more effective approach. A neural network
based approach performs this task. An architecture designed to encode the feature’s class, position,
orientation and contrast has been proposed and tested. Success depended on the incorporation
of a function to normalise the feature’s orientation and a PCA pre-processing module to produce
better separation in the feature space.

1This work was supported by CNPq and DSC/COPIN/UFPB, Brazil. This is an extended version of a paper
presented at SIBGRAPI’01 (Gomes and Fisher (2001)).

1

Neural network learning of edge features has already been discussed in the literature. Pham
and Bayro-Corrochano (1992) used a concatenation of two perceptrons: one for noise filtering
and another one for edge detection. The edge detection network was trained to recover a given
edge component within a 3x3 window at 8 different orientations. The results showed that their
approach presented a performance slightly inferior to that of the Sobel edge detector. In a more
successful attempt, Chen et al. (1995) trained a neural network with synthetic data from a model
of an ideal step edge. They found that their system had better noise tolerance than the Canny
edge detector. A general difference between our work and the above approaches is that we have
chosen a model which tries to extract interesting image descriptions inspired by the primate visual
system. Most previous research used a Cartesian space whereas we detect features in the log-
polar space. Moreover, our aim is to extract several features, in addition to edges, at different
orientations and contrasts.

Grove and Fisher (1996) extracted primal sketch features from a log-polar image, as in this
paper, but used a set of logical operators instead of a learning based approach. The operators
were manually defined as expressions involving the pixels of a 1-ring window of a center and
six surrounding receptive fields and were applied throughout the log-polar image. One of the
problems with the above approach is that operators are heuristically defined and, therefore, there
is no guarantee that they will work well and that they will allow graceful degradation. Also, if a
different window size or window shape was needed, it would be necessary to manually design new
logical expressions for the operators, which can lead to mistakes.

2 Image Representation

The image representation re-samples the input Cartesian image using a mask consisting of con-
centric rings of overlapping circular receptive fields, whose centres are geometrically spaced from
the centre of the mask (see Fig. 1). The innermost region, named the fovea, contains a high
density hexagonal receptive field grid. If we define an image that is accessed by using the rings
(logarithm of the distance of the rings to the retina centre) and sectors of the outer retinal region,
then we have a log-polar representation. We simulated a hexagonal packing outside the fovea by
shifting each consecutive ring by half of the angle defining a sector of receptive fields. The radius
of the nth outer retinal ring is: R(n) = βnR(0), where R(0) is the radius of the first ring exterior
to the fovea and β defines the geometrical progression. Similarly, the radius r(n) of a particular
receptive field in ring n is r(n) = βnr(0). We defined a 48 ring and *** sector retina with 60%
overlapping and β ≈ 1.1, which covers a circular region of the input Cartesian image of about 256
pixels. Some examples of applying the above retinal mask to real images can be seen at the end
of this paper. The output of a given receptive field of radius r is:

O(u, v) =
∑

x2+y2≤r2

I(u + x, v + y)F (x, y) (1)

where O(u, v) is the neuron output, I(x, y) is the perceived intensity and F (x, y) is the receptive
field function (we used a normalised Gaussian with σ = ∗ ∗ ∗r).

We designed a method for estimating the local surface reflectance information which is derived
from the receptive field computation. By taking the logarithm of the intensities and assuming
that I(x, y) = E(x, y) R(x, y), E is the irradiance falling on the object, and R is the local surface
reflectance, we have:

O′(u, v) ∼= log(E) +
∑

x2+y2≤r2

log(R(u + x, v + y))F (x, y) (2)

The log(E) term in Eq. (2) is nearly constant over local image regions and therefore makes the
receptive field computation O′ a good approximation for the weighted logarithm of the reflectance.
Since the architecture, described next, has linear pre-processing in the initial projection stage and
the projection weights sum to approximately zero, then the projection of the log(E) terms in a

2

Figure 1: Retina structure. In order to enhance details, parameters different from those chosen in
the experiments were used in this figure.

3

neighbourhood will also be approximately zero. Thus, the feature extraction is primarily based
on the reflectance structure of the neighbourhood.

