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Abstract

A live fish recognition system is needed in application scenarios where
manual annotation is too expensive, i.e. too many underwater videos.
We present a novel Balance-Enforced Optimized Tree with Reject op-
tion (BEOTR) for live fish recognition. It recognizes the top 15 common
species of fish and detects new species in an unrestricted natural envi-
ronment recorded by underwater cameras. The three main contributions
of the paper are: (1) a novel hierarchical classification method suited for
greatly unbalanced classes, (2) a novel classification-rejection method to
clear up decisions and reject unknown classes, (3) an application of the
classification method to free swimming fish. This system assists ecolog-
ical surveillance research, e.g. fish population statistics in the open sea.
BEOTR is automatically constructed based on inter-class similarities. Af-
terwards, trajectory voting is used to eliminate accumulated errors during
hierarchical classification and, therefore, achieves better performance. We
apply a Gaussian Mixture Model (GMM) and Bayes rule as a reject option
after the hierarchical classification to evaluate the posterior probability of
being a certain species to filter less confident decisions. The proposed
BEOTR-based hierarchical classification method achieves significant im-
provements compared to state-of-the-art techniques on a live fish image
dataset of 24150 manually labelled images from south Taiwan sea.

1 Introduction

Live fish recognition in the open sea has been investigated by [1, 2, 3, 4] to pro-
mote commercial and environmental applications like fish farming, meteorologic
monitoring and fish quota monitoring. Computer vision and pattern recogni-
tion techniques can help biologists observe marine ecosystems where the manual
annotation is too expensive, i.e. there are too many underwater videos (from a
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tera-scale video database). The fish are swimming in general 3D freedom with
a complex background including coral, sand and the open sea. Computer vision
techniques can help detect significant events in such environments and filter out
most worthless content from mass video databases. These techniques, when in-
tegrated with marine knowledge, can analyse underwater objects and compose
high level interpretations, like fish counting, fish species distribution variation,
fish behaviour analysis. Marine scientists benefit from computer-assisted anal-
ysis of underwater videos, e.g. fish detection and species recognition for long-
term observation [5]. Statistics about specific oceanic fish species distributions
or aggregate counts of aquatic animals can assist biologists with resolving issues
ranging from food availability to predator-prey relationships [6, 7, 8]. How-
ever, fish recognition in open water is fundamentally challenging because fish
can move freely and illumination levels change frequently in such environments
[9, 10, 11]. As a result, this task remains an open research problem. Prior
research is mainly restricted to constrained environments (e.g., fish tanks [1],
conveyor belts [12]). Strachan et al. [3] achieves a recognition rate of 73%, 63%
and 90%, respectively, on three types of fish. Spampinato et al. [13] classifies
360 images of ten different species and achieves an average accuracy of about
92%. Larsen et al. [14] classify three fish species and achieve a recognition rate
of 76%. In contrast, this paper investigates novel techniques to perform effective
live fish recognition in an unrestricted natural environment.

The three main contributions of the paper are: (1) a novel hierarchical clas-
sification method suited for greatly unbalanced classes, (2) a novel classification-
rejection method to clear up decisions and reject unknown classes, and (3) an
application of the classification method to free swimming fish. A hierarchical
classification method called the Balance-Enforced Optimized Tree with Reject
option (BEOTR) method is introduced to process the fish samples from an im-
balanced dataset. The reject option evaluates the posterior probability of input
data and filters out less confident results, e.g. noise, classification errors or un-
known classes. The framework, illustrated in Fig 1, includes feature extraction,
hierarchical classification and rejection. Firstly, 2626 features are extracted after
a fish orientation procedure. Then, a BEOTR of 15 fish species is automatically
constructed using the inter-class similarities and a heuristic method. After a
Forward Sequential Feature Selection (FSFS) and learning the finite mixture
models, a GMM model is applied after the BEOTR method to evaluate the
posterior probability of testing samples and provides the reject option.

The rest of the paper is organized as follows: Section 2 briefly introduces
related work. Section 3 describes the proposed live fish recognition system with
reject option. Section 4 shows experimental results in an underwater observa-
tional system and conclusions are drawn in Section 5.

2 Related work

Traditionally, marine biologists have employed many tools to examine the ap-
pearance and quantities of fish. For example, they cast nets to catch and recog-
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Figure 1: The framework of our BEOTR-based hierarchical classification sys-
tem. The work flow shows the training and the recognition procedure. Section
3.1 introduces the pre-processing and feature extraction methods. Section 3.2
discusses the BEOTR hierarchical classification algorithm. The GMM method
for reject option is described in Section 3.3.

nize fish in the ocean. They also dive to observe underwater environment, using
photography [15]. Moreover, they combine net casting with acoustic (sonar)
[16]. Nowadays, much more convenient tools are employed, such as hand-held
video filming devices. Embedded video cameras are also used to record un-
derwater animals (including insects, fish, etc.), and observe fish presence and
habits at different times [17]. This equipment has produced large amounts of
data, and it requires informatics technology like computer vision and pattern
recognition to analyse and query the videos. Statistics about specific oceanic
fish species distribution, besides an aggregate count of aquatic animals, can as-
sist biologists resolving issues ranging from food availability to predator-prey
relationships [6]. Unlike the simple and constrained environments found in the
majority of previous work (e.g., fish tanks [1, 2], conveyor belts [12], dead fish
[14]), we investigate the recognition task of more fish species in a more com-
plex and fundamentally challenging natural environment. We use underwater
camera to record and recognize fish, where the fish can move freely and the
illumination levels change frequently both locally from caustics arisen from the
ocean surface waves and globally due to the sun and cloud positions [10].

