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Abstract

Camera-based systems offer a comprehensive and inconspicuous approach to mon-
itoring the well-being of individuals within the comfort of their homes. This study
introduces a vision-based, fully autonomous pipeline for assessing eating behav-
iors and detecting musculoskeletal changes. The system captures eating activities
and provides detailed insights such as hand-to-mouth motion duration and bite
count. These indicators are vital for understanding behavioral and physiologi-
cal influences on food consumption and their associated changes. The system
integrates pose estimation and a temporal action localization network to clas-
sify actions and generate behavior profiles. Evaluated on the EatSense dataset
and a supplementary test set, the system achieves strong performance, including
a mean average precision (mAP) of 74% at 0.10 IoU for micro-action detection
and a posture anomaly detection accuracy of over 76%. These results demon-
strate the system’s ability to detect subtle trends such as slower hand movements
under increased wrist weights and changes in chewing behavior. Additionally,
comparisons against Gemini-2.5-Pro, a state-of-the-art multimodal model, rein-
forces the system’s accuracy. So, by successfully capturing trends aligned with
ground truth data, the pipeline shows promise for long-term health monitor-
ing, early detection of musculoskeletal decline, and behavioral changes in dietary
habits—offering potential applications in elderly care and remote health assess-
ment. The new test dataset is released on https://groups.inf.ed.ac.uk/vision/
DATASETS/EATSENSE/.

Keywords: EatSense, Change in movement detection, Eating Behaviour monitoring,
sVideo to report Generation
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1 Introduction

Understanding eating behaviors and their physiological foundation is vital for promot-
ing health and detecting early signs of disordered eating or physical decline. Eating
is a routine activity that offers a wealth of observable patterns, including the num-
ber of bites, chewing duration, and hand-to-mouth motions. These metrics can reveal
insights into dietary habits, musculoskeletal function, and broader health outcomes.

Digital home health monitoring systems can be broadly classified into two cat-
egories, 1) vision-based, and 2) wearable sensor-based. While wearable sensors or
multi-sensor systems are effective for identifying acute conditions, their acceptance is
limited due to their intrusive nature and the possibility of users forgetting to wear or
recharge them. On the other hand, camera/vision-based systems can be less intrusive
and help detect important situations and trends.

Vision-based monitoring systems for behavioral health informatics can potentially
identify and monitor minor signs, thus enabling earlier identification and intervention.
Clinical systems are costly and require a human operator in the loop; consequently,
they risk human error due to misinterpretation or inattention. Therefore, automated
vision-based systems can potentially be valuable aids in physical rehabilitation or the
evaluation of conditions like stroke and Parkinson’s disease (PD) [1]. In many of these
applications, pose estimation plays a crucial role. It has been widely used in gait anal-
ysis to identify deviations linked to neurological or musculoskeletal conditions, and in
person identification by capturing unique patterns of movement [2], [3]. By estimat-
ing joint positions and tracking their trajectories, pose estimation enables non-contact
assessment of functional mobility and motor health, which is essential in rehabilitation
and continuous home monitoring scenarios [4].

Existing research on vision-based monitoring has predominantly focused on iso-
lated aspects of eating, such as bite detection or chewing analysis, or general activity
monitoring in contexts like fall detection or rehabilitation. However, there is a gap
in integrating these capabilities into a holistic framework capable of analyzing eating
behaviors alongside musculoskeletal function. This integration is particularly relevant
in aging populations, where changes in upper-body motion and eating habits may sig-
nal underlying health issues. In general, the hope is that trends and abnormalities can
be found by analyzing the visual data, enabling healthcare professionals to make more
informed decisions.

This paper introduces a vision-based fully autonomous framework with three
stages: 1) To promote healthy eating habits, it first analyzes eating behaviors, such as
chewing duration and mouthful count. 2) Secondly, to identify possible decreases in
muscle activity, it tracks the speed of arm movement. 3) Thirdly, a new classification
technique is used to detect eating posture anomalies.

The contributions of this paper are:

1. A multi-purpose, fully autonomous, video-to-report (V2R) pipeline for long-term
eating behavior and muscle deterioration monitoring (Section 3.2).

2. The paper introduces a relaxed data augmentation (pre-processing) step,
autoencoder-style learnable temporal position encodings (TPE), and a temporal
segment soft merge and suppress criteria (post-processing) step for the temporal
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Fig. 1: Block diagram of the proposed system. The proposed pipeline consists of three
steps after the video is collected, 1) it finds the poses from the video and estimates
features using those poses, 2) uses these estimated features as an input to the tem-
poral action localization to get temporal segments and action classes, and 3) derive
insights into the eating behavior and muscular movement of the individual. The yellow
blocks highlight the technological contributions to achieve improved temporal action
localization on EatSense with a general transformer-based TAL framework.

action localization (TAL) network that helps to more accurately localize the actions
in the continuous video (Section 4.1).

3. The proposed pipeline can capture trends and generate valuable insights on changes
in eating behavior and upper-body muscular movements. This is demonstrated by
carrying out a holistic analysis of the proposed pipeline (Section 4.3).

4. A small extension is made to the EatSense dataset [5], where three individual’s
long-term changes are simulated by adding weights (0, 1kg, and 2.4kg) to the wrists
of the subjects (Section 3.1).

2 Literature Review

This research mainly focuses on camera/vision-based sensors. Most vision-based health
monitoring systems focus solely on fall detection and its prevention. Although it is
important to monitor for falls, it is equally critical to monitor the behavior of indi-
viduals for long-term changes. The vision-based health monitoring systems research is
categorized into two groups: firstly, research focusing on health-related activities such
as classifying or understanding activities of daily living (ADLs) or eating characteris-
tics; and 2) fully autonomous monitoring systems that utilize a video as an input and
output a meaningful summary of results useful to a health-care worker.

This section presents the literature review on non-clinical, home-based health
monitoring systems.
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2.1 Vision-based Health-Related Research

Vision-based health-related research in general considers various aspects of an individ-
ual’s health including vision-based gait analysis for neurological disease detection [6],
etc. However, the research presented here focuses on analyzing an individual’s upper
body motions; hence, the scope of this literature review is limited to only upper-body
or full-body related health research. This discussion is further divided into two cat-
egories, activities of daily living (ADL) monitoring and eating behavior monitoring.
ADL monitoring involves observing an individual throughout the day and drawing
insights on the data for various applications including rehabilitation or action quality
assessment, etc. The latter on the other hand, focuses more strictly on eating behav-
ior, but can also be useful for further analysis, such as movement decay assessment or
eating disorder detection, etc.