3 Feature Extraction

Features are trained and detected in a window of receptive fields composed of a central receptive
field plus its next 6 and 12 surrounding neighbours, hexagonally distributed. The oriented features
(edges, bars and ends) can appear at several distinct orientations: edges and ends are detected
at 12 possible orientations; and bars at 6 possible orientations. For training purposes, synthetic
exemplars of the features are drawn in a fixed position on the input image corresponding roughly to
a particular window of receptive fields. Then, the output of these 19 receptive fields is orientation
normalised, pre-processed via a PCA module and used as input to a set of neural network modules
specialised to detect each of the features. The overall architecture is presented in Fig. 2, the
individual processes and data are explained in subsequent sections.

Normalise
Orientation

Input
Images

Edge
Bar
Blob
End

 PCs

Edge
Bar
Blob
End

NNs

Edge
Bar
Blob
End

Planes
 Feat.

Neural Feature
Networks

Apply Compute

Planes
Recep. Field

Windows

Extract
Projection
Compute

orientation

contrast
position, feature class,

orient.,

position

Figure 2: System’s architecture: processes (rounded boxes) and data (rectangular).

3.1 Normalising the Feature Orientation

In order to reduce the number of principal components and to simplify the problem of learning
the features, we initially normalise the receptive field windows into a standard orientation. To
perform this task, we use a symmetry operator defined as a mask that associates negative weights
to a subset of the receptive fields in the retinal window, and positive weights to the remaining
receptive fields. By computing the convolution of the symmetry operator (defined at different
orientations with respect to the central receptive field) and the input receptive field window, the
detected orientation will be the one that maximises the absolute value of convolution. The last step
consists of rotating the receptive field window to a standard orientation. The operator is applied
at the 12 orientations defined by the receptive fields in the outer ring of the window, giving a
resolution of 30o. There is a different symmetry operator for each of the oriented features. It is
not necessary to know which feature type we have before normalising, as we normalise with the
operators for all feature types and apply all the corresponding PCA and classification modules.
More formally, the operator’s output for orientation θ is defined by:

Op
f
θ (n, s) =

∣

∣

∣

∣

∣

∣

2
∑

i=0

6i
∑

j=0

w
f
θ (i, j) V (G(i, j, n, s))

∣

∣

∣

∣

∣

∣

(3)

where f is the feature type: edge, bar or end; (n, s) are the global polar coordinates (ring, sector)

for the central pixel of the receptive field window; w
f
θ (i, j) is the operator’s weight (in a local

polar coordinate system); G is a function that calculates the retinal image coordinates underneath
each of the operator weights; and V is the receptive field value at a given retinal coordinate. The

4

weights at each position can be either + 1

N
or − 1

M
, where N + M=19, the number of receptive

fields within the window (Fig. 3). We select the θ that maximises Eq. (3).

edge bar end

Orientation
Oriented

features

Operator

masks

Oriented

features

Operator

masks

Oriented

features

Operator

masks

0o
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������
�����������������
���������������
��������������� = 1/8

= −1/11 �������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
����������������������� = −1/12

= 1/7 �������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
����������������������� = −1/15

= 1/4

. .

150o 	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�����������������
�����������������
�����������������
�����������������

�����������������
�����������������
�����������������
�����������������

= −1/12

= 1/7
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

= −1/14

= 1/5 �������������������������
�������������������������
�������������������������
�������������������������
�������������������������
�������������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
����������������������� = −1/16

= 1/3

.

330o �����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�������������������
�������������������
�������������������
�������������������

�����������������
�����������������
�����������������
����������������� = 1/7

= −1/12 �����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������
�����������������������

= −1/16

= 1/3

Figure 3: Symmetry operators. White circles represent a weight of 1

N
, and darker ones represent

a weight of − 1

M
. N and M are the number of white and dark circles within the operator’s mask,

so that weights always sum to zero within any given mask.

3.2 Principal Component Analysis (PCA)

The training sets are decomposed into their eigenvalues and eigenvectors (or principal components,
see Jackson (1991) for more details on PCA). One decomposition is obtained for each of the four
feature type’s training sets (edge, bar, blob and end). We don’t distinguish between positive (+)
and negative (−) contrast representations of features because the removal of the mean values
leaves the two forms being the negative of each other. An unknown data sample named Y (in
our case, a 19-receptive-field-window obtained from a test image) can be projected onto the set of
principal components Vi by a simple matrix multiplication: Pi = Y ′Vi. The resulting projection
Pi represents that data sample in terms of the principal components for a given primal sketch
feature class i. If a component of the projection Pi is large, then it suggests that our data is close
to the pattern the eigenvector represents, and if we have a low valued projection the conclusion is
the other way around. This projection is repeated for all classes i ∈ {edge, bar, blob, end}.

