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Abstract

This paper addresses the important problem of how to learn geometric relation-
ships from sets of iconic (2-D) models obtained from a sequence of images. It as-
sumes a vision system that operates by foveating at interesting regions in a scene,
extracting a number of raw primal sketch-like image descriptions, and matching
new regions to previously seen ones. A solution to the structure learning prob-
lem is presented in terms of a graph-based representation and algorithm. Vertices
represent instances of an image neighbourhood found in the scenes. An edge
represents a relationship between two neighbourhoods. Intra and inter model re-
lationships are inferred by means of the cliques found in the graph, which leads
to rigid geometric models inferred from the image evidence.

1 Introduction

Within the context of visual learning, our ultimate goal is to design a vision system that
is capable of automatically learning objects or parts of objects and their relationships from
generic scenes. But this is not an easy task in a completely autonomous context, in which
there is no one to define the appropriate training sets with its objects already segmented,
normalised and separated into classes. In order to deliver objects in such way, a system has
to somehow deduce the object’s shape, and its position, scale and orientation in the scene.
Generally, object recognition research falls into three main categories: (1) geometric,
symbolic, or structure based recognition; (2) property, vector or feature based recognition;
and (3) iconic (image) based recognition. Most of the research found in the first category is
related to 3-D object recognition systems and usually involves either volumetric relationships
[1] or surface relationships [2]. Relational or graph matching [13, 8] are common techniques
used in this area to do the matching between two relational or graph-based descriptions. The
second category presents a wider range of techniques varying from the use of specific feature
vectors, multiple filtering to global descriptors for shape, texture and colour, or a combination
of techniques [10, 12]. This kind of approach is popular amongst applications involving image
database indexing [9]. Finally, the third category is characterised by the direct use of images.
In this case, the most popular technique to recognise objects is template matching. But, when
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using the traditional sensor architecture, the number of pixels involved can be too high to
allow for a more elaborate computation. An alternative is to use a log-polar representation
[11] which requires less pixels to represent an image once it is space variant.

Within this context, an iconic vision system based on primal sketch features extracted from
a log-polar representation was developed [6, 3]. In this system, iconic models are represented
by geometric relations, which are in turn used during recognition to strengthen the evidence
that a particular object model has been found based on other nearby matches. But the
training sets to build the models and the model relationships themselves had to be defined
manually. The work presented in this paper fits in the category of iconic based recognition
using geometric relationships and expands the work described in [6, 3, 5]. It addresses the
important question of whether or not is possible to to learn rigid geometric models from 2-D
image evidence (iconic models) acquired from a sequence of scenes. An affirmative answer to
this question is given.

We assume that a model consists of 2-D representations learnt from unsegmented and
cluttered scenes by means of an iconic vision system which is inspired by some of the mecha-
nisms found in the mammalian visual system: (a) Foveated vision: the input light is processed
through a set of overlapping receptive fields (resembling the human retina) which produces
an image smaller in size but retaining high resolution in the middle; (b) Visual attention:
fixating the retina at interesting regions of a scene prevents having to process the entire scene
at once, and, provided that an appropriate attention mechanism is defined, the fixation points
can be seen as places where object features (or components) are most likely to be found; (c)
Primal sketch: it is hypothesised that primal sketch features, like edges, bars, blobs and ends
[7] are used by humans as more compact and intelligible representations for image data and
also as cues for an attention mechanism. The following sections explain how to combine the
above mechanisms and present an algorithm to solve the structure learning problem.

2 Learning object feature models

This section explains how the process of learning of object features or primitive models is im-
plemented. The algorithm for learning relationships between these object features, described
in the following section, relies upon certain aspects of the above solution.