2.1.1 ADL Monitoring

To offer personalized services or treatments, it is crucial to have a comprehensive
understanding of the daily activities of an individual. For instance, accurately detect-
ing ADL can yield numerous advantages, such as analyzing human lifestyle, monitoring
diet, facilitating active rehabilitation, and more.

Much research has been done on ADL monitoring for the physical rehabilitation
of individuals in the past decade [7],[1]. In [8] and [9] the authors used a publicly
available dataset captured with a Kinect V2 sensor to automatically assess the physical
ADLs for individuals suffering from Parkinson’s or who have had a stroke. Deb et al.
[10] combined two publicly available datasets for automatically assessing ADLs with
attention modules in the deep network for better explainability of the model.

Elkholy et al. [11] monitored a subset of ADLs (sitting, standing up, walking, etc)
and designed a multi-head deep network for the classification of normal/abnormal and
assessing the efficiency of the action performed.

2.1.2 Eating Behavior Monitoring

Eating behaviors can generally be classified as how the person is eating, such as mind-
fully or rapidly, based on feeding motions, bites, chews, and swallows, etc, and what
actions they commonly perform while they eat or drink such as mixing sugar into their
tea. These eating behavior monitoring systems can be divided into four categories
based on their underlying application [12]: 1) Eating/drinking activity recognition, 2)
bite/chews/swallows detection, 3) portion-size estimation, and 4) sensor location, i.e.,
placement of a specific sensor on the body part or the object under observation. How-
ever, this literature review is limited to vision-based applications that monitor eating
behaviors.

Bi et. al. [13] developed a head-mounted camera system to detect eating and
non-eating activity. Nour et. al. [14] proposed an eating detection algorithm using
pose-based action recognition for elderly people with dementia. Similarly, most vision-
based eating monitoring systems, such as [15], [16], [17], and [18] focus on recognizing
eating/drinking actions rather than developing deeper behavioral insights through the
data.

4



In [19] Lasschujit et al. proposed a tray equipped with a camera that monitored
bites and chews alongside weight sensors to monitor the instantaneous amount the
food eaten by the individual. In [20], [21], [22] the researchers focused on developing
pipelines for automatic bite detection and their counts for a full meal. Similarly, in
[23] [24] the focus was detecting and counting the chewing activity.

Tufano et al. [25] carried out an extensive review of thirteen video-based techniques
with outcomes including intake gesture detection, meal duration, bite counts, and the
number of chews, etc. They also highlight the lack of research for the understanding
of eating behaviors in uncontrolled environments. Recently, Raza et al. [26] utilized
eating videos to assess performance levels and presented a general eating behavior state
diagram. They also proposed an uncertainty-aware algorithm to obtain a generalized
model to regress performance changes across multiple subjects since the indicative
features of decay vary significantly across people with different lifestyles.

To summarize, detecting bites/chews and eating actions are important aspects
of eating behavior monitoring. For this purpose, numerous vision-based pipelines for
monitoring eating behavior exist, though most of them target only specific aspects of
eating behavior assessment. Typically, these systems focus on either detecting eating or
drinking actions or on estimating the number of bites and the duration of chewing. Our
proposed automated pipeline, however, not only tracks the number of mouthfuls (bites)
and chewing duration but also evaluates how the individual’s performance changes over
time while eating. To the best of our knowledge, no existing pipeline provides insights
into both eating behavior and performance changes following video-based temporal
action localization.

2.2 Fully Autonomous Monitoring Systems

Recent years have seen increased interest in fully autonomous systems for elderly mon-
itoring. Luo et. al. [27] proposed a fully autonomous system that used two modalities
(an infrared and a depth sensor) to monitor elderly individuals, generating time logs
of their daily activities. The system utilized a frame-by-frame temporal activity detec-
tion algorithm coupled with smoothing windowed filtering. Although the framewise
temporal action localization helps in understanding various aspects of an elderly indi-
vidual’s routine, solely logging activities does not provide valuable insights into the
patterns or anomalies in the lifestyle of the individual.

Recently, Huang et. al. [28] proposed a similar system that comprised frame-wise
temporal action localization followed by facial analysis, activity detection, and sub-
jects’ interaction with the environment. This system performs meaningful analysis of
the videos for a deeper understanding of an individual’s long-term behavior.

Recent advancements in large multimodal models (LMMs), such as Gemini-2.5-
Pro, have shown promise in understanding complex visual tasks when prompted
with natural language instructions. While these models are primarily designed for
general-purpose reasoning, their ability to process unstructured visual data and extract
temporal patterns makes them a valuable tool for cross-validating domain-specific
pipelines. In this work, we used Gemini-2.5-Pro as a benchmarking tool for post-hoc
comparison of eating behavior statistics, demonstrating that such LMMs can serve as
flexible validators for temporal and behavioral data extraction.
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In summary, past research provides valuable insights into the activities of daily life
and behaviors of individuals using full-body or gait motion analysis pipelines. However,
there’s a gap in research focusing specifically on fully autonomous vision-based systems
to analyze health statistics, concentrating strictly on upper body motions with holistic
evaluation. The research presented here introduces a new fully autonomous system
aimed at monitoring and analyzing eating behavior and musculoskeletal degradation.
This is an important contribution because eating is typically undertaken regularly and
in a standard location and thus is amenable to observation by a fixed camera.

3 Methodology

3.1 EatSense and Test Set

For this research, the EatSense [5] dataset was used1. EatSense was collected in
dining environments equipped with an RGB-D Intel RealSense D415 camera, where
both RGB and depth information is recorded. RealSense uses infrared (IR) projec-
tion that helps it capture depth data accurately in low-light conditions, making it
somewhat invariant to lighting conditions. The camera was directed toward the din-
ing table, ensuring that each frame captured only a single subject’s frontal view from
an oblique angle. Recordings were conducted at various locations, featuring diverse
camera-to-subject distances (depending on the location of the dining table from the
wall), different backgrounds, and no control over the subject movements. The dataset
contains 135 videos of 27 healthy subjects (with faces obfuscated to protect their iden-
tity [29]) from different ethnicities and age groups (varying from below 30 to over 60),
and with different eating styles. [29].

EatSense contains both gesture-based (‘chewing’, etc.) and velocity-based (‘move
hand towards mouth’, etc) micro actions while a person eats - 16 sub-action classes in
total. The most frequent actions are “eat it” (2,630 instances), “move hand towards
mouth” (2,851 instances), and “move hand away from mouth” (2,792 instances),
reflecting the core focus on hand-to-mouth activity. Other common actions include
“pick food from dish with tool in one hand” (1,548 instances), “chewing” (795
instances), and “other” actions (2,057 instances), capturing additional context. Less
frequent but still relevant actions include “drink” (247 instances), “pick food with one
hand” (440 instances), and “pick food with both hands” (282 instances), along with
actions involving utensils and cups, such as “pick up a cup/glass” (213 instances), “put
the cup/glass back” (214 instances), and “put one tool back” (253 instances). Rare
classes include “no action” (64 instances) and “pick up tools with both hands” (65
instances). Overall, the dataset offers rich coverage of micro-actions that are crucial
for understanding fine-grained eating behaviors.