2.1 Hierarchical classification method

The task of fish recognition is an application of multi-class classification, which
has become an important and interesting research area since the influence of
machine learning theory. Over the last decade, SVM [18] has shown impressive
accuracy on the multi-class classification task because of its maximum-margin
advantages.

Given a training set D from p classes, which is a set of n sample points of
the form:

D = {(xi, yi) | xi ∈ Rm, yi ∈ {1, ..., p}}ni=1 (1)

yi indicates the class label of m-dimensional vector xi. Considering the two-
class task (p = 2), a Support Vector Machine (SVM) [19] is optimized to find a
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hyperplane, called maximum-margin hyperplane, which maximizes the margin
between the two classes.

SVMs were initially designed to be a binary classifier. They can be adapted
to form a multiclass classifier by converting the single multiclass problem into
multiple binary classification problems [20]. This kind of multi-class classifier
could be considered as a flat classifier because it classifies all classes at the same
time [21] and omits the inter-class correlations. A shortcoming of the flat clas-
sifier is that it uses the same features to classify all classes without considering
that some classes have certain similarities and can be better separated by some
customized features at a later stage. To overcome the problem of flat classifiers,
one possible solution is to integrate a domain knowledge database with the flat
classifier and construct a tree to organize all classes hierarchically [22]. This
strategy is called hierarchical classification which inherits from the divide and
conquer tactic. Essentially, it uses a hierarchical classification procedure where
a customized classifier is trained with specific features at each level [23].

A taxonomy tree is a typical biological hierarchical classification method.
The taxonomy ontology aims to systematize animals into their hierarchical cat-
egories. Taxon, as the leaf nodes of the whole tree, are the basement of taxono-
my knowledge. For each taxon in the taxonomic tree, there is a top-to-bottom
description to identify its hierarchical information which contains several con-
cepts, known as Kingdom, Phylum, Class, Order, Family, Genus, Species. The
taxonomy methodology is based on the synapomorphies characteristic from the
extent to which the taxon is monophyletic, and it indicates the distinction be-
tween species, e.g. the presence or absence of components (anal-fin, nasal,
infraorbitals), particular numbers (six dorsal-fin spines, two spiny dorsal-fins),
particular shape (second dorsal-fin spine long, thick caniniform teeth), etc. We
used the biological taxonomy knowledge to help construct a hierarchical clas-
sification tree of the 15 most common fish species as a baseline hierarchical
classification method. This tree splits all classes into nine groups at the first
level according to their family synapomorphies characteristic and leaves a few
similar species to a deeper layer where a customized classifier is used.

Hierarchical classification has several noticeable advantages. Firstly, it di-
vides all classes into certain subsets and leaves similar classes for a later stage.
This strategy helps reduce the imbalance of data. Secondly, unlike the flat
classifier choosing a feature set based on the average accuracy over all classes,
the hierarchical method applies a customized set of features to classify specific
classes. As a result, it achieves better performance on similar classes. Thirdly,
the hierarchical solution exploits the correlations between classes and finds the
similar groupings. This is especially useful with a large number of categories
[22]. Hierarchical structures are popular in document and image categorization.
Mathis [24] organizes documents hierarchically by making use of the correla-
tions between topical subjects. Deng et.al. [25] introduced a new dataset called
ImageNet where a large scale hierarchical ontology of images are constructed
based on the WordNet knowledge. However, these approaches use pre-defined
hierarchical structures without considering how to construct a more accurate
tree based on specific classes and their properties.
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2.2 Classification with reject option

We apply a pattern recognition method to recognize fish in underwater videos.
The classification procedure is carried out by a hierarchical algorithm. One
problem with these hierarchical classification methods is error accumulation.
Each level of the hierarchical tree has some classification errors. These misclas-
sified samples reduce the average accuracy of the final recognition performance.
Another issue for a multi-class classifier (not only for hierarchical classification)
is that it classifies every test sample into one of the training classes. Although
our fish recognition dataset covers the 15 most dominant species of fish, there
are still many observed fish from unmodeled species. These fish images are clas-
sified as known species, and the precision is thus decreased. A “reject option” for
a multi-class classifier allows the classifier to reject less confident classification
results as recognition errors or unknown classes. The goal is to detect whether
the features are properly clustered within each class, and indicated strong class
purity and consistency. If accumulated errors in the hierarchy misclassification-
s have occurred, then the samples are expected to have low likelihood scores.
The reject function evaluates the posterior probability of the test samples given
their recognition result. This is a post-recognition step and the rejection is inde-
pendent from the recognition since it only conditions on the recognition result.
Furthermore, manual annotation work for these minority species is expensive
because of the small proportion of these images, when compared to the major
species.

Thus, the reject option helps the fish recognition application in finding new
species. It eliminates the samples that are dissimilar to the assigned classes.
Thus, a p-class SVM has p + 1 decisions: {1, ..., p, Reject}. The reject option
means either a wrong decision of any of the p classes or the sample is from an
unknown class.