We assume a vision system architecture which is based on an existing system described
in [6], see Fig. 1. The figure shows only four main modules that are directly related to
this paper. Module (a) is responsible for converting input pixels into a retina-like (log-
polar) image representation, which in turn is used by module (b) to generate primal sketch
features at a number of orientations and contrasts through a neural network [5]. During scene
examination an attention mechanism (c) continuously updates a map which weights points
of interest in the scenes based upon the primal sketch features and colour information. The
foveation area is smaller than the scenes so that just a smaller section of the input image is
analysed at a given time. Finally, module (d), described in this section, clusters primal sketch
planes (representing primitive objects) into model classes. It also stores information about
the scale, position, orientation and similarity between the clustered objects in order to allow
for a subsequent examination of the possible relationships between primitive models to form
larger structured models. When these relationships are identified, they can in turn be used
to improve the attention and matching processes.

The position of the retina, and any underlying local object feature, is obtained by simply
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Figure 1: System’s main modules.

looking at the interest map. The log-polar map implemented in our retinal representation
helps the process of figuring out the relative scale and orientations of an object feature with
regard to another previously stored cluster. This is possible by translating the log-polar map
in both radial and angular directions to inexpensively transform the features into a number
of new orientations and scales, which are then matched against already learnt occurrences
of feature instances for all the existing feature models. The best match will possibly be
with the model the feature is represented by. Then the feature together with its position,
relative orientation and scale are stored. Algorithm 1 gives a straightforward solution to
clustering. Without loss of generality this can be used as a prototype for designing more
efficient algorithms.

Algorithm 1: Clustering object features
for each scene image S’ do
for each foveation point P/ on the scene do
obtain the object feature f*J at position P'J
if the model base is empty, then create a new model and store f*/ on it.
else
generate a set of scaled and rotated versions f"+J of fiJ
find the model F; that gives the highest average similarity score C
between its internal object features f*! and one of the f'J variations.
if C' > threshold then
store f%/ in F}.
store the similarity scores Sm(f"7, f¥!), the relative scales rS(f"7, f¥)
and the relative orientations rO(f%, f¥!) Vfk! ¢ Fy.
else create a new model and store f%7 on it.

3 Learning relationships via a representational graph

In this section we explain how geometric relationships between object feature models can
be found. A general principle adopted here is that the recognition of consistent geometric
relations allows the inference of larger structural object models. We assume that objects
can only have 2-D rigid body transformation. The approach adopted to solve the structure
learning problem was to build a graph-based representation. Vertices are defined as the
Cartesian product of the sets of object feature instances of a same model class found in each
of the images. Vertices are ranked according to a function of the similarities between their



component object instances. An edge in the graph represents a hypothesis for the relationship
between the features described by the two connecting vertices and is valued according to
the compatibility between these two vertices. The problem is reduced to finding cliques of
maximum scores within this graph.

3.1 Vertices

Each object feature model F}, created by the algorithm described in Section 2, contains a
set of instances f/ found in each scene image S’. An initial problem when designing an
algorithm to learn relationships from these sets was to deal with the occurrence of multiple
unrelated model instances of a same class in the scenes. In other words, how to account for the
combinations of instances that appear at consistent positions and orientations and separate
them from those who don’t? We solve this problem by taking the complete combinatorial set
of instances. Each N-tuple from this set will be a vertex in our graph. The set of all vertices
V; of a given feature type is the Cartesian product between the sets of instances f} of type t
found in scene i (Eq. (1)).

Vi=fi x fix..ox Y (1)

where N is the total number of scene images analysed.
Equation (1) can be expanded as V; = {v1,v9,...,vp} where M is the total number of
vertices. Each vertex v, can be expanded as v, = (ftl’J, . tN’l), where j € {1,...,#(f))}

and ! € {1,...,#(f")}. As we will not need the positions 4,1 of the instance within an image,
for the sake of simplicity, we are going to remove these indexes throughout this section, unless
otherwise stated. Also, we are going to drop the type t for the feature model class, as from
now on they will be distinguished by the letter representing the instance itself.

In order to cope with the possibility of model instances being missing in some images,
as the attention mechanism might fail searching at some locations, occlusion might have
happened and so on, we introduce a * (wild-card) model instance, which is added to the
sets of instances f* found in scene i before computing the combinatorial sets that define the
vertices.