However, the research presented in this paper only utilizes two micro-actions (‘move
hand towards mouth’ and ‘move hand away from mouth’) both of which last less than
one second. As the videos are recorded at 15 fps, that means, on average, ‘move hand
towards mouth’ and ‘move hand away from mouth’ span over 12.7 and 9.4 frames
respectively. There are collectively 5643 instances of these actions in EatSense. On the

1https://groups.inf.ed.ac.uk/vision/DATASETS/EATSENSE/
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other hand, it also simulates musculoskeletal deterioration by tying weights of different
magnitudes to the wrists of the subject. These characteristics make EatSense a perfect
choice for training the proposed autonomous system.

EatSense is an imbalanced dataset with more videos for some subjects and fewer
for others. To avoid introducing any bias due to different behavioral characteristics
across subjects, for this study the dataset was balanced by using 4 videos each from
24 subjects (there are 27 subjects in total, but three have only two videos), hence 96
videos in total. Then, the dataset is divided into five parts by splitting the dataset
into four groups of five subjects each and one group of 4 subjects.

We captured a new supplementary test set strictly for the holistic evaluation of
the pipeline with characteristics and settings similar to those of the EatSense dataset.
However, in this case, three videos were recorded for each of the three subjects. In these
recordings, two of the subjects were instructed to eat from the same bowls of three dif-
ferent sizes — while wearing weights of 0kg, 1kg, and 2.4kg on each wrist, respectively,
in a distraction-free environment, i.e., no chatting and no phone. This is usually the
case for elderly individuals. Moreover, to test how the proposed pipeline holds when
the assumptions are not met, the third subject was purposely requested to chat con-
tinuously whenever they could chat and use a mobile phone while they ate, hence a
distraction-filled environment. This setup aimed to simulate changes in eating habits
resulting from musculoskeletal deterioration, such as a reduced number of mouthfuls
or slower arm movements with increased decay (heavier weights). The new test dataset
is released on https://groups.inf.ed.ac.uk/vision/DATASETS/EATSENSE/.

3.2 Proposed System

The recorded videos consist of untrimmed, full-length footage of subjects eating. To
extract information such as the name of each action and their start and end times
in the video, a temporal action localization (TAL) framework was employed. Refer to
Figure 1 for an illustration of the process, with both an overview and more details
below.

Many TAL networks heavily rely on separately estimating video encodings (i.e.
frame-wise activity and context descriptions) as a step in the pipeline, as end-to-end
training demands substantial computational power. Typically, these video embeddings
are estimated using deep learning networks like I3D [30] and TSP [31]. However, in
this research, we leveraged features engineered using domain knowledge to make the
model more intuitive and understandable for healthcare experts.

After obtaining temporal segment information, the output activity segments are
analyzed to count the number of mouthfuls and estimate chewing duration. Lastly,
to monitor musculoskeletal decay, the time taken for the ‘move hand towards mouth’
action was tracked. The whole pipeline of the proposed system is shown in the block
diagram in Figure 1. The details of each of these steps are discussed below.

3.2.1 Pose Estimation and Feature Extraction

Initially, the 2D poses of the person eating are estimated using HigherHRNet [32], as it
is identified as the most accurate pose estimation algorithm for the EatSense dataset,
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as reported in [5]. As an RGB-D camera was employed for recording, the 2D points
of each of the eight visible joints are projected into 3D space utilizing basic computer
vision techniques along with depth information from the RGB-D camera. This gives
3D coordinates for each joint. Given that only the upper body of the subject is visible,

eight joints (⃗j
[t]
i , i = 1 : 8) were selected for analysis: head, chest, left shoulder, right

shoulder, left elbow, right elbow, left wrist, and right wrist.
Following the footsteps of the EatSense dataset [5] conventions and mathematical

details for feature estimation, the 24-dimensional vector (8×3) containing the absolute
location of eight 3D joints is used to estimate various spatial and temporal features.

These include instantaneous positions of the joints relative to the chest (r⃗
[t]
i =

j⃗
[t]
i − j⃗

[t]
2 ), the instantaneous distance between the chest and the table (c⃗[t]), past

three lags, velocity (v⃗
[t]
i ), acceleration (⃗a

[t]
i ), etc. Lastly, a forward sequential feature

selection (FSFS) algorithm was used to identify the most contributing features (out of

{⃗j[t]i , r⃗
[t]
i , c⃗

[t]
i , v⃗

[t]
i , a⃗

[t]
i , . . . }, , i = 1:8) for the frame-wise classification of the ‘background

action’ versus two micro-actions (‘move hand towards mouth’ and ‘move hand away
from mouth’). Using FSFS, the top 30 features were selected (illustrated in Fig. 2, the
curve starts to get flat beyond 30 features), forming a 30-D video feature embedding

(f⃗ [t]). This embedding serves as the input to the TAL networks.

3.2.2 Temporal Action Localization Network

The model was trained to use the feature vectors (f⃗ [t]) localize the distinction between
‘move hand towards mouth’ and ‘move hand away from mouth’ (i.e. find the times ts
for the start and end te of instances of the two action primitives). Given that these
actions last less than a second (less than 15 frames), and to minimize any discrepancies
introduced due to human labeling error, the ground truth action instances were tem-
porally extended or cropped. Firstly, the exact hand-labelled boundaries were used.
Secondly, we redefined the start tgs and end tge of the temporal segment with a relaxed
boundary threshold ϵ ∈ {−2 × 1

15 ,−1 × 1
15 , 0 × 1

15 , 1 × 1
15 , 2 × 1

15}. This represents
±2 frames (chosen randomly), multiplied by 1/15 (because videos are recorded at 15
fps), and added to tgs and tge . This relaxed data augmentation process is illustrated in
Figure 3.

We introduced temporal positional embedding (TPE) using an Autoencoder-
style architecture that processes temporal data using 1D convolutions, capturing
information over sequential time steps. This can be represented mathematically as
follows.

