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.ukAbstra
tThis paper addresses the important problem of how to learn geometri
 relation-ships from sets of i
oni
 (2-D) models obtained from a sequen
e of images. It as-sumes a vision system that operates by foveating at interesting regions in a s
ene,extra
ting a number of raw primal sket
h-like image des
riptions, and mat
hingnew regions to previously seen ones. A solution to the stru
ture learning prob-lem is presented in terms of a graph-based representation and algorithm. Verti
esrepresent instan
es of an image neighbourhood found in the s
enes. An edgerepresents a relationship between two neighbourhoods. Intra and inter model re-lationships are inferred by means of the 
liques found in the graph, whi
h leadsto rigid geometri
 models inferred from the image eviden
e.1 Introdu
tionWithin the 
ontext of visual learning, our ultimate goal is to design a vision system thatis 
apable of automati
ally learning obje
ts or parts of obje
ts and their relationships fromgeneri
 s
enes. But this is not an easy task in a 
ompletely autonomous 
ontext, in whi
hthere is no one to de�ne the appropriate training sets with its obje
ts already segmented,normalised and separated into 
lasses. In order to deliver obje
ts in su
h way, a system hasto somehow dedu
e the obje
t's shape, and its position, s
ale and orientation in the s
ene.Generally, obje
t re
ognition resear
h falls into three main 
ategories: (1) geometri
,symboli
, or stru
ture based re
ognition; (2) property, ve
tor or feature based re
ognition;and (3) i
oni
 (image) based re
ognition. Most of the resear
h found in the �rst 
ategory isrelated to 3-D obje
t re
ognition systems and usually involves either volumetri
 relationships[1℄ or surfa
e relationships [2℄. Relational or graph mat
hing [13, 8℄ are 
ommon te
hniquesused in this area to do the mat
hing between two relational or graph-based des
riptions. These
ond 
ategory presents a wider range of te
hniques varying from the use of spe
i�
 featureve
tors, multiple �ltering to global des
riptors for shape, texture and 
olour, or a 
ombinationof te
hniques [10, 12℄. This kind of approa
h is popular amongst appli
ations involving imagedatabase indexing [9℄. Finally, the third 
ategory is 
hara
terised by the dire
t use of images.In this 
ase, the most popular te
hnique to re
ognise obje
ts is template mat
hing. But, when�Supported by CNPq, Brazil. On leave from DSC/COPIN/UFPB - Federal University of Para��ba, CampinaGrande PB, Brazil, hmg�ds
.ufpb.br 1