Vertex ranking. If the similarity scores between pairs of vertex elements Sm(f?, f/) are
thought as the probability of those elements belonging to a same feature class, then a natural
way of defining the rank of a vertex is by multiplying all the similarity scores (Eq. (2)). As
a result, for a vertex to be strong all of its elements have to be very similar to each other.

N
Rank(v,) = [ [ Sm(f', f) 2)

1<j
where N is the number of feature instances in the vertex (N is also the number of images
analysed), Sm is the similarity function between two vertices f*, f7 (this function is obtained
via the Algorithm 1, and produces values within the range [0,1]). We assume that the simi-

larity between the wild-card and any other feature instance is one: Sm(x,*) = Sm(*, f) =
Sm(ft,*) =1Vi,j.



Vertex pruning.  One side effect of the addition of the wild-card instances is that there
will be now a number of vertices with many *’s when compared to the number of real object
features, which can cause relationships being learned between loose features, or vertices that
do not represent any plausible real objects. To reduce the number of this kind of vertices,
we allow only K *’s per node during the node creation process, where K << N (N is the
total number of images). Limiting K also reduces the combinatorial explosion of vertices.
For simplicity, we have chosen K =1 for the case study developed in this paper.

3.2 Edges

An edge e = (a,b) connects two compatible vertices a and b in the graph. The vertices
a = (a',...,a") and b = (b',...,b") are compatible if for each pair of feature instances
in different images (a‘,a’) and found in the first vertex, which are related by a given scale
and orientation R = (rS(a’,a?), rO(a’,a’)), the corresponding pair (b’,b7) in the second
vertex has its components related through a similar relative scale and orientation. Moreover,
each pair of feature instance coordinates (P,i, Py:) and (P,;, Pp;) taken from the same vertex
positions will roughly define a unique vector angle A and length D (Q = (A, D)) when taking
into account the feature’s relative scales and orientations. We illustrate the above concepts
in Fig. 2.

Figure 2: Relations between vertex components: a = (d’,...,d/,...,a"), b =
(b',...,b,...,b") are vertices connected through an edge e(a,b). R has the relative scale
and orientation between two vertex components across images. () has the angle and norm of
a vector linking two components from distinct vertices in a single image.

Edge ranking. From the previous paragraph is possible to conclude that the rank of
an edge is defined as a function of four main quantities: (a) the relative scales and (b) the
relative orientations within pairs of features of the connecting vertices; (c) the angles and
(d) the norms of the vectors defined by a pair of corresponding instance coordinates taken
from the two connecting vertices. One of the simplest, yet powerful, ways of comparing these
quantities is by using normalised absolute differences. Equation (3) shows how to compare
the relative scales of corresponding features (a’,a’), (b%,b7) found in two vertices a and b.

B abs(rS(b', ') — rS(a’,a’)) 3)
rS(b',b7) +rS(at,a?)
Equation (4) shows the same for relative orientations, with the difference that a normal-

isation function O (Eq. (5)) is now required to take into account the fact that orientations
are measured in a closed circle.

ASY =1




O(abs(rO(b', 7)) — rO(d’, a?)))

AOW = 1 — 4

0 180 (4)
A 360 —z, if z > 180

Ofz) = { z, otherwise (5)

The angle A(a?, %) of the vector defined by a pair of corresponding instance coordinates
(from a same scene), taken from the two connecting vertices, is expected to be the same angle
found in any other pair of instance coordinates (at another scene), apart from the rotation
that each of the feature pairs might have suffered from one scene to another. Here we have
to decide which feature pair gives the best estimate for the angle on the second scene, so we
compute two differences (Eq. (6)) and take the minimum between these differences (Eq. (7)).
Although normally both values are the same, there is the possibility of imprecise calculations
at earlier stages, due to noise for example. Note that the normalisation function O has to be
used again as orientations are compared.

dAY = abs(A(d?,b7) — (rO(a',a?) + A(d’, b')))
dAY = abs(A(d?,b7) — (rO(b, ) + A(a’, b)) (6)
ALY — 1_MIN(O(dfllf;’;),O(dAZ’J)) M)