Platt [26] proposed a rejection method that used an additional sigmoid func-
tion P (y = 1 | t) = 1/(1 + exp(at+ b)) to map the SVM outputs into posterior
probabilities P (y = ±1 | t) rather than first estimating the class-conditional
probabilities P (t | y = ±1), where t is the SVM output, a and b are parameters
trained from the validation set. The posterior probability mapping function can
be estimated by using the maximum conditional likelihood [27]:

< a, b >= argmax
a,b

P (y = 1 | t, a, b)

= argmax
a,b

∏
i

P (y = 1 | ti, a, b),∀i (2)

where ti denotes the output for the ith validation sample, and y is the class
label.

Another common way to give a score to the classifier decisions is the Soft-
Decision hierarchical classifier. In [27], Wang et al. present an implementation
using the SVRDM classifier. The significant change is that there is no constraint
that the output of each node should sum to one. Given evidence X and the
classification result for each sub-branch m, each node i in the classification path
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Figure 2: An example of fish detections from a whole trajectory of Chromis
margaritifer. This species of fish has a noteworthy tail of white colour. This
feature is essential to discriminate it from other species of fish. These figures
have successfully maintained most of the white tails.

generates a probability output Pi(C = m | X). The final posterior probability P
is the product of the corresponding Pi along each path. However, these methods
have difficulties in how to evaluate the certainty score based on the intermediate
results at different layers of the hierarchical classification tree.

3 Methodology

In this section, we present our novel hierarchical classification method called
Balance-Enforced Optimized Tree with Reject option (BEOTR). It improves
the normal hierarchical method by arranging more accurate classifications at
a higher level and keeping the hierarchical tree balanced. Since hierarchical
methods accumulate errors along the decision path, a novel rejection system
is provided as an alternative channel to discover misclassified samples and to
probe test samples from new classes at the leaves of the classification hierar-
chy. The whole system consists of three stages: feature extraction, hierarchical
classification and result rejection (illustrated in Figure 1). Section 3.1 intro-
duced the pre-processing and feature extraction methods. Section 3.2 discusses
the BEOTR hierarchical classification algorithm. The GMM method for reject
option is described in Section 3.3.

3.1 Data pre-processing and feature extraction

Pre-processing is undertaken to improve the quality of features. Firstly, the
detection and tracking software described in [17] is used to obtain the fish and
mask images. Then the Grabcut algorithm [28] is employed to segment fish
from the background. An example of the detected fish is in Figure 2 of Chromis
margaritifer where most parts of the key feature (white tail) are preserved by
the segmentation algorithm.

However, an issue here can be observed is that the detected contour (marked
by red string along the body of fish) does not exactly align with the foreground
outline. Pieces of the dorsal fin, besides a portion of the anal fin, are missing
while some background such as water area is falsely included in front of the
fish. These inaccurate segmentations give a distorted image of the fish outline
and lose detailed descriptions when generating the shape features. Thus, we
append texture and colour features besides the shape features to produce a
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more comprehensive and robust set of descriptors. In order to align the fish
images to the same direction before further processing, we propose a streamline
hypothesis, which uses the assumption that most fish have a smoother head
than tail because fish need a more frictional tail (caudal fin) to swim and help
them keep balance. In order to find the tail side, we smooth the fish boundary
with a Gaussian filter to eliminate some noise, and then calculate the curvature
of each boundary pixel as following [29, 30]:

κ(u, σ) =
Xu(u, σ)Yuu(u, σ)−Xuu(u, σ)Yu(u, σ)

(Xu(u, σ)2 + Yu(u, σ)2))
3
2

(3)

where Xu(u, σ)/Xuu(u, σ) and Yu(u, σ)/Yuu(u, σ) are the first and the second
derivative of X(u, σ) and Y (u, σ), respectively; X(u, σ) and Y (u, σ) are the
convolution result of 1-D Gaussian kernel function g(u, σ) with fish boundary
coordinates x(u) and y(u). We fix σ to 0.35, so that κ only depends on u.
However, the pixel curvature is sensitive to local corners and we normalize it
using the logarithm function:

κnormalize =

{
log(κ) if κ ≥ 1

−log(2− κ) if κ < 1
(4)

The fish boundary coordinates are weighted by their local curvature and the
vector from the centre of mask to the curvature weighed centre estimates the
tail orientation. We use this algorithm to align all fish horizontally where the
head of the fish is located on the right. A typical fish orientation procedure is
illustrated in Figure 3. Considering the first image (Figure 3(a)) as input, we
first smooth the contour image with a Gaussian filter to eliminate the spines,
which generates a pulse in curvature and should be excluded since we only care
about substantial components (Figure 3(b)). The curvature of the fish contour
is illustrated in Figure 3(c), where the X axis is the index of pixels of contour
starting from the fish top part in anti-clockwise and the y axis stands for the
curvature degree. The curvature degree severely fluctuates more on the right
side than the left on the plot since the curvature concentrates on the rear half
of fish. We apply an ellipse fitting for minor adjustment. It calculates the
angle between the x-axis and the major axis of the ellipse that has the same
second-moments as the fish mask. Figure 3(d) shows the final result, where the
Dascyllus reticulatus is rotated horizontally and faces right. The fish orientation
method achieves 95% correct fish orientation with ±15 degrees based on 1000
manually labelled fish images. Finally, every fish image is divided into four parts
(head/tail/top/bottom) by splitting the fish horizontally and vertically through
the centroid.

Next, 66 types of feature are extracted. These features are a combination of
colour, shape and texture properties in different parts of the fish such as tail,
head, top, bottom and the whole fish.

The first introduced feature are normalized colour histograms in the Red&Green
channel and the Hue component in HSV colour space. These colour features are
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(a) . (b) . (c) . (d) .