using the traditional sensor ar
hite
ture, the number of pixels involved 
an be too high toallow for a more elaborate 
omputation. An alternative is to use a log-polar representation[11℄ whi
h requires less pixels to represent an image on
e it is spa
e variant.Within this 
ontext, an i
oni
 vision system based on primal sket
h features extra
ted froma log-polar representation was developed [6, 3℄. In this system, i
oni
 models are representedby geometri
 relations, whi
h are in turn used during re
ognition to strengthen the eviden
ethat a parti
ular obje
t model has been found based on other nearby mat
hes. But thetraining sets to build the models and the model relationships themselves had to be de�nedmanually. The work presented in this paper �ts in the 
ategory of i
oni
 based re
ognitionusing geometri
 relationships and expands the work des
ribed in [6, 3, 5℄. It addresses theimportant question of whether or not is possible to to learn rigid geometri
 models from 2-Dimage eviden
e (i
oni
 models) a
quired from a sequen
e of s
enes. An aÆrmative answer tothis question is given.We assume that a model 
onsists of 2-D representations learnt from unsegmented and
luttered s
enes by means of an i
oni
 vision system whi
h is inspired by some of the me
ha-nisms found in the mammalian visual system: (a) Foveated vision: the input light is pro
essedthrough a set of overlapping re
eptive �elds (resembling the human retina) whi
h produ
esan image smaller in size but retaining high resolution in the middle; (b) Visual attention:�xating the retina at interesting regions of a s
ene prevents having to pro
ess the entire s
eneat on
e, and, provided that an appropriate attention me
hanism is de�ned, the �xation points
an be seen as pla
es where obje
t features (or 
omponents) are most likely to be found; (
)Primal sket
h: it is hypothesised that primal sket
h features, like edges, bars, blobs and ends[7℄ are used by humans as more 
ompa
t and intelligible representations for image data andalso as 
ues for an attention me
hanism. The following se
tions explain how to 
ombine theabove me
hanisms and present an algorithm to solve the stru
ture learning problem.2 Learning obje
t feature modelsThis se
tion explains how the pro
ess of learning of obje
t features or primitive models is im-plemented. The algorithm for learning relationships between these obje
t features, des
ribedin the following se
tion, relies upon 
ertain aspe
ts of the above solution.We assume a vision system ar
hite
ture whi
h is based on an existing system des
ribedin [6℄, see Fig. 1. The �gure shows only four main modules that are dire
tly related tothis paper. Module (a) is responsible for 
onverting input pixels into a retina-like (log-polar) image representation, whi
h in turn is used by module (b) to generate primal sket
hfeatures at a number of orientations and 
ontrasts through a neural network [5℄. During s
eneexamination an attention me
hanism (
) 
ontinuously updates a map whi
h weights pointsof interest in the s
enes based upon the primal sket
h features and 
olour information. Thefoveation area is smaller than the s
enes so that just a smaller se
tion of the input image isanalysed at a given time. Finally, module (d), des
ribed in this se
tion, 
lusters primal sket
hplanes (representing primitive obje
ts) into model 
lasses. It also stores information aboutthe s
ale, position, orientation and similarity between the 
lustered obje
ts in order to allowfor a subsequent examination of the possible relationships between primitive models to formlarger stru
tured models. When these relationships are identi�ed, they 
an in turn be usedto improve the attention and mat
hing pro
esses.The position of the retina, and any underlying lo
al obje
t feature, is obtained by simply2
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Figure 1: System's main modules.looking at the interest map. The log-polar map implemented in our retinal representationhelps the pro
ess of �guring out the relative s
ale and orientations of an obje
t feature withregard to another previously stored 
luster. This is possible by translating the log-polar mapin both radial and angular dire
tions to inexpensively transform the features into a numberof new orientations and s
ales, whi
h are then mat
hed against already learnt o

urren
esof feature instan
es for all the existing feature models. The best mat
h will possibly bewith the model the feature is represented by. Then the feature together with its position,relative orientation and s
ale are stored. Algorithm 1 gives a straightforward solution to
lustering. Without loss of generality this 
an be used as a prototype for designing moreeÆ
ient algorithms.Algorithm 1: Clustering obje
t featuresfor ea
h s
ene image Si dofor ea
h foveation point P i;j on the s
ene doobtain the obje
t feature f i;j at position P i;jif the model base is empty, then 
reate a new model and store f i;j on it.elsegenerate a set of s
aled and rotated versions f 0i;j of f i;j�nd the model Ft that gives the highest average similarity s
ore �Cbetween its internal obje
t features fk;l and one of the f 0i;j variations.if �C > threshold thenstore f i;j in Ft.store the similarity s
ores Sm(f i;j; fk;l), the relative s
ales rS(f i;j; fk;l)and the relative orientations rO(f i;j; fk;l) 8fk;l 2 Ft.else 
reate a new model and store f i;j on it.3 Learning relationships via a representational graphIn this se
tion we explain how geometri
 relationships between obje
t feature models 
anbe found. A general prin
iple adopted here is that the re
ognition of 
onsistent geometri
relations allows the inferen
e of larger stru
tural obje
t models. We assume that obje
ts
an only have 2-D rigid body transformation. The approa
h adopted to solve the stru
turelearning problem was to build a graph-based representation. Verti
es are de�ned as theCartesian produ
t of the sets of obje
t feature instan
es of a same model 
lass found in ea
hof the images. Verti
es are ranked a

ording to a fun
tion of the similarities between their3




omponent obje
t instan
es. An edge in the graph represents a hypothesis for the relationshipbetween the features des
ribed by the two 
onne
ting verti
es and is valued a