Let the input be a sequence of feature vectors extracted from a video, representing
either hand-crafted or learned features over time:

X = [x1,x2, . . . ,xT ], xt ∈ Rd (1)

where T is the number of time steps (frames), and d is the dimensionality of each
feature vector. To inject temporal information, we add positional encodings to each
frame. These can be either fixed (e.g., sinusoidal as in transformers) or, as in our case,
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Fig. 2: Top 30 most contributing features selected using forward sequential feature
selection. The vertical axis shows accuracy achieved on the frame-wise classification
of ‘move hand towards mouth’ and ‘move hand away from mouth’.

learned positional embeddings denoted as:

P = [p1,p2, . . . ,pT ], pt ∈ Rd (2)

The positionally encoded input becomes:

Z = X+P (3)

where positional encodings pt are learned as model parameters. The encoded sequence
Z ∈ RT×d is passed through a stack of 1D convolutional layers to learn temporal
dependencies. Each layer applies a 1D convolution with increasing dilation to capture
longer temporal context:

h(i) = ReLU
(
Conv1D(h(i−1); ri, k)

)
(4)
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Fig. 3: Relaxed Data Augmentation. tgs and tge refer to the start and end of action
in the ground truth whereas ϵ denotes the ±2 frames i.e, ϵ ∈ {−2 × 1

15 ,−1 × 1
15 , 0 ×

1
15 , 1×

1
15 , 2×

1
15} relaxation for augmentation.

where h(0) = Z, ri is the dilation rate at layer i (e.g., ri = 2i) and k is the kernel size.
After L such layers, the temporally encoded representation is:

H = h(L) ∈ RT×d′
(5)

A decoder reconstructs the input using transposed convolutions:

Ẑ = Decoder(H) (6)

The TPE is trained using a reconstruction loss, i.e., the mean squared error (MSE)
as an auxilliary loss fucnction alongside the main loss function as shown in equation 8:

Lrec =
∥∥∥Ẑ− Z

∥∥∥2
2

(7)

Lrec = LTALN + λLrec (8)

LTALN is defined in eq. 9 where λ are weights for balancing each term and
(ĉi, t̂s,i, t̂e,i, ŝi), i = 1, . . . , N are the the predicted class, start time, end time, and
confidence for the ith query.

LTALN =
1

N

N∑
i=1

[
λcls · CrossEntropy(ĉi, cσ(i))

+λreg ·
(∣∣t̂s,i − ts,σ(i)

∣∣+ ∣∣t̂e,i − te,σ(i)
∣∣)

+λiou ·
(
1− IoU

(
[t̂s,i, t̂e,i], [ts,σ(i), te,σ(i)]

))
+λact · SmoothL1

(
ŝi, IoU

(
[t̂s,i, t̂e,i], [ts,σ(i), te,σ(i)]

)) ]
(9)

Overall, this architecture allows the model to learn temporally contextualized fea-
tures that include positional information, making it well-suited for tasks like action
localization, segmentation, and anomaly detection in sequential video data.

Additionally, the model uses a mask to ignore irrelevant or padded portions of the
data. This masking is applied during the final stage, ensuring that only meaningful
parts of the sequence contribute to the output. The architecture is designed to learn
positional information from temporal data efficiently.

The outputs of the TAL network consist of temporal segments (tis and tie), action
class labels, and a confidence score. Since transformers work on a fixed number of
queries, the number of output detections of each of the test video sequences is fixed.
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TadTR inherently uses an action matching module and does not require NMS
while training, however, it still produces redundant predictions during inference which
are suppressed, and merged using NMS. However, instead of suppressing predictions
below a certain threshold, we define a soft merge and suppress criteria. Let the output
of the Temporal Action Localization (TAL) transformer consist of a fixed number of
predictions:

D =
{(

tis, t
i
e, c

i, si
)}N

i=1
(10)

where tis, t
i
e ∈ R are the predicted start and end times for segment i, ci ∈ {1, 2, . . . , C}

is the predicted class label and si ∈ [0, 1] is the actionness score, i.e., the confidence
score predicted by the actionness regression head.

We define a filtered detection set D′ ⊆ D based on the following conditions:

si > τs where τs = 0.3 (11)

tie − tis > δt where δt = 0.1 seconds (12)

Next, we define a soft merge mechanism for overlapping predictions. Let di =
(tis, t

i
e, c

i, si) and dj = (tjs, t
j
e, c

j , sj) be two detections from D′ with the same class
label ci = cj . Their temporal overlap is given by:

Overlap(i, j) = max
(
0,min(tie, t

j
e)−max(tis, t

j
s)
)

(13)

The detections di and dj are merged if:

Overlap(i, j) > δo where δo =
2

15
seconds (14)

The resulting merged segment dm = (tms , tme , cm, sm) is computed as:

tms = min(tis, t
j
s) (15)

tme = max(tie, t
j
e) (16)

cm = ci = cj (17)

sm = max(si, sj) (18)

All predictions not satisfying the score, duration, or overlap conditions are dis-
carded. This approach avoids hard non-maximum suppression (NMS) and allows
temporally close predictions with sufficient confidence to be softly merged, improving
robustness for short-duration actions.

3.2.3 Anomaly Detection

Anomaly detection (AD), also known as one-class classification, identifies patterns
that deviate significantly from the norm. It’s an essential method for finding outliers
or odd behavior in data analysis. For detecting anomalies in the instantaneous posture
of a person during the ‘move hand towards mouth’ micro-action, an anomaly detection
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(AD) / one-class classifier was used. To emphasize the posture, we utilize 30 postural
features intuitively chosen, including 21 postural features (derived from the positions of
eight 3D upper-body joints relative to the chest), the instantaneous distance between
wrists, and the distance of each of the 8 joints from the table. The chest serves as the
origin and is therefore excluded from the features.

Let the training dataset consist of posture features extracted from videos with no
wrist weights (i.e., normal data):

Xnormal = {x1,x2, . . . ,xN} (19)

We train a one-class Support Vector Machine (SVM) on Xnormal to learn a bound-
ary that captures the region of high-density (normal) data in the feature space. The
one-class SVM solves the following optimization problem:

min
w,ρ,ξ

1

2
∥w∥2 + 1

νN

N∑
i=1

ξi − ρ (20)

subject to:

(w · ϕ(xi)) ≥ ρ− ξi, ξi ≥ 0, ∀i = 1, . . . , N (21)

where ϕ(·) is a nonlinear feature mapping to a high-dimensional space, ν ∈ (0, 1] con-
trols the trade-off between the fraction of outliers and the decision boundary tightness,
ρ is the offset and ξi are slack variables allowing violations of the margin for soft
decision boundaries. The decision function is defined as:

f(x) = sign((w · ϕ(x))− ρ) (22)

During inference, for a new feature vector x′, the model computes an anomaly
score:

score(x′) = (w · ϕ(x′))− ρ (23)

A negative score implies that the posture is anomalous, while a positive score
indicates it is similar to the normal data distribution.