Similarly to the angle comparison, the length of the vector connecting two features in an
image should be preserved in any other image, apart from the change in scale that each of
the feature pairs might have suffered from one scene to another. Again, the feature pair that
gives the best estimate for the scale on the second scene (Eq. (8)) has to be chosen (Eq. (9)).
Note that this time, the normalisation factor (called here ¢7) depends on the minimum value
that is chosen (Eq. (10)).

dD% = abs(D(a?, ) — (rS(a’,a’) x D(d’,b")))
dD}? = abs(D(a’, 1)) — (rS(b',b7) x D(a’,b'))) (8)
g MIN(dD}’,dD}’
ADY = 1-— ( ) (9)
qlsj
i [ D(a, b))+ (rS(a,a?) x D(a',bi)), if dDL? < dD}? (10)
7 = D(a?, ) + (rS(b,b) x D(a’, b)), otherwise

Finally, we define the rank of an edge e as the average of all four quantities explained
above (Eq. (11)). Edges connecting vertices that have at least one wild-card are not taken
into account by this function.

Z ASH + AO™ + AAH + AD%

Rank(e) = XN x (N-1) (11)

vi,j€l,...,.N
a®,bt,al bl F#x



Edge pruning. The number of edges that can potentially be created from a set of vertices
is quadratic in the size of the vertices. Two mechanisms are used to prune the edge space.
The first one acts during the edge creation process by eliminating edges that link pairs of
vertices containing at least one common instance at the same feature within the vertex list,
as they cannot correspond to any real feature relationships. The second, thresholding, is used
only after all edges have been created and evaluated.

3.3 Cliques

A standard algorithm is used to find cliques. The algorithm takes as input a graph G = (V, F)
and returns in the superset CLIQU ES all the cliques found:

Algorithm 2: Finding cliques G = (V, E)
i:=1;C:=CLIQUES :=0; L(k) =0V k=1,...,size(V)
while i > 0
if 3v, € V with v, ¢ L(k), for all k <i then
L(i):= L(i) U{v.}
if 3 an edge e, = (v,,w,) € E for all w, € C then

C:=CU{v.}
let CLIQUES := CLIQUES U {C)}
=1+ 1
else remove the i — 1** vertex from C
Li):=0
i =1—1

Clique ranking. The final stage is to rank the cliques. The rank of a clique is the product
of the averages of all its internal vertex and edge ranks.

#CLIQUE
#CLIQU By

where V and E are the average values of all vertices and edges in the clique, respectively.
#CLIQUE is the clique size and #CLIQU E,,4, is the size of the maximal clique(s).

Rank(CLIQUE) =V x E x

(12)

4 Case Study

In order to help focusing on the structure learning process, and to keep away from other
aspects of our system (like attention, lighting invariance, dealing with clutter and so on)
which are not the main issue of this paper, we tried to make this case study as simple as
possible. Three scene images were created from two top view pictures of a telephone handset
and its base unit, taken against a black background. The two pictures were placed inside a
large black image under varying scales and orientations. In scene S' the handset and base
were place parallel to each other. In scene S?, the handset was translated, rotated by 90°
and scaled down by a factor of 70% with respect to its first occurrence. Finally, in scene S°
the base unit was scaled down by a factor of 60% of its original size and the handset was
rotated by 300° with respect to its first occurrence, see Fig. 3. A set of interest points have
been manually selected and passed to the system. These points consisted of: three pairs of
central microphone/speaker positions within the telephone handsets; three consistent ‘led’
positions in the base units and three dark spots within the base units. A set of two distractor



points (not belonging to any distinguishable feature) have also been selected in two of the
scenes. From this, we want our system to learn that the handset and base units are each one
a structured model, but, as the handset and base do not obey a rigid body transformation,
they should not form a structured model.

2 3
s s 231

cl1

Figure 3: Scenes used in the case study. In order to facilitate visualisation, the original image
intensities were inverted. The circles represent the retinal areas centred at the interest points.
The feature types a, b, ¢, d, e obtained by Algorithm 1 are also shown.