ording tothe 
ompatibility between these two verti
es. The problem is redu
ed to �nding 
liques ofmaximum s
ores within this graph.3.1 Verti
esEa
h obje
t feature model Ft; 
reated by the algorithm des
ribed in Se
tion 2, 
ontains aset of instan
es f i;j found in ea
h s
ene image Si. An initial problem when designing analgorithm to learn relationships from these sets was to deal with the o

urren
e of multipleunrelated model instan
es of a same 
lass in the s
enes. In other words, how to a

ount for the
ombinations of instan
es that appear at 
onsistent positions and orientations and separatethem from those who don't? We solve this problem by taking the 
omplete 
ombinatorial setof instan
es. Ea
h N-tuple from this set will be a vertex in our graph. The set of all verti
esVt of a given feature type is the Cartesian produ
t between the sets of instan
es f it of type tfound in s
ene i (Eq. (1)). Vt = f1t � f2t � : : :� fNt (1)where N is the total number of s
ene images analysed.Equation (1) 
an be expanded as Vt = fv1; v2; : : : ; vMg where M is the total number ofverti
es. Ea
h vertex vr 
an be expanded as vr = (f1;jt ; : : : ; fN;lt ), where j 2 f1; : : : ;#(f1t )gand l 2 f1; : : : ;#(fNt )g. As we will not need the positions j; l of the instan
e within an image,for the sake of simpli
ity, we are going to remove these indexes throughout this se
tion, unlessotherwise stated. Also, we are going to drop the type t for the feature model 
lass, as fromnow on they will be distinguished by the letter representing the instan
e itself.In order to 
ope with the possibility of model instan
es being missing in some images,as the attention me
hanism might fail sear
hing at some lo
ations, o

lusion might havehappened and so on, we introdu
e a * (wild-
ard) model instan
e, whi
h is added to thesets of instan
es f i found in s
ene i before 
omputing the 
ombinatorial sets that de�ne theverti
es.Vertex ranking. If the similarity s
ores between pairs of vertex elements Sm(f i; f j) arethought as the probability of those elements belonging to a same feature 
lass, then a naturalway of de�ning the rank of a vertex is by multiplying all the similarity s
ores (Eq. (2)). Asa result, for a vertex to be strong all of its elements have to be very similar to ea
h other.Rank(vr) = NYi<j Sm(f i; f j) (2)where N is the number of feature instan
es in the vertex (N is also the number of imagesanalysed), Sm is the similarity fun
tion between two verti
es f i; f j (this fun
tion is obtainedvia the Algorithm 1, and produ
es values within the range [0; 1℄). We assume that the simi-larity between the wild-
ard and any other feature instan
e is one: Sm(�; �) = Sm(�; f j) =Sm(f i; �) = 1 8i; j.
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Vertex pruning. One side e�e
t of the addition of the wild-
ard instan
es is that therewill be now a number of verti
es with many *'s when 
ompared to the number of real obje
tfeatures, whi
h 
an 
ause relationships being learned between loose features, or verti
es thatdo not represent any plausible real obje
ts. To redu
e the number of this kind of verti
es,we allow only K *'s per node during the node 
reation pro
ess, where K << N (N is thetotal number of images). Limiting K also redu
es the 
ombinatorial explosion of verti
es.For simpli
ity, we have 
hosen K = 1 for the 
ase study developed in this paper.3.2 EdgesAn edge e = (a; b) 
onne
ts two 
ompatible verti
es a and b in the graph. The verti
esa = (a1; : : : ; aN ) and b = (b1; : : : ; bN ) are 
ompatible if for ea
h pair of feature instan
esin di�erent images (ai; aj) and found in the �rst vertex, whi
h are related by a given s
aleand orientation R = (rS(ai; aj); rO(ai; aj)), the 
orresponding pair (bi; bj) in the se
ondvertex has its 
omponents related through a similar relative s
ale and orientation. Moreover,ea
h pair of feature instan
e 
oordinates (Pai ; Pbi) and (Paj ; Pbj ) taken from the same vertexpositions will roughly de�ne a unique ve
tor angle A and length D (Q = (A;D)) when takinginto a