In this work, the model is trained on postural data collected without wrist weights
and evaluated on data collected with 2.4 kg wrist weights, under the hypothesis that
the added weight induces posture changes that deviate from the norm. The classifi-
cation performance of the anomaly detection system is reported in terms of standard
metrics such as accuracy and F-score.

4 Experiments

The proposed pipeline was evaluated in multiple ways. Firstly, we train and evaluate
the temporal localization network (see section 4.1). Secondly, we assess if the dataset
under evaluation itself has any behavioral trend to explore (see section 4.2). Thirdly,
we analyze the pipeline as a whole with videos as input and three different statistics
(characterizing eating behavior and musculoskeletal changes - (see section 4.3)). Please
note, the first two experiments are on individual blocks of the pipeline and utilized the
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test set presented in the EatSense dataset for its evaluation. However, the extension
of EatSense was only used for validation in the third experiment, i.e., in the holistic
analysis of the pipeline.

In addition to evaluating individual components and the overall system per-
formance, Gemini 2.5 Pro was used as an external comparative model, given the
methodological heterogeneity among prior eating behavior analysis pipelines. This
state-of-the-art multimodal foundation model was guided using prompt-based instruc-
tions that described the temporal structure of eating actions. Its output, comprising
per-instance action intervals and summary statistics, was used to compare against and
validate the predictions generated by the proposed pipeline. The exact text prompt
used for all Gemini experiments is provided in A.

4.1 Temporal Action Localization Network (TALN) Tests

Claim 1: The TAL network alongside the proposed data-preprocessing pipeline can
extract most instances of the 2 actions from the continuous video, and accurately
estimate the starting and ending frame times.

The experiments on the TAL network were divided into two sub-experiments, TAL
using 1) deep learning-based video encodings (TSP [31]) and 2) hand-crafted (HC)
video encodings. For both sub-experiments, 5-fold cross-validation was used, with the
data splits as described in the previous paragraph. Mean average precision (mAP) is
used as a metric for the performance evaluation. It measures how accurately a network
can identify both the occurrence and temporal boundaries of specific actions within
a video sequence. The metric combines precision (the fraction of correctly identified
action instances among all predicted instances) and recall (the fraction of correctly
identified action instances among all actual instances) across various temporal inter-
section over union (tIoU) thresholds. tIoU measures the overlap between the predicted
action segment and the ground truth segment in terms of their temporal boundaries.
The area under the precision-recall curve is calculated to get the AP for that specific
action class and mAP is obtained by averaging the AP values across all action classes.

Table 1 presents the mean and standard deviation of the achieved mean average
precision (mAP) at 10%, 30%, and 50% temporal intersection over union (tIoU).
The last column displays the average mAP across all thresholds between 0 and 0.95
(incremented by 0.05 at each step). The results indicate that both hand-crafted and
deep learning-based video encodings achieve very similar performance at identifying
action instances and segmenting them from the continuous video. The high standard
deviation represents high variability in the dataset due to the difference in parameters
that make up each of the individual’s motion profiles. Hence, splitting them subject-
wise for 5-fold CV causes a domain shift [26].

The baseline architecture (TadTR + TSP) achieves competitive results, with
mAP@0.10 and mAP@0.30 scores of 69.4 and 61.4, respectively. When paired with
HC features instead of TSP, TadTR shows an improvement at mAP@0.50, reach-
ing 34.1 compared to 22.9 with TSP. However, the best performance comes from the
proposed model, TALN + TSP + Mods and TALN + HC + Mods. These mod-
els significantly outperform the baseline, with mAP@0.10 scores of 71.7 and 73.8,
and average scores across IoU thresholds (0.05–0.95) of 41.8 and 41.2, respectively.
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Table 1: The mean (µ) and standard deviation (σ) of the 5-fold CV results from the
two TAL networks at various intersection over union thresholds. HC represents hand-
crafted features, TSP shows the results on deep video-encoded features and Mods
stand for the proposed modifications in the baseline architecture.

Architecture
mAP@0.10 mAP@0.30 mAP@0.50 0:0.05:0.95
µ σ µ σ µ σ µ σ

Tridet + HC 52.1 3.1 42.0 1.9 22.4 4.13 27.1 1.18
TadTR + TSP (baseline) 69.4 12.3 61.4 13.0 42.9 14.1 40.8 8.9

TadTR + HC 63.1 4.2 53.7 6.5 30.3 6.2 34.1 3.8
TALN + TSP + Mods (Ours) 71.7 8.5 64.1 9.8 49.4 12.9 41.2 7.2
TALN + HC + Mods (Ours) 73.8 10.5 65.6 13.7 43.2 16.6 41.8 8.9

The modifications introduced in the proposed models (TALN + Mods) demonstrate
notable improvements in precision and robustness, as indicated by both the mean and
standard deviation across all metrics. This also highlighting the impact of integrating
domain specific hand-crafted features with modifications.

For the remaining experiments, such as the end-to-end evaluation, the TAL model
trained with hand-crafted features was used.

It’s worth noting that mAP estimation relies on an intersection over union (IoU)
threshold, which is highly sensitive when applied to very short actions. In particular,
one or two frames on either side can significantly impact the mAP estimation at any
threshold. Therefore, we chose to compare mean average precision (mAP) at lower
temporal intersection over union (IoU) thresholds, given that the actions (‘move hand
towards mouth’ and ‘move hand away from mouth’) last less than a second at 15
frames per second (fps). In any case, the mAP@0.10 score means that about 74% of
all micro-actions were detected with a temporal overlap with the ground truth of 10%,
i.e. 1 frame.

4.2 EatSense Validation

Claim 2: On average, the change in motion speeds caused by the use of weights in the
EatSense dataset is detectable.

The EatSense dataset provides an effective test bed for musculoskeletal change
detection as it simulates a change in upper-body movement (by attaching weights to
the wrists of the subjects) which was demonstrated by balance assessment speed tests
explored by fitting linear models in [26]. Questions such as ‘Is there any observable
change in performance as a function of the four weights?’ were masked by the linear
model and remained unanswered.

We investigate whether the weights affect eating speed by fitting a piecewise con-
stant function across the normalized average time to complete the ‘move hand towards
mouth’ micro-action for all 27 subjects across four different weights (i.e. normalized
by person, as people move at different basic speeds). Figure 4 illustrates a normalized
duration versus weight plot with a piecewise constant function shown in black and a
least square fit in blue. Normalization involves percentage normalization with respect
to the no-weight case for each subject (i.e., when no weight was attached to the wrists),
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Fig. 4: Normalized duration (time taken to ‘move hand towards mouth’ for the 24
people in EatSense) versus weight plot with a piecewise constant function for each
weight class shown in the black color and the least square fit shown in blue.