PCA transforms the inputs that the neural network modules will receive. However, instead
of using all 4x19 projections from the four feature classes, we combine subsets of the most repre-
sentative principal components. We simply select the principal components associated with the
largest eigenvalues (Jolliffe (1986)). However, we are not interested in components representing
the average intensities of the input patterns (the very first components) because those would not
help the process of spreading out the feature classes in the input space. From the above, the
following principal components were kept: {2,3,4,5,6} for edge, bar and end; and {2, 3} for blob

features. Thus the input to the neural modules is reduced to a vector of 17 elements.

3.3 Neural Network Architecture

Classification used MLP-backpropagation networks minimising a least square error metric, due to
its simplicity and reasonable computational power. A total of seven neural networks were built, one
for each of the seven feature classes: edge, +bar, −bar, +blob, −blob, +end, −end. Each network
receives the results of the PCA pre-processing module (17 inputs) and has only 2 outputs: neuron
N representing the feature and neuron Ñ representing the non-feature class. The hidden layer
has 9 neurons, about half of the size of the input layer. The contrast within a retinal window

5

is calculated according to the Eq. (4) (Bruce et al. (1996)). The desired output for a neuron
representing a particular feature was represented in terms of this contrast:

c =
|Lmax − Lmin|

Lmax + Lmin

(4)

where Lmax and Lmin are the minimum and maximum intensities found in an image patch,
respectively.

We defined a classification rule that takes into account the strategy used during training:
whenever a feature that should be recognised by a neural module is presented then the network
is trained to output the feature’s contrast through neuron N , and zero through neuron Ñ ; if a
counter-example is presented, then neuron N should now output 0 and neuron Ñ = 1. However,
we need to be more tolerant when classifying untrained features, as the network outputs will not
necessarily produce a sharp separation between feature and non-feature classes. To do this, our
classification rule simply states that a module recognises a feature whenever its neuron N produces
an output (the estimated contrast) that is above a classification threshold THD (explained later)
and also above the output of the other neuron Ñ .

4 Training and Evaluation

An initial training set was constructed from synthetically generated features. This seems to be a
better approach than manually extracting and labelling lots of features from real images because a
large number of feature variations can be easily computed. By assuming that the feature examples
are chosen from a more descriptive set, this allows for a smaller training set to be used. After some
initial experiments, we reached the conclusion that, although the synthetic training set was very
useful, manual selection of a small set of features from real images was still required for achieving
better results.

Contrasts within the set ±{0.3, 0.4, 0.6, 0.8, 1.0} were used when drawing bars, blobs and ends.
A negative contrast here means that the intensities in the feature background are higher than the
ones in the feature itself. Edges were drawn using only positive contrasts, i.e. the intensities in
the region above the feature orientation line are greater than the intensities in the lower region in
order to avoid the generation of the same pattern twice as the feature orientations covers the whole
circle. Fifteen different combinations of intensity were used in the generation of the contrasts for
all of the features. One of the intensities was taken from the set {85, 170, 255} and the other was
derived according to Eq. (4) to produce the desired contrast.

Ends and edges were generated in steps of 30o at 12 different orientations in the range (0o, . . . ,

330o), while bars were generated only at 6 orientations in the range (0o, . . . , 150o) due to symmetry
reasons. Other sources of variability in the training sets were the “size” of the feature and the use
of Gaussian additive noise. Blobs, bars and ends sizes were 0.6, 0.7 and 0.8 of the central receptive
field diameter. Gaussian additive noise was added to the drawn features in order to broaden the
training set.

Random counter examples were generated in order to help the training process. These counter

examples simulate unstructured input data and data from other low level features not considered
in this work that are inevitably present in real images. Counter examples sets were also enriched
with exemplars from the other feature classes. Table 1 contains some examples of the training
features.