Figure 3: Fish orientation demonstration: (a) original fish image; (b) fish bound-
ary after Gaussian filter; (c) curvature along fish boundary; (d) oriented fish
image.

normalized to minimize the effect of illumination changes. We recompute the
range of every bin according to the average distribution over all samples and
map them into an 11-bin histogram to take full advantage of all bins. This is
done for every colour channel separately, as shown below:

B̃i =

ai+1∑
j=ai

Bj

s.t. ai = min{X ∈ N+ | ΣX
j=1Bj ≥

i

11
} (5)

where Bj , j ∈ {1, ..., 50} is the original colour histogram bin, Bj , j ∈ {1, ..., 50} is

the averaged histogram over all samples and B̃i, i ∈ {1, ..., 11} is the recomputed
bin.

In order to describe the fish texture, we calculate the co-occurrence matrix,
Fourier descriptor and Gabor filters. The grey level co-occurrence matrices
describe the co-occurrence frequency of two grey scale pixels at a given distance
d [13]:

C∆u,∆v(i, j) =

n∑
p=1

m∑
q=1

1,
if I(p, q) = i and

I(p+ ∆u, q + ∆v) = j

0, otherwise

(6)

The frequency is calculated for 4 orientations λ. We compute Contrast, Cor-
relation, Energy, Entropy, Homogeneity, Variance, Inverse Difference Moment,
Cluster Shade, Cluster Prominence, Max Probability, Auto correlation, Dissim-
ilarity. These 12 features are useful as they are the most commonly selected
features by the Forward Sequential Feature Selection (FSFS) procedure [31].

Moment Invariants [32] and Affine Moment Invariants [33], as well as Pyra-
mid of Histograms of Orientation Gradients (PHOG) [34], are employed as the
shape features. Furthermore, some specific features like tail/head area ratio,
tail/body area ratio, etc. are also included. All features are normalized by sub-
tracting the mean and dividing by the standard deviation (z-score normalized
after 5% outlier removal).
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3.2 Algorithm for constructing the hierarchical classifica-
tion tree

Given a set of samples {xi}ni=1, the feature vector fi = {fi,1, ..., fi,m} denotes
the m feature values for sample xi. Let {yi}ni=1 indicate the class label of xi,
and yi ∈ {1, ..., C} where C is the number of classes. Our aim is to construct a
classifier h which uses the feature fi as input to predict the class label ỹi = h(fi)
that maximizes the classification accuracy.

A hierarchical classifier hhier is designed as a structured node set. A node is
defined as a triple: Nodet = {IDt, F̃t, Ĉt}, where IDt is a unique node number,
F̃t ⊂ {f1, ..., fm} is a feature subset chosen by a Forward Sequential Feature
Selection procedure that is found to be effective for classifying Ĉt, which is a
subset of classes and their groups. We only consider binary splits so each node
has at most two groups. All samples that are classified as the same group will
be transmitted into the same child node for later processing. An example with
15 classes is shown in Figure 9, where the IDt is illustrated in each node and Ĉt

are the local groups. The binary splitting process stops when each group has at
most 4 classes (e.g. Node ID 4,5,6,7) in order to limit the maximum depth of
the tree and avoid overtraining. All the leaf nodes are multiclass SVMs using
One-versus-One strategy.

To construct a hierarchical tree, we first aim at finding an optimal split of
the given classes at the current node by minimizing the Average Recall (AR)
score between the two child nodes. We search all possible splits of the classes
into two nearly equal sets of classes. This process is repeated for each child
node. A well-designed hierarchical tree can help improve the accuracy of some
confusable classes while suppressing the error accumulation. In this paper, we
propose two heuristics for how to organize a single classifier and construct a
hierarchical tree with higher accuracy.

1. Arrange more accurate classifications at a higher level and leave similar
classes to deeper layers.

2. Keep the hierarchical tree balanced to minimize the max-depth and control
error accumulation (Here we split the tree by equal number of classes, but
one could also use other splits, such as by equal a prior probabilities, or
non-equal numbers of classes to minimizing error).

When constructing the hierarchical tree, we focus on balanced trees for com-
putational reasons, and because a balanced tree structure produces reduced tree
depth, which reduces error accumulation. More formally, our tree generation
algorithm can be described as follows:

Input: class C1 to Cn

begin
c := {C1, ..., Cn}
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level := 0
// Use Forward Sequential Feature Selection
featureSetAllClasses := FeatureSelection(c)
construct(c, level)

end
proc construct(c, n) ≡
if n > MAXDEPTH
exit

end
// Evaluate classification accuracy on each
// split of classes c in parallel
parallel for {binary splits of c}

r = evaluate(c, AllFeature)
end
// The ChooseSplit finds the optimal class
// subset pair based on the set of r evaluations
[cLeft, cRight] := ChooseSplit({r})
// Use Forward Sequential Feature Selection
featureSet := FeatureSelection(cLeft, cRight)
// The maximum leaf node subset
// size is set to 4 to limit max tree depth
if size(|cLeft|) > 4

construct(cLeft, n+ 1)
end
if size(|cRight|) > 4

construct(cRight, n+ 1)
end

end

Firstly, the algorithm splits the current set of classes c into all combinations

of pairs of disjoint subsets with size |c|
2 and then sends each combination to

the performance evaluation stage. This consists of training using the training
subset and feature selection using the validation set. Training uses Forward
Sequential Feature Selection to build a binary SVM classifier. After evaluating
all of the possible splits, the best subset pair, in terms of classification accuracy,
is chosen and this split is used to construct two new child tree nodes. This pro-
cedure is iterated for both child branches until the stopping criteria is satisfied.
Performance evaluation of each subset at a given tree level is independent of
every other split. We assign each combination of class set splits to a distributed
parallel task. Each pair of subsets is then evaluated to obtain an accuracy score
in parallel (the accuracy score for each distributed task is found by taking the
mean classification accuracy of the two subsets assigned to the task). After
all distributed tasks in a superstep have concluded, we collect all of the mean
accuracy scores and select the class split with the highest score (our superstep
conclusion).