Fig. 5: The decision boundary estimated by an anomaly detector (SVM) with radial
basis function as the kernel. 1 (green) indicates normal samples and -1 (red) shows
anomalous samples. The black line is the decision boundary estimated by an SVM
trained on the 30-D features.
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Fig. 6: Time taken for ‘move hand towards mouth’ micro-action (from left to right:
Subject 1 (S1), Subject 2 (S2), and Subject 3 (S3)). Blue represents ground truth
durations, orange indicates predictions from the proposed pipeline, and green shows
estimates produced by Gemini-2.5-Pro using prompt-based video analysis. The light
green triangle in each box plot marks the mean; the black line shows the median; the
boxes represent the interquartile range (25th to 75th percentiles).

which aims to remove any scale bias across different subjects. The piecewise constant
function (black step line) fitted is

f(w) = meanp(meanip(
Dw,p,ip

1
np

∑np

j=1 D0,p,j

)) (24)

where Dw,p,i refers to actual time taken by subject p ∈ {0, ..., 23} while performing
action instance ip with weight w ∈ {0, 1.0, 1.8, 2.4kg}, where each person p has np

action instances with weight w = 0. Figure 4 shows a rising trend as the weights
are increased on the wrists indicating gradually slowing arm movement (but there is
a lot of variation in the data due to measurement noise, individual eating instance
variations, etc).

Claim 3: Using 30 postural features, an anomaly detection algorithm can effectively
detect postural changes.

To support this claim, we use the balanced dataset described in Section 4.1, ran-
domly split into 80% training and 20% testing samples. The one-class SVM model,
introduced in Section 3.2.3, is trained on the 2D output of the t-SNE projection
and employs a radial basis function (RBF) kernel to learn a decision boundary. The
model achieves an F1-score of 64.6% on the 2D data, suggesting that a distinguishable
anomaly exists between the no-weight and maximum-weight conditions. For visual-
ization, the postural feature vector corresponding to the last frame of each action
instance is projected into a 2D space and plotted using red and green points. The
learned decision boundary is illustrated as a black contour in Fig. 5. If we use the 30-
D vector (postural features) directly instead of projecting into the 2D space, an SVM
classifier with an RBF kernel achieves 76.2% accuracy.

The F1-score is reported here because it provides a balanced measure between
normal and abnormal data, being the harmonic mean of precision and recall.
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4.3 Holistic Weakness Detection Evaluation

Claim 4: The proposed pipeline can effectively capture the general temporal behavior
trends and produce valuable insights about patterns by solely observing eating activity
and tracking upper-body motion.

A holistic (system-wide) evaluation of the proposed pipeline is undertaken, in addi-
tion to the tests on the individual network and classifier components, as discussed
in the previous subsections. The system-wide test uses the test set that consists of
the nine new videos recorded similar to EatSense. They were discussed briefly in the
last paragraph of section 3.1. In addition to the original pipeline, Gemini-2.5-Pro was
used for an external evaluation of the same set of videos. The model was provided
with a detailed natural language prompt specifying the detection task for “move hand
towards mouth” actions and chewing intervals. The prompt instructed Gemini to iden-
tify action intervals, count them, and compute descriptive statistics such as mean,
median, Q1, and Q3, all in milliseconds. It also estimated chewing intervals using log-
ical assumptions regarding action ordering. This served as an independent baseline to
verify the results from the proposed system.

Similarly to the inference pipeline, data preparation was: 1) extracting poses and
2) estimating the same 30 previously selected features, to get a 30-D feature vector per
frame. The temporal sequence of these features is used to temporally localize actions
in the video utilizing the TAL network, which outputs the two action class labels
alongside the temporal segment for each of the predictions. The temporal segments are
then used to estimate statistics such as the number of mouthfuls, chewing duration,
and time taken for the ‘move hand towards mouth’ micro-action.

For end-to-end tests, we utilize the videos in the new test set, and ground truth
(GT) labelled actions to estimate metrics such as accuracy for anomaly detection
algorithm, tabulating the number of mouthfuls, bar chart for GT versus predicted
chewing duration and estimated time taken for performing action ‘move hand towards
mouth’.

4.3.1 Duration of Hand-to-Mouth Actions

The ‘move hand towards mouth’ micro-action is important because the subject has
to move their hand against gravity and changes in action duration can potentially
indicate decay in strength or control. With the temporal segment extracted alongside
class predictions, the duration of the ‘move hand towards mouth’ micro-actions can
be extracted directly from the TAL network results.

Results and Discussion: Figure 6 shows the time taken to move the hand from
the plate (where the food is) to the mouth. The left and the middle figure in 6 show the
statistics extracted from subjects 1 and 2. They show two very interesting effects of
weights on individuals. Firstly, the predicted output follows the pattern of the ground-
truth values indicating the effectiveness of the proposed pipeline with the highest mean
difference of 0.1 seconds approximately.

Secondly, it shows opposite trends for the time taken by subjects 1 and 3 as com-
pared to subject 2. The trend is the change in performance (average time taken to
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complete the ‘move hand towards mouth’ action). As the subjects wore three differ-
ent weights on their wrists, one might predict a systematic change in action duration.
Subjects 1 and 3 take a longer time to complete the action with higher weights indi-
cating a slower movement (possibly due to muscular degradation or trying harder to
maintain hand-to-mouth coordination).

Subject 2, on the other hand, shows the opposite trend, indicating that they take
a shorter time to complete this action with higher weights which is counter-intuitive.
Since every subject shows decay differently, this leads to the question: Does subject 2
show any other parameters for decay? Upon further investigation of the videos, it was
found out that subject 2 was slouching more to offset the weight on their wrists which
resulted in shorter movement distances (as the food was now closer to the person’s
mouth) and thus shorter time intervals for eating with higher weights. Hence, the
weights altered the overall posture of subject 2.

For subject 3, it was observed that the predicted segments had low confidence
scores (no predictions more than 60% confidence) and an extremely gradual increase
in the mean value of the boxplots that show the time taken for ‘move hand towards
mouth’ action in predictions. This is likely because the trained TAL network does not
generalize well on the EatSense dataset on entirely new subjects potentially due to
the lack of diversity in the dataset. This issue was also raised by Raza et. al. in [26]
about EatSense. However, even if we use less confident predictions as shown in the
right box plot in Fig. 6, the highest difference between the mean of the predicted and
the ground truth values is still less than 0.11 seconds.