ount the feature's relative s
ales and orientations. We illustrate the above 
on
eptsin Fig. 2.
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Figure 2: Relations between vertex 
omponents: a = (ai; : : : ; aj ; : : : ; aN ), b =(bi; : : : ; bj ; : : : ; bN ) are verti
es 
onne
ted through an edge e(a; b). R has the relative s
aleand orientation between two vertex 
omponents a
ross images. Q has the angle and norm ofa ve
tor linking two 
omponents from distin
t verti
es in a single image.Edge ranking. From the previous paragraph is possible to 
on
lude that the rank ofan edge is de�ned as a fun
tion of four main quantities: (a) the relative s
ales and (b) therelative orientations within pairs of features of the 
onne
ting verti
es; (
) the angles and(d) the norms of the ve
tors de�ned by a pair of 
orresponding instan
e 
oordinates takenfrom the two 
onne
ting verti
es. One of the simplest, yet powerful, ways of 
omparing thesequantities is by using normalised absolute di�eren
es. Equation (3) shows how to 
omparethe relative s
ales of 
orresponding features (ai; aj); (bi; bj) found in two verti
es a and b.�Si;j = 1� abs(rS(bi; bj)� rS(ai; aj))rS(bi; bj) + rS(ai; aj) (3)Equation (4) shows the same for relative orientations, with the di�eren
e that a normal-isation fun
tion Ô (Eq. (5)) is now required to take into a

ount the fa
t that orientationsare measured in a 
losed 
ir
le. 5



�Oi;j = 1� Ô(abs(rO(bi; bj)� rO(ai; aj)))180 (4)Ô(x) = � 360� x; if x > 180x; otherwise (5)The angle A(aj ; bj) of the ve
tor de�ned by a pair of 
orresponding instan
e 
oordinates(from a same s
ene), taken from the two 
onne
ting verti
es, is expe
ted to be the same anglefound in any other pair of instan
e 
oordinates (at another s
ene), apart from the rotationthat ea
h of the feature pairs might have su�ered from one s
ene to another. Here we haveto de
ide whi
h feature pair gives the best estimate for the angle on the se
ond s
ene, so we
ompute two di�eren
es (Eq. (6)) and take the minimum between these di�eren
es (Eq. (7)).Although normally both values are the same, there is the possibility of impre
ise 
al
ulationsat earlier stages, due to noise for example. Note that the normalisation fun
tion Ô has to beused again as orientations are 
ompared.dAi;ja = abs(A(aj ; bj)� (rO(ai; aj) +A(ai; bi)))dAi;jb = abs(A(aj ; bj)� (rO(bi; bj) +A(ai; bi))) (6)�Ai;j = 1� MIN(Ô(dAi;ja ); Ô(dAi;jb ))180 (7)Similarly to the angle 
omparison, the length of the ve
tor 
onne
ting two features in animage should be preserved in any other image, apart from the 
hange in s
ale that ea
h ofthe feature pairs might have su�ered from one s
ene to another. Again, the feature pair thatgives the best estimate for the s
ale on the se
ond s
ene (Eq. (8)) has to be 
hosen (Eq. (9)).Note that this time, the normalisation fa
tor (
alled here qi;j) depends on the minimum valuethat is 
hosen (Eq. (10)).dDi;ja = abs(D(aj ; bj)� (rS(ai; aj)�D(ai; bi)))dDi;jb = abs(D(aj ; bj)� (rS(bi; bj)�D(ai; bi))) (8)�Di;j = 1� MIN(dDi;ja ; dDi;jb )qi;j (9)qi;j = � D(aj ; bj) + (rS(ai; aj)�D(ai; bi)); if dDi;ja < dDi;jbD(aj ; bj) + (rS(bi; bj)�D(ai; bi)); otherwise (10)Finally, we de�ne the rank of an edge e as the average of all four quantities explainedabove (Eq. (11)). Edges 
onne
ting verti
es that have at least one wild-
ard are not takeninto a