An example of an automatically generated tree is shown in Fig 9, where
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15 classes are arranged into 3 layers. The first layer splits all classes into two
groups: C1, C2, C3, C4, C7, C8, C9, C11 and C5, C6, C10, C12, C13, C14,
C15. Then it chooses the feature subset to maximize the average accuracy of
these groups. This procedure keeps on until all groups have at most 4 classes.

3.3 Gaussian mixture model for reject option

In a p-class classification application, an input sample is predicted as one of
the p classes. This solution cannot process noisy data e.g. false detections,
samples from unknown classes. These noisy data should be identified and then
rejected. We thus apply a Gaussian Mixture Model (GMM) to evaluate the
posterior probability from known classes to reject unreliable results. A GMM is
a semi-parametric density model which is comprised by a number of Gaussian
components [35]. It assumes that the data features are originally sampled from a
weighted sum of multiple Gaussian functions. In feature space, a GMM provides
more flexibility and precision in modelling the underlying statistics of sample
data [36].

A GMM represents the hypothetical clusters of density distributions in fea-
ture space when a single component Gaussian cannot model the underlying
characteristics of the given class. For example, in fish recognition, some species
of fish have specific colours, fin shapes, stripes or texture. It is reasonable to as-
sume that the extracted features represent this domain knowledge and represent
them by the density distributions. Each characteristic is expressed both by the
mean value µi and the covariance matrix Σi. The training procedure is unsu-
pervised (after assigned the training class). The GMM captures the prominent
density distributions and is not constrained by the label information. The Ex-
pectation Maximization (EM) algorithm [37], which is guaranteed to converge
to a local maximum by iterative searching, is applied to optimize the Gaussian
mixture model. Figueiredo et al. [38] present an unsupervised learning algo-
rithm to learn a proper mixture model from multivariate data. We use it to
select the number of components in the finite mixture model. Their approach
uses the Minimum Message Length (MML) with advantages compared to oth-
er deterministic criterion, e.g. BIC [39], MDL [40], etc: less sensitive to the
initialization, avoids the boundary of the parameter space.

A GMM model is applied after the hierarchical classification (at the leaves
of the hierarchical tree) to implement the reject option, instead of calculating
the result score along the path in a hierarchy (Figure 9). One difficulty for re-
jection in a hierarchical method is how to evaluate the certainty score based on
the intermediate classification results at different layers. Instead of integrating
the result score along the path of the hierarchy [27], here a GMM model is ap-
plied after the BEOTR classification to implement the reject option (Figure 9).
The GMM model is estimated using the training data for a subset of features
selected using the Forward Sequential Feature Selection method [31]. For each
BEOTR result, the final posterior probability P (C | x) for that input is evalu-
ated to estimate the final probability that the sample is actually class C output
according to the GMM likelihood score. Samples with a low probability are
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rejected. Thus, a lower false positive rate is expected, since some misclassified
samples in the BEOTR classifier can be rejected at the price of a slightly lower
true positive rate due to incorrect rejection. Rejected samples are labelled as
unrecognized. Note that in Figure 9 the reject option is only used for classes
C1 − C6 because classes C7 − C15 had too few samples to properly train the
GMM after Forward Sequential Feature Selection. Rejection is based on the
posterior probability for the observation evidence X with the predicted class Ci

(using Bayes’ Rule):

p(Ci | X) =
p(Ci)p(X | Ci)

p(X)
=

p(Ci)p(X | Ci)∑
j p(Cj)p(X | Cj)

(7)

The prior knowledge p(Ci) is calculated from the training dataset, p(X | Ci)
is the probability of the evidence given the predicted class Ci. Figure 4 illus-
trates the distribution of the posterior probability p(Ci | X) of all samples that
are classified as species Chromis chrysura. These samples are either correctly
classified (True Positives) or misclassified (False Positives). The distribution of
posterior probability of False Positives (as shown in Figure 4 c) has a peak dis-
tribution (about 38%) around the value of zero while most of the True Positives
have higher posterior probability (Figure 4 b). The diversity between these two
distributions is exploited to distinguish False Positives. This algorithm rejects
a substantial portion of the misclassified samples with the cost of also rejecting
a small proportion of True Positives (see Section 4 for details).

Figure 4: (a) Distribution of posterior probability of the training samples of
species Chromis chrysura. (b) Distribution of posterior probability of True
Positives. (c) Distribution of posterior probability of False Positives. See text
for details.

4 Experiment with fish recognition

Our data is acquired from a live fish dataset of the 15 different species shown in
Figure 5. This figure shows the fish species name and the numbers of ground-
truth images. The data is very imbalanced where the most frequent species is
about 500 times more common than the least common one. Note, the images
shown here are ideal images as many of the others in the database are a bit
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Figure 5: Top 15 species of fish in underwater videos, with the number of
observations in the ground-truth.