For a comparative analysis of the pipeline’s predictions, hand-to-mouth durations
were also computed using Gemini-2.5-Pro. While Gemini’s estimates followed the
expected trends for some videos, its performance varied considerably across condi-
tions. In the Subject 2, weight 0 case, Gemini exhibited a catastrophic failure by
predicting unrealistically low durations with almost no variance, effectively collapsing
to near-constant outputs. This indicates a breakdown in which the model failed to
detect normal variability in the action’s execution. Such a failure substantially distorts
the statistical profile for that video and undermines the interpretability of its outputs.
For Subject 3—recorded in a distraction-filled environment—Gemini’s predictions also
showed higher variance and reduced alignment with ground truth, though without the
severe collapse observed for Subject 2 (w0).

Overall, while Gemini occasionally captured general patterns, its predictions dis-
played larger discrepancies in mean values and variability for most videos. These
results demonstrate that the proposed pipeline is not only more consistent but also
significantly more robust against such failure cases.

4.3.2 Posture Anomaly Detection

The 3D instantaneous posture features corresponding to the temporal segments pre-
dicted by the TAL network from the new 3-person dataset are input for classification
using the SVM model previously trained on the full EatSense dataset (as described in
Section 4.2 claim 3). The purpose is to detect changes in posture.

Results and Discussion: The SVM for postural anomalies achieve a 64.1%
F1-score. Figure 7 shows the decision boundary on the test set with six colors for
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Fig. 7: The decision boundary estimated by anomaly detector (SVM) with radial
basis function as the kernel. -1/1 (Sx) in the legend indicates anomalous and normal
data with respect to the subject.

two weights and three subjects. For subject 1, most of the points with no weights
(turquoise) show normal posture including the ones where the subject was wearing
weights (orange). This is consistent with the speed tests from Fig. 6, i.e., increased
time for ‘moving hand to mouth action’. For subject 2, more abnormal posture points
(cyan) are beyond the boundary line and normal posture points (pink) are inside
the boundary, hence indicating a postural change. This is consistent with the deduc-
tions made earlier about the time taken to complete the ‘move hand towards mouth’
micro-action (in Section 4.3.1).

For subject 3, most of the points are marked as a normal posture that includes both
weighted (yellow) and unweighted (green) cases. This shows that subject 3 showed
mixed traits in their posture. This was also visible from the videos, that subject 3 was
continuously trying to re-align their posture every time showing symptoms of degraded
motion due to the weight on their wrist. Overall, the results of this experiment indicate
that the anomaly detection algorithm can quantify postural anomalies.
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Table 2: The number of mouthfuls (i.e., “move hand towards mouth”
actions), comparing ground truth, the proposed pipeline (shown in
column Est.), and Gemini-2.5-Pro estimates (shown in column Est.
by Gemini). Gemini was given a structured natural language prompt
describing the action and chewing interval definitions. W represents
the weight (in Kg) the subject S1/S2/S3 was wearing in correspond-
ing videos and Dur. shows the duration of each of the videos in
‘minute:seconds’ format.

Mouthfuls
Subject Video ID Dur. W (kg) GT Est. Est. by Gemini

S1
20240118 144635 4:25 0 17 18 17
20240118 145455 2:23 1 10 11 10
20240118 150211 1:51 2.4 6 7 6

S2
20240118 152302 2:11 0 16 17 17
20240118 152736 2:04 1 12 11 13
20240118 153325 1:26 2.4 8 7 8

S3
20230620 143046 5:06 0 14 16 14
20230620 143736 5:43 1 13 12 15
20230620 144531 5:43 2.4 13 9 13

Fig. 8: Chewing duration is estimated when the ‘move hand away from mouth’ starts
until ‘move hand towards mouth’ ends. This is done under the assumption that there
is no distraction such as a phone conversation, another person to talk to, or other
distractions.

4.3.3 Mouthfuls

To count the number of mouthfuls, the number of times a subject performs the
‘move hand towards mouth’ action is counted. The number of mouthfuls tracks the
individual’s long-term nutritional adequacy.

Results and Discussion: The number of mouthfuls is tabulated in Table 2 which
shows how many mouthfuls both subjects ate in reality (the ground truth) against
that estimated by the proposed pipeline and gemini-2.5-pro. The table also shows the
duration of the videos and the weight worn by the subjects with their corresponding
video ID.

Table 2 presents the results for both the proposed pipeline, which yields a mean
absolute error (MAE) of ±1.4, and Gemini-2.5-Pro, which achieves an MAE of ±0.4.
Both methods produce predictions that closely approximate the ground truth. The
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Fig. 9: Estimated chewing durations for Subjects 1 (S1), 2 (S2), and 3 (S3). Blue
shows the ground truth (based on manual annotations), orange indicates predictions
from the proposed pipeline, and green represents Gemini-2.5-Pro outputs derived from
prompt-based inference. Each box plot shows the mean (green triangle), median (black
line), and interquartile range (25th to 75th percentiles).

MAE is computed as:

1

N

N∑
i=1

|Esti −GTi| (25)

where N is the total number of videos Esti is the estimated value for the ith video,
and GTi is its corresponding ground truth value. Gemini-2.5-Pro matched or slightly
exceeded the proposed pipeline’s accuracy in several cases. Overall, both of these not
only predict the number of mouthfuls with decent accuracy but also follow patterns
in the ground truth, such as fewer predicted mouthfuls for videos involving lesser
mouthfuls in reality. The similarity of Gemini’s counts and statistical summaries sup-
ports the correctness of the pipeline and strengthens confidence in its deployment in
real-world scenarios.

4.3.4 Chewing Duration

Assuming that the environment is distraction-free and the person does not perform
any other action between two consecutive ‘move hand towards mouth’ actions, the
time taken for chewing is from the start of the ‘move hand away from mouth’ and
the end of the subsequent ‘move hand towards mouth’. This is shown in Fig. 8. Our
proposed test set includes six videos involving two subjects, i.e., subjects 1 and 2
where we made sure the eating session was recorded in a distraction-free environment.
We also demonstrate our proposed technique on subject 3 (marked as S3) where the
environment was not distraction-free and the subject was talking and using their phone
at times.

The predictions of the TAL network, due to processing errors, even after merging
the overlapping temporal segments, do not have the same number of ‘move hand
towards mouth’ and ‘move hand away from mouth’ action instances, which in reality
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should be identical. To overcome this problem, the chewing duration is estimated only
if ‘move hand away from mouth’ is followed by ‘move hand towards mouth’.

Results and Discussion: These assumptions mentioned above are reasonable for
most elderly people who are living independently and have a distraction-free environ-
ment. Figure 9 shows the chewing duration for the nine videos where subject 1 (S1)
is shown in the boxplot on the left, subject 2 (S2) in the middle, and subject 3 (S3)
on the right.