ount by this fun
tion.Rank(e) = X8i;j21;:::;Nai;bi;aj ;bj 6=� �Si;j +�Oi;j +�Ai;j +�Di;j2�N � (N � 1) (11)
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Edge pruning. The number of edges that 
an potentially be 
reated from a set of verti
esis quadrati
 in the size of the verti
es. Two me
hanisms are used to prune the edge spa
e.The �rst one a
ts during the edge 
reation pro
ess by eliminating edges that link pairs ofverti
es 
ontaining at least one 
ommon instan
e at the same feature within the vertex list,as they 
annot 
orrespond to any real feature relationships. The se
ond, thresholding, is usedonly after all edges have been 
reated and evaluated.3.3 CliquesA standard algorithm is used to �nd 
liques. The algorithm takes as input a graph G = (V;E)and returns in the superset CLIQUES all the 
liques found:Algorithm 2: Finding 
liques G = (V;E)i := 1; C := CLIQUES := ;; L(k) = ; 8 k = 1; : : : ; size(V )while i > 0if 9 va 2 V with va =2 L(k), for all k � i thenL(i) := L(i) [ fvagif 9 an edge ea = (va; wa) 2 E for all wa 2 C thenC := C [ fvaglet CLIQUES := CLIQUES [ fCgi := i+ 1else remove the i� 1th vertex from CL(i) := ;i := i� 1Clique ranking. The �nal stage is to rank the 
liques. The rank of a 
lique is the produ
tof the averages of all its internal vertex and edge ranks.Rank(CLIQUE) = �V � �E � #CLIQUE#CLIQUEmax (12)where �V and �E are the average values of all verti
es and edges in the 
lique, respe
tively.#CLIQUE is the 
lique size and #CLIQUEmax is the size of the maximal 
lique(s).4 Case StudyIn order to help fo
using on the stru
ture learning pro
ess, and to keep away from otheraspe
ts of our system (like attention, lighting invarian
e, dealing with 
lutter and so on)whi
h are not the main issue of this paper, we tried to make this 
ase study as simple aspossible. Three s
ene images were 
reated from two top view pi
tures of a telephone handsetand its base unit, taken against a bla
k ba
kground. The two pi
tures were pla
ed inside alarge bla
k image under varying s
ales and orientations. In s
ene S1 the handset and basewere pla
e parallel to ea
h other. In s
ene S2, the handset was translated, rotated by 90oand s
aled down by a fa
tor of 70% with respe
t to its �rst o

urren
e. Finally, in s
ene S3the base unit was s
aled down by a fa
tor of 60% of its original size and the handset wasrotated by 300o with respe
t to its �rst o

urren
e, see Fig. 3. A set of interest points havebeen manually sele
ted and passed to the system. These points 
onsisted of: three pairs of
entral mi
rophone/speaker positions within the telephone handsets; three 
onsistent `led'positions in the base units and three dark spots within the base units. A set of two distra
tor7



points (not belonging to any distinguishable feature) have also been sele
ted in two of thes
enes. From this, we want our system to learn that the handset and base units are ea
h onea stru
tured model, but, as the handset and base do not obey a rigid body transformation,they should not form a stru
tured model.
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Figure 3: S
enes used in the 
ase study. In order to fa
ilitate visualisation, the original imageintensities were inverted. The 
ir
les represent the retinal areas 
entred at the interest points.The feature types a; b; 
; d; e obtained by Algorithm 1 are also shown.Algorithm 1 (Se
tion 2) was applied to the set of interest points. The results are sum-marised on Table 1. As one might expe
t, �ve di�erent feature types were automati
allyidenti�ed: type a for des
ribing speaker and mi
rophone areas within a telephone handset; bfor des
ribing the features 
entred on the `led' of the base unit; 
 for the dark spot features;and d; e for the distra
tor features. The next step was to use the obje
t feature models andrelations to build the graph a