Figure 6: Hard fish examples, due to blurry conditions, different dis-
tances/orientations, against coral or ocean floor backgrounds.

blurry, and have fish at different distances and orientations or are against coral
or ocean floor backgrounds. Figure 6 shows some hard fish examples.

All fish are manually labelled by following instructions from marine biologists
[41]. 2626 dimensions of feature are extracted as described in Section 3.1.

4.1 Hierarchical classification for fish recognition

We use the BEOTR method for fish recognition. Based on the multi-class
classifier, we designed five other classifiers:

1. A multiclass 1v1 flat SVM classifier, which classifies all 15 classes simulta-
neously, is implemented as a baseline flat SVM classifier. Forward Sequen-
tial Feature Selection (FSFS) is applied (named flatSVM-fs) to do greedy
selection of the features to maximize the average recall among all classes.
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2. The Principal Component Analysis (PCA) algorithm is also implement-
ed as a baseline method for feature selection and classification. It uses
the singular value decomposition (SVD) to reduce the feature dimensions
and we preserve 98% of the principal component variances (up to 583 di-
mensions). The processed features are then classified by a 15-class SVM
classifier.

3. A classical classification and regression tree method (CART [42]) is pro-
vided as another automatically generated hierarchical decision tree to be
compared with. It starts with a single node, and then looks for the bi-
nary distinction which gives the most information about the class. The
generating process continues until it reaches the stopping criterion.

4. A taxonomy tree is constructed according to the fish species taxonomy.
This tree is pre-defined. It reflects the homologous similarity between
species. All the 15 species of fish belong to the Actinopterygii class (ray-
finned fishes), but in different orders, families and genus. This tree splits
all classes into 5 groups at the first level according to their family synapo-
morphies characteristic and leaves a few similar species to a deeper layers
where the customized multiclass 1v1 SVM classifier is applicable.

5. An automatically generated tree (BEOTR) is designed by recursively
choosing a binary split which has the best accuracy over the given classes.
We choose binary splitting to keep the tree balanced.

The experiment is based on 24150 fish images with a 5-fold cross validation
procedure with leave-one-out strategy. The training (3/5’s) and testing sets
(1/5’s) are isolated so fish images from the same trajectory sequence are not
used during both training and testing.

To make use of the temporal information, we developed a trajectory voting
algorithm. Trajectory voting in Figure 7 is used to minimize the environmental
influence. As all fish are freely swimming in a varying illumination environment,
the detected fish may have different orientations and appearances. Therefore,
the recognition results may vary even for a fish in the same trajectory. A trajec-
tory based winner-take-all voting mechanism is applied after individual classifi-
cation. It combines the single frame classification results. The trajectory voting
method enhances the fish recognition accuracy by exploiting the consistency in
labels expected from tracking each fish individually.

Results for the 5 algorithms are listed in Table 1 where the AR and AP
are recall/precision averaged over all classes rather than over all fish. This is
because of the greatly unbalanced class sizes. Three performance metrics are
employed to evaluate the accuracy of the proposed system. The first metric is
Average Recall (AR) over all species. It describes on average how many fish
are correctly recognized for each species. This score is more important to our
experiment because of the imbalance in the classes. Given True Positive / False
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Figure 7: An example of trajectory voting is shown where we use a winner-take-
all strategy.

Positive / False Negative, AR is defined as:

AR =
1

c

c∑
j=1

(
TruePositivej

TruePositivej + FalseNegativej
) (8)

where c is the number of classes. The second score is Average Precision (AP)
over all species. It is the probability that the classification results are relevant
to specified species:

AP =
1

c

c∑
j=1

(
TruePositivej

TruePositivej + FalsePositivej
) (9)

The third metric is the accuracy over all samples (Accuracy over Count,
AC), which is defined as the proportion of correct classified samples among the
whole dataset. AC is calculated as:

AC =

∑c
j=1 TruePositivej∑c

j=1(TruePositivej + FalsePositivej)
(10)

We compare the hierarchical classification against the flat SVM classifier
(AR = 76.9%). PCA is a popular algorithm to reduce feature dimensions. We
apply it before an SVM and achieve almost the same score (AR = 77.7%). In the
third row, feature selection before use in a SVM produces slightly better results
(AR = 78.4%) than the flat SVM using all features. Furthermore, the CART
algorithm gets the lowest AR (53.6%) among all three hierarchical methods.
The taxonomy methodology achieves a better AR of 76.1% than the CART
but is worse than the automatically generated hierarchical tree (84.8%) which
chooses the best splitting by exhaustively searching all possible combinations
while remaining balanced. Most algorithms achieve high AC scores, but this is
because the classes are very unbalanced. For example, to simply label all fish
as class 1 already achieves an AC = 50.4%.
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Method AR (%) AP (%) AC (%)
flatSVM 76.9 ± 4.6 88.5 ± 3.6 95.7 ± 0.5
PCA (98%) 77.7 ± 3.8 88.9 ± 4.1 95.4 ± 0.4
flatSVM-fs 78.4 ± 3.7 88.0 ± 5.5 95.9 ± 0.4
CART [42] 53.6 ± 5.1 52.9 ± 4.6 87.0 ± 0.7
Taxonomy 76.1 ± 5.2 87.2 ± 6.7 95.3 ± 0.4
BEOTR 84.8* ± 3.9 91.4 ± 2.8 97.5* ± 0.6

Table 1: Fish recognition results (before rejection). We add the standard devia-
tion of AR/AP/AC over 5-fold cross validation. * means the score is a significant
improvement after t-test over other methods at 95% confidence level.