Notably, for subjects 1 and 2, there are similar distributions of chewing time across
all videos, which is expected as the same food was eaten in all six cases (possibly
the chewing time distribution for subject 1 in the large weight condition was longer
because this was eaten last and the volunteer was getting full). The predicted chewing
time follows the pattern of the ground truth chewing time with the highest mean
difference of 1.25 seconds.

However, for subject 3, the 0.25 and 0.75 quartiles of the boxplot indicate wider
(low kurtosis) distribution, i.e., the subject was taking more time to chew. This is
certainly because the environment was distraction-full and our proposed method of
estimating chewing times requires a distraction-free environment and hence fails to
get accurate estimations. However, even though accurate estimation is not possible,
the boxplots still show a rising trend indicating longer chewing times which could
mean fatigue/tiredness for both the ground truth and predicted segments with higher
weights. On the other hand, the predictions seem somewhat erroneous because the
model struggles to generalize to new subjects.

Additionally, chewing duration statistics extracted using Gemini-2.5-Pro were over-
laid for comparative analysis. These values, derived from the model’s structured
textual output, demonstrated partial alignment with both the ground truth and
the pipeline’s predictions. However, Gemini’s outputs generally showed greater mean
differences from the ground truth, even for subjects recorded in distraction-free envi-
ronments. In the Subject 1, weight 0 case, Gemini exhibited a catastrophic failure by
predicting unrealistically low chewing durations with almost no variance, effectively
collapsing to near-constant outputs and missing the natural variability present in the
ground truth. A similar failure occurred for Subject 3, weight 2, where the model
again produced nearly constant, underestimated durations, leading to a distorted sta-
tistical profile for that video. For Subject 3 more broadly, Gemini’s estimates showed
increased variability and larger mean errors in other conditions, reflecting reduced
temporal alignment. These cases illustrate that while Gemini can approximate coarse
chewing-time trends, it is more prone to collapse and large-magnitude errors than
the proposed pipeline, which maintained consistent and plausible estimates across all
weight and environmental conditions.

To summarize, the predicted chewing times follow the general trend of the ground
truth chewing times hence indicating the effectiveness of the pipeline as a stepping
stone to draw further insights such as identifying potential eating disorders.

Note: The charts and tables showing performance are just indicative of the overall
effectiveness of the pipeline and a simulation of deterioration. In a real scenario, data
is likely to be collected every week, which would be tracked over months or years. The
weekly timescale will allow better averaging and removal of outliers.
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5 Limitations and Future Work Directions

While the proposed system shows strong performance in controlled settings, its gen-
eralizability might be limited as it is tested on a relatively small dataset. While it
performs well on data resembling the training set, results from new individuals showed
slightly reduced confidence and temporal consistency in predictions. This suggests a
potential domain shift and highlights the need for improved model robustness across
diverse movement patterns and eating styles. The system also assumes a distraction-
free environment for accurate estimation of chewing duration and behavioral patterns.
This might be true for elderly living independently, but in real-life scenarios, dis-
tractions such as conversations or phone use can affect chewing time estimation
accuracy.

Future work should focus on expanding the dataset to include more diverse par-
ticipants and naturalistic environments. Integrating additional sensing modalities and
deploying the system for long-term, in-home use could improve its robustness. Real-
time feedback and more advanced anomaly detection methods may also enhance its
clinical utility and support early intervention.

6 Conclusion

This paper presents a fully autonomous vision-based pipeline for analyzing eat-
ing behaviors and monitoring musculoskeletal function, offering a novel approach to
understanding the interplay between dietary habits and physical health. The system
combines pose estimation, temporal action localization, and advanced data augmen-
tation techniques to assess key metrics such as hand-to-mouth motion duration, bite
counts, and chewing times. These indicators offer insights into eating behaviors and
physical performance, supporting the potential use of the pipeline for long-term health
monitoring and early detection of changes in musculoskeletal and eating patterns.

The system was validated using the EatSense dataset and a new test set, demon-
strating its ability to accurately identify patterns in eating behavior and movement
changes under controlled conditions. The paper demonstrates the effectiveness of
the method through both component-level and holistic analyses (e.g., TAL net-
work achieves 74% mAP@0.10 and anomaly detection (SVM) achieves 64.2%) and
by capturing trends successfully with holistic tests. To complement this evalua-
tion, we compared the pipeline’s output statistics with those from Gemini-2.5-Pro, a
state-of-the-art multimodal model. While Gemini produced reasonable mouthful-count
estimates, it exhibited multiple catastrophic failures in tasks requiring precise tempo-
ral segmentation. In these cases, Gemini’s predictions collapsed to unrealistically low
values with almost no variance, producing near-constant outputs and failing to cap-
ture the natural variability present in the actions, thus producing distorted statistical
profiles. In contrast, the proposed pipeline maintained stable and plausible predictions
across all subjects and weight conditions, avoiding collapse even in distraction-filled
environments.

However, the system exhibited limited generalizability to new subjects, so fur-
ther efforts are needed to improve its robustness across diverse individuals. Future
work may focus on expanding the dataset to include more diverse subjects, deploying
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the system for long-term real-world monitoring, and incorporating real-time feedback
mechanisms to support early health interventions. In summary, the results indicate
that the pipeline can capture relevant trends, including variations in arm movement
speed due to wrist weights and changes in chewing behavior. These findings support
the system’s potential as a basis for further research into automated monitoring of
physical and behavioral health indicators.
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A
Appendix A: Gemini-2.5-Pro Prompt for Holistic
Evaluation Comparisons

For the external comparative experiments described in Section 4.3, we used the fol-
lowing natural language prompt with Gemini-2.5-Pro for each video in the evaluation
set:

Prompt: Please analyze the video and count the number of times the action “move
hand towards mouth” occurs (move hand to mouth: as soon as the hand moves away
from the plate towards the mouth until just before it reaches the mouth). For each
instance, identify the start and end times of the action. Then, calculate the average
duration, median duration, 25th percentile (Q1), and 75th percentile (Q3) of these
actions. In addition, estimate the durations of chewing throughout the video. Provide
the original intervals, average chewing time, median, Q1, and Q3 values for these
intervals as well. Provide all these statistics in milliseconds.

The model’s responses were parsed to extract:

• Per-instance start and end times for “move hand towards mouth” actions.
• Descriptive statistics (mean, median, Q1, Q3) for these actions.
• Estimated chewing durations with corresponding descriptive statistics.

These results were used to compare Gemini’s performance against the proposed
TALN-based pipeline for mouthful count, hand-to-mouth duration, and chewing
duration estimation.
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