We used a learning rate of 0.005, momentum of 0.95 and a neural module was considered
trained when all the training patterns passed with a 0.1 error bound. On average, it took about
one thousand epochs to train each module.

4.1 Evaluating the System’s Performance

The trained networks were tested with a set of unknown synthetic features produced by the same
generators used to build the initial training sets, with the difference that now the features were

6

edge +bar -blob +end
counter
example

Cartesian
inputs

not
applicable

Retinal
outputs

Table 1: Some examples of the training features. Differences in contrast between Cartesian inputs
and retinal outputs are due to the logarithmic receptive field computation.

generated at arbitrary orientations. We generated 80 test exemplars per class by linearly varying
the contrast from 0.21 to 1.0, with a step of 0.01 (-0.21 to -1.0, for negative features). The intensi-
ties used to produce the above contrasts were randomly chosen as well as the remaining parameters
for orientation, Gaussian noise level and size. The next 83 patterns are counter examples (the
first 40 were randomly generated and the remaining 43 were randomly chosen from other class
examples).

Figure 4 shows the actual network outputs of the edge classifier when fed with the synthetic
testing data. All the other classifiers presented graphs very similar to that of the edge classifier.
The oscillations along the network outputs for the testing sets are partially explained by the
convergence error of 0.1 used during the training. The same applies to the small oscillations in the
second half of the picture, corresponding to the networks response to counter-examples. Reducing
the neural network convergence error could reduce the prediction errors during testing, but at the
cost of a slower training and risk of overfitting, which could incur loss in generalisation. Another
cause for the oscillations in the first half of the graph are the small prediction errors caused
by the symmetry operators. We computed the absolute differences between real and estimated
orientations when processing the feature’s through these operators and observed that the top errors
were all under the operator’s resolution of 30 degrees, which is an indication of good performance.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 20 40 60 80 100 120 140 160

Edge outputs

neuron feature
neuron non-feature

Figure 4: Outputs from the trained edge neural module when applied to its synthetic testing
set. The horizontal axis is the test image number, with 1-80 as true examples and 81-163 as
non-exemplars. The vertical axis is the estimated contrast.

The value of the threshold THD (see Sec. 3.3) was chosen as the highest classification threshold
that produces best overall performance. The reason for this is that we are not interested in

7

detecting very low contrast features. We varied the threshold from 0.0 to 1.0, in steps of 0.01,
and measured the classification errors. From these experiments we observed that any threshold
smaller than 0.15 is associated with the best overall performances (smallest classification errors)
in all the networks.

4.2 Experimenting on Synthetic and Real Images

The final step of the approach is to enrich the training sets with features taken from real images.
Initially, a set of real images was tested using the modules trained with synthetic features. Then,
a small subset of these images was used as the source of additional manually selected training
exemplars. The intensities used to compute the contrast of these new exemplars are estimated
from their retinal outputs as if they were composed of uniform intensity patches in the Cartesian
domain. Finally, the neural modules are re-trained with the improved training sets and tested over
the same initial set of images. This process is repeated until the output of the extracted features is
satisfactory. Preliminary experiments have shown that the addition of only a few exemplars of real
features (typically 5-10) was enough to cause a visible reduction in the networks’ generalisation
errors, see Fig. 6.

In order to help the reader understand the outputs of the feature extraction architecture
described in this paper and before applying it to any real images, which may contain complicated
textures and features not easily spotted by the eye, a number of synthetic images were initially
used, see Fig. 5. From a subjective evaluation, apart from some small uncertainty with regards
to the feature location and smaller accuracy at the centre of the image, where the receptive field
size is too small to match the feature’s size, it is possible to conclude that the classifiers are doing
a reasonable job at detecting the features they have been designed for. It is possible to compare
the results of the proposed and previous approaches when applied to the same real test image by
looking at Figs. 6 and 7, respectively. We can see that the new approach brought a reasonable
improvement to the feature extraction process not only with respect to accuracy (more features
correctly extracted) but also to the enhanced quantisation of the contrast. Additional results on
a second test image are given in Fig. 8.