Figure 8: Recall (a) and precision (b) of 15 species. These scores are averaged
by 5-fold cross validation.
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Figure 9: Automatically generated tree, the hierarchical example tree of 15
classes (C1, ..., C15). GMMs (G1,...,G6) for the rejection in hierarchical classifi-
cation is integrated with the BEOTR method.

The individual class recalls/precisions are shown in Figure 8. The hierarchi-
cal approaches achieve better accuracy than the flat SVM classifier and other
baseline methods because they arrange the similar species into the same group
and add fish-tail features to distinguish these species. Species 7,9,11,13 have
low scores in part due to confusion with the much larger class 1.

4.2 Fish recognition with rejection

We evaluate the reject option with an application of fish recognition. The ex-
periment is carried out by comparing our GMM-based method with two other
state-of-the-art rejection methods: 1) relating SVM outputs to probabilities
[26], and 2) soft-decision hierarchical classification with a reject option [27]. We
provide a reject option for the top 6 species (23117 fish images) in the top 6
species of Figure 5. In order to test the performance in probing unknown classes,
another 3220 fish images are added as the new species, where none of them is
from the top 15 species. These samples are considered as false classes from the
detection step and they are supposed to be rejected. Note that the BEOTR tree
has no “none of the above” classification. Hence any fish that did not belong
to one of the 15 trained species would be classified as one of the 15. The reject
option allows some of the unknown fish to be rejected.

For each fish species, we trained a GMM with the selected feature subset by
Forward Sequential Feature Selection method. The features used for training
the GMM are the same as for training the hierarchical tree but a different subset
was selected. The average numbers of features selected across all folds were: D.
reticulatus: 67, A. clarkii : 42, C. chrysura: 66, P. dickii : 26, M. kuntee: 46,
L. fulvus: 7. We used [38] to select the number of mixture models where the
maximum number of Gaussian density components is set as 7. In [43], Chib
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Species
TR (known classes) TR (unknown classes)
rate(%) number rate(%) number

D. reticulatus 13.7 15 11.2 33
A. clarkii 20.3 4 11.4 212
C. chrysura 32.8 15 51.2 53
P. dickii 13.9 6 14.8 19
M. kuntee 41.7 6 80.6 13
L. fulvus 65.7 4 48.6 106
Total 20.9 50 16.7 436

Table 2: Rejection results of incorrect classifications from either the trained 15
species (cols 2,3) or new 8 species (cols 4,5). (TR=True Rejection). Last row
is the averaged score weighted by size of each set. On average, there were 247
incorrectly classified samples from the 15 known classes and 2627 samples from
unknown classes.

Species
True positives False Rejection

rate(%) number rate(%) number
D. reticulatus 91.9 2237 4.1 95
A. clarkii 95.7 775 0.7 6
C. chrysura 85.2 606 8.0 53
P. dickii 92.5 496 1.8 9
M. kuntee 80.4 74 2.1 1
L. fulvus 84.2 35 1.7 1
Total 91.3 4223 3.7 165

Table 3: True positive rate when using only the 15 class data after rejection
(cols 2,3) and additional false rejections due to the rejection step (cols 4,5).
Last row is the averaged score weighted by size of each set.

and Siddhartha express the marginal density as the prior probability times the
likelihood function over the posterior density. They found comparably improved
performance of the marginal likelihood with this estimation. Since we address
the improvement of rejection in the hierarchical classification, we also calculate
the posterior density from Bayes rule of the testing samples. More specifically,
for each sample with evidence X and BEOTR prediction C̃, we calculate its
posterior probability P (C | X) from Equation 7, and set a small threshold (i.e.
0.01) to reject all samples whose posterior probabilities are below the threshold
(Figure 4).

Tables 2 and 3 demonstrate that GMM effectively improves the reject option
in the hierarchical classification for fish recognition. Table 2 shows the incor-
rect classification rejection results. The second/third columns show how many
misclassified samples from the top 15 species are correctly rejected while the
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fourth/fifth columns show correctly rejected samples from the new species. In
table 3, columns 2 and 3 show the true positive rate when using only the 15
class data after rejection and the last two columns show how many correctly
classified fish are thrown out when we apply the reject option (False rejection
rate). In a preferable situation, for samples classified as e.g. Lutjanus fulvus,
65.7% misclassified samples and 48.6% new species samples are rejected while
only 1.7% of the correctly classified samples are falsely rejected. However, as fish
can move freely and illumination levels change frequently in such environments,
there are always some new testing samples belonging to the known species but
their feature distributions in feature space are not effectively captured by the
GMM. We have to balance the tradeoff between more rejection and more re-
maining. For example, the cost of the reject option for Chromis chrysura is that
we throw away 8.0% (53 images) of correct fish while we have correctly rejected
32.8% and 51.2% of the wrongly classified fish from 15 species and new species,
respectively.

Algorithm AP (%) AR (%)
BEOTR baseline (no rejection) [44] 56.5 91.1

BEOTR+SVM probabilities [26] 59.0 90.9
BEOTR+soft-decision hierarchy [27] 59.0 90.7
BEOTR+GMM (proposed method) 65.0* 88.3

Table 4: Fish recognition result, averaged by the top 6 species. * means signif-
icant improvement with 95% confidence after t-test. None of the AR scores is
significantly worse than the original BEOTR method. Note, the results in this
table include both the 15 known species and the unknown species, hence the
lower AP scores.