ording to what is des
ribed in Se
tion 3. By using a thresholdof 0.8, �ve 
liques were obtained, whi
h are listed below:(a1;1; a2;1; a3;1) 0:92 ! (a1;2; a2;2; a3;2) (a1;1; a2;1; a3;2) 0:91 ! (a1;2; a2;2; a3;1)(a1;1; a2;2; a3;1) 0:90 ! (a1;2; a2;1; a3;2) (a1;1; a2;2; a3;2) 0:89 ! (a1;2; a2;1; a3;1)(b1;1; b2;1; b3;1) 0:94 ! (
1;2; 
2;1; 
3;1)The four 
liques involving features of type a indi
ate that the telephone handset featuresde�ne a rigid geometri
 model governed by the relationships between the 
lique vertex 
om-ponents. The reason why there are four 
liques des
ribing the same geometri
 relation isbe
ause the handset features were 
lassi�ed as the being of the same type, so they 
an be in-ter
hanged within a vertex without breaking the geometri
 
onstraint. The remaining 
lique
orresponds to a stru
tural model for the base unit.5 Con
lusionsIn this paper we provide an answer to the question of whether or not is possible to to learn rigidgeometri
 models from 2-D image eviden
e (i
oni
 obje
t models) a
quired from a sequen
e ofs
enes. We found that stru
tured models 
an indeed be learned in su
h a 
ontext by using agraph-based representation and algorithm. In a 
ase study we have shown how our approa
hworks in pra
ti
e. More 
omplex 
ase studies are 
urrently under development and will be8



a1;1(236,587) a1;2(562,589) a2;1(598,431) a2;2(598,659) a3;1(177,676) a3;2(342,395)a1;1 1,0,1 1,180,0.96 0.70,90,0.96 0.70,270,0.95 1,300,0.97 1,120,0.96a1;2 1,0,1 0.70,270,0.96 0.70,90,0.98 1,120,0.97 1,300,0.99a2;1 1,0,1 1,180,0.96 1.44,210,0.96 1.44,30,0.97a2;2 1,0,1 1.44,30,0.96 1.44,210,0.98a3;1 1,0,1 1,180,0.97a3;2 1,0,1b1;1(488,313) b2;1(476,256) b3;1(587,225)b1;1 1,0,1 1,0,0.99 0.58,0,0.99b2;1 1,0,1 0.58,0,0.99b3;1 1,0,1 
1;1(188,188) 
2;1(176,131) 
3;1(408,152)
1;1 1,0,1 1, 0,0.99 0.58,0,0.96
2;1 1,0,1 0.58,0,0.97
3;1 1,0,1Table 1: Results of the Algorithm 1. The three smaller sub-tables present the relationships(rS; rO; Sm)) between feature instan
es of type a; b; 
, respe
tively, in di�erent images aswell as the positions (x; y) where these features were found. The lower diagonals of thesub-tables are not shown be
ause they are symmetri
. The feature types d and e have onlyone instan
e and therefore were not in
luded in the table, their 
oordinates are as follows:Pd1;1 = (314; 226) and Pe2;1 = (441; 215).available in [4℄. An important di�eren
e between the way we learn models and the existingtraditional approa
hes is that our system is designed to sear
h the visual �eld for obje
ts inan attentive way, like humans and some other animals do. In this way, the relative positionof 
lustered features 
an be re
orded and, with the help of the features' relative s
ale andorientation, possible relationships amongst features 
an be worked out.Obviously, there are some issues related to the algorithms des
ribed in this paper thatrequire further resear
h. For instan
e, there are other ways of de�ning the rank of a vertex,as for example the average of the similarity s
ores between all the pairs of vertex elements.A study on how the fun
tions used to rank verti
es, edges and 
liques in
uen
e the learningresults is 
urrently under investigation. The vertex 
reation pro
ess is not yet the optimalsolution to the problem as it su�er from a s
alability problem: the size of the resulting 
om-binatorial set grows exponentially with the number of images. However it is still a reasonablesolution for a few tens of images. One way to redu
e the number of 
ombinations would be topre-group multiple instan
es of same model 
lass as if it were a new type of obje
t. Findinga more 
omputationally attra
tive vertex de�nition is left as future work.Referen
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