5 Conclusions

A previous attempt by Grove and Fisher (1996) to extract primal sketch features achieved only
partial success. Features were detected using a number of manually defined logical operators within
a fixed retinal window, which, when applied to real images, failed to detect some low contrasting
features as well as misclassified a number of others (Fig. 7). The approach presented in this paper
takes advantage of the inherent learning from examples and generalisation properties of neural
networks. This allowed the discovery of classification parameters tuned to the unusual log-polar
architecture, with the result of much better performance.

Our architecture contains seven independent neural network modules (connected only through
the training sets, i.e. examples from one module used as counter-examples in the others), each one
receiving inputs from a PCA pre-processing module, whose main purpose was to spread out the
classes in the feature’s manifold. This novel arrangement presented better results with respect to
the number of correctly classified features, provided a richer description for the image data with
the addition of an estimate for the feature’s contrast, and became a more flexible solution to the
problem in the sense that whenever a new feature class is required, only its training set needs to
be provided. Primal sketch features obtained as discussed in this paper are being successfully used
as image representations for the problem of learning structural relationships from sets of iconic
(2D) object models obtained from a sequence of scenes (see Gomes and Fisher (2000) for further
details).

8

Classifier Edge +Bar -Blob -End

Input
image

Retinal
image

Extracted
features

Figure 5: Testing the classifiers on synthetic images. Only a small subset of the images and
classifiers is shown. The extracted features row shows that the features were found well when
the scale of the feature matched the scale of the receptive fields. Hence, some feature were not
detected in the centre (features too large) and periphery (features too small).

References

Bruce, V., Green, P., Georgeson, M., 1996. Visual Perception: Physiology, Psychology, and Ecology.
Psychology Press.

Chen, W., Thacker, N., Rockett, P., 1995. A neural network for probabilistic edge labelling trained with
a step edge model. In: Proc. of 5th Int. Conf. on Image Processing and its Applications. pp. 618–621.

Gomes, H., Fisher, R., 2000. Structural learning from iconic representations. Lecture Notes in Artificial
Intelligence 1952, 399–408, Springer-Verlag.

Gomes, H., Fisher, R., 2001. Learning and extracting primal-sketch features in a log-polar image repre-
sentation. In: Proc. of Brazilian Symp. on Comp. Graphics and Image Processing. IEEE Computer
Society, pp. 338–345.

Grove, T., Fisher, R., 1996. Attention in iconic object matching. In: Proc. of British Machine Vision Conf.
pp. 293–302.

Jackson, J., 1991. A User’s Guide to Principal Components. John Wiley & Sons.

Jolliffe, I., 1986. Principal Component Analysis. Springer-Verlag.

Jurie, F., 1999. A new log-polar mapping for space variant imaging: application to face detection and
tracking. Pattern Recognition 32, 865–875.

Lim, F., West, G., Venkatesh, S., Dec 1997. Use of log polar space for foveation and feature recognition.
IEE Proc. Vision, Image and Signal Proces. 144 (6), 323–331.

Marr, D., 1982. Vision. W. H. Freeman and Co.

Pham, D., Bayro-Corrochano, E., 1992. Neural networks for low-level image processing. In: Proc. of the
IEE Int. Conf. on Artificial Neural Networks. pp. 809–812.

Rao, R., Ballard, D., 1995. An active vision architecture based on iconic representations. Artificial Intel-
ligence Journal 78, 461–505.

Schwartz, E., 1977. Spatial mapping in primate sensory projection: analytic structure and relevance to
perception. Biological Cybernetics 25, 181–194.

9

INPUT IMAGE RETINAL IMAGE EDGES

+BARS +BLOBS +ENDS

−ENDS−BLOBS−BARS

INPUT IMAGE RETINAL IMAGE EDGES

+BARS +BLOBS +ENDS

−ENDS−BLOBS−BARS

Figure 6: From top to bottom: results of our system on test image 1 after training with only
synthetic features; and after adding a few manually extracted real features to the training sets.

10

INPUT IMAGE RETINAL IMAGE EDGES

+BARS +BLOBS +ENDS

−ENDS−BLOBS−BARS

Figure 7: Results from a previous approach proposed by Grove and Fisher (1996).

11

INPUT IMAGE RETINAL IMAGE EDGES

+BARS +BLOBS +ENDS

−ENDS−BLOBS−BARS

Figure 8: Results of our system on test image 2.

12