Algorithm 1 (Section 2) was applied to the set of interest points. The results are sum-
marised on Table 1. As one might expect, five different feature types were automatically
identified: type a for describing speaker and microphone areas within a telephone handset; b
for describing the features centred on the ‘led’ of the base unit; ¢ for the dark spot features;
and d, e for the distractor features. The next step was to use the object feature models and
relations to build the graph according to what is described in Section 3. By using a threshold
of 0.8, five cliques were obtained, which are listed below:

0.92 0.91
(al’l,aQ’l,a?”l) 5 (al’Q,a2’2,a3’2) (al’l,aQ’l,a?”Q) = (al’Q,a2’2,a3’1)
0.90 0.89
(al’l,a2’2,a3’1) = (al’Q,aQ’l,a3’2) (al’l,a2’2,a3’2) > (al’Q,aQ’l,a?”l)

(bl,l’bQ,l’b&l) 0.94 (01’2,02’1,c3’1)

The four cliques involving features of type a indicate that the telephone handset features
define a rigid geometric model governed by the relationships between the clique vertex com-
ponents. The reason why there are four cliques describing the same geometric relation is
because the handset features were classified as the being of the same type, so they can be in-
terchanged within a vertex without breaking the geometric constraint. The remaining clique
corresponds to a structural model for the base unit.

5 Conclusions

In this paper we provide an answer to the question of whether or not is possible to to learn rigid
geometric models from 2-D image evidence (iconic object models) acquired from a sequence of
scenes. We found that structured models can indeed be learned in such a context by using a
graph-based representation and algorithm. In a case study we have shown how our approach
works in practice. More complex case studies are currently under development and will be



|(l171(236,587)|al’2(562,589)| a2’1(598,431) | a272(598,659) | a371(177,676) | a3’2(342,395) ||

a’! 1,0,1 1,180,0.96 | 0.70,90,0.96 | 0.70,270,0.95 1,300,0.97 1,120,0.96
a'? 1,0,1 0.70,270,0.96 | 0.70,90,0.98 1,120,0.97 1,300,0.99
a’! 1,0,1 1,180,0.96 1.44,210,0.96 | 1.44,30,0.97
a’? 1,0,1 1.44,30,0.96 | 1.44,210,0.98
a>t 1,0,1 1,180,0.97
P 1,0,1

bl (ass.313) | b2 (ave,256) | b1 (587,225) ' iss,s8) | ¢®1(176,131) | ¢ (a08,152)
bt 1,0,1 1,0,0.99 0.58,0,0.99 el ! 1,0,1 1, 0,0.99 | 0.58,0,0.96
b1 1,0,1 0.58,0,0.99 c21 1,0,1 0.58,0,0.97
U 1,0,1 el 1,0,1

Table 1: Results of the Algorithm 1. The three smaller sub-tables present the relationships
(rS,r0O,Sm)) between feature instances of type a,b,c, respectively, in different images as
well as the positions (z,y) where these features were found. The lower diagonals of the
sub-tables are not shown because they are symmetric. The feature types d and e have only

one instance and therefore were not included in the table, their coordinates are as follows:
Py = (314,226) and P.»,1 = (441,215).

available in [4]. An important difference between the way we learn models and the existing
traditional approaches is that our system is designed to search the visual field for objects in
an attentive way, like humans and some other animals do. In this way, the relative position
of clustered features can be recorded and, with the help of the features’ relative scale and
orientation, possible relationships amongst features can be worked out.

Obviously, there are some issues related to the algorithms described in this paper that
require further research. For instance, there are other ways of defining the rank of a vertex,
as for example the average of the similarity scores between all the pairs of vertex elements.
A study on how the functions used to rank vertices, edges and cliques influence the learning
results is currently under investigation. The vertex creation process is not yet the optimal
solution to the problem as it suffer from a scalability problem: the size of the resulting com-
binatorial set grows exponentially with the number of images. However it is still a reasonable
solution for a few tens of images. One way to reduce the number of combinations would be to
pre-group multiple instances of same model class as if it were a new type of object. Finding
a more computationally attractive vertex definition is left as future work.
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