The experiment results in Table 4 demonstrate that our method rejects sub-
stantial numbers of misclassified samples as shown in Table 2 (20.9% and 16.7%
True Rejection rates for known and unknown species, respectively) while the
cost is that a small proportion of correctly classified samples are also rejected
(3.7% False Rejection rate in Table 3). We compare it to two other rejection
algorithms [26, 27] and our method achieves significant improvements in AP.
Note that the AP in Table 4 is substantially worse than that in Table 1. This
is because the experiment in Table 4 also included the 3220 fish of unknown
species. The proposed method improves BEOTR hierarchical classification in
two aspects: 1) filters out part of the misclassified samples and increase the
average precision / count accuracy with a small reduction of the average recall,
2) finds potential new samples which do not belong to any known classes. It
detects a set of samples which have a higher probability of coming from new
species, and therefore, reduces the work for finding new fish, especially in a large
database of underwater videos. To summarize our result, we use the F-score
to combine both the average recall and the average precision of the test. We
use the F1 measure, which is the harmonic mean of precision and recall, as
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Figure 10: Invalid fish images, chosen from 3 underwater videos. In a normal
classifier without reject option, these images would be classified and cause un-
expected results. Our BEOTR aims at eliminating them while preserving most
valid fish images.

shown in Table 5. Considering both averaged recall and precision, our proposed
method (BEOTR+GMM) achieves significant improvement compared to other
three methods.

Algorithm F1-score
BEOTR baseline (no rejection) [44] 0.7135 ± 0.0227

BEOTR+SVM probabilities [26] 0.7150 ± 0.0222
BEOTR+soft-decision hierarchy [27] 0.7140 ± 0.0225
BEOTR+GMM (proposed method) 0.7485 ± 0.0194 *

Table 5: F-score result of the top 6 species. * means significant improvement
with 95% confidence after t-test.

4.3 BEOTR application to new real videos

Our fish recognition system depends on the detection results. Due to the com-
plex environment (e.g. light distortion, fish occlusions and illumination trans-
formation), the detection algorithm produces errors that are input to the clas-
sification procedure and cause unexpected recognition results. The previous
experiments are evaluated on a “clear” dataset where all tested images are
valid fish from either known or unknown species. However, in real applications,
the acquired data may contain false detections, e.g. blurred images, occlusion
by other fish or background objects, non-fish objects (coral, sea flowers, etc.).
Some examples of false detections are shown in Figure 10. In this section we
experimentally evaluate how many false detections our BEOTR system can re-
ject while preserving the valid ones. We choose 3 underwater videos and have
labelled 1000 detections from each video.

The recognition results are shown in Tables 6 and 7. We use BEOTR to
classify the test images and calculate the Average Recall (AR) and Averaged
Precision (AP) among all species. The AR score demonstrates that the BEOTR
method recognizes about 78% of the real, untrained valid fish images correctly.
The test images include many invalid detections (692, 892, 487, respectively).
The BEOTR method filters more than half of these false detections (378, 705,
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ID Average Recall (AR) Averaged Precision (AP)
video1 0.815 0.412
video2 0.804 0.448
video3 0.725 0.557
average 0.781 0.472

Table 6: Experiment results for real videos. In each video we select the first
1000 detections and manually label all samples.

ID False detections Rejections TR FR
video1 692 390 378 12
video2 852 734 705 29
video3 487 380 312 60
average 677 501 465 34

Table 7: Experiment of rejection results in real videos. TR = True Rejection,
FR = False Rejection.

312, respectively) while it retains most of the valid inputs. Some false detections
are not rejected and these inputs lower the average precision score (c. 47%).

5 Conclusion

In this paper, we present a novel Balance-Enforced Optimized Tree with Re-
ject option (BEOTR) classifier for live fish recognition. This is a novel type
of hierarchical classifier. More specifically, we propose a set of heuristics which
are helpful to construct a hierarchical tree. A novel GMM-based rejection sys-
tem is added after the recognition stage. We use feature selection to select a
subset of features that best distinguishes samples of a given class from other-
s. The reject function evaluates the posterior probability of the test samples
and produces a lower false positive rate, but some misclassification errors in the
BEOTR classifier can be overcome at the price of a slightly lower true positive
rate due to incorrect rejection. The experimental results demonstrate the ben-
efits of the rejection option, which results in an improvement in eliminating the
accumulated errors from hierarchical classification compared to two other rejec-
tion algorithms. The proposed method is evaluated on a live fish dataset. This
dataset of 24k samples over 15 species is the largest and most varied dataset
used for fish species recognition. The automatically generated hierarchical tree
with Reject option achieves c. 6% improvement of the average recall (AR) and
c. 3% improvement of the average precision (AP) compared to the flat SVM
and other hierarchical classifiers (Table 1). In the future, the hierarchical clas-
sification method could benefit from speeding up the construction procedure.
Instead of choosing the best split by exhaustively searching all of the possible

21



combinations, a possible way is to exploit the pre-defined taxonomic hierarchi-
cal structure, which describes the hierarchical structure of fish species. This
structure does not need any splitting calculation, and saves computing time.
Here, we only explored the use of binary splits at the higher levels of the tree
and terminated branching at node with 4 or less classes. Future work could
explore other branching and termination criteria.
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