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Abstract5

Recovering an outdoor environment’s surface mesh is vital for an agricultural robot during6

task planning and remote visualization. Image-based dense 3D reconstruction is sensitive to7

large movements between adjacent frames and the quality of the estimated depth maps. Our8

proposed solution for these problems is based on a newly-designed panoramic stereo camera9

along with a hybrid novel software framework that consists of three fusion modules: disparity10

fusion, pose fusion, and volumetric fusion. The panoramic stereo camera with a pentagon11

shape consists of 5 stereo vision camera pairs to stream synchronized panoramic stereo images12

for the following three fusion modules. In the disparity fusion module, rectified stereo images13

produce the initial disparity maps using multiple stereo vision algorithms. Then, these initial14

disparity maps, along with the intensity images, are input into a disparity fusion network to15

produce refined disparity maps. Next, the refined disparity maps are converted into full-view16

(360◦) point clouds or single-view (72◦) point clouds for the pose fusion module. The pose17

fusion module adopts a two-stage global-coarse-to-local-fine strategy. In the first stage, each18

pair of full-view point clouds is registered by a global point cloud matching algorithm to19

estimate the transformation for a global pose graph’s edge, which effectively implements loop20

closure. In the second stage, a local point cloud matching algorithm is used to match single-21

view point clouds in different nodes. Next, we locally refine the poses of all corresponding22

edges in the global pose graph using three proposed rules, thus constructing a refined pose23

graph. The refined pose graph is optimized to produce a global pose trajectory for volumetric24

fusion. In the volumetric fusion module, the global poses of all the nodes are used to integrate25

the single-view point clouds into the volume to produce the mesh of the whole garden. The26

proposed framework and its three fusion modules are tested on a real outdoor garden dataset27

to show the superiority of the performance. The whole pipeline takes about 4 minutes on a28

desktop computer to process the real garden dataset, which is available at: https://github.29

com/Canpu999/Trimbot-Wageningen-SLAM-Dataset.30
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1 Introduction34

An economical but robust online 3D reconstruction approach for outdoor environments is vital for35

the remote visualization of the scene and robot task planning. Recovering the dense 3D structure36

(e.g. mesh) of an outdoor garden with only image input quickly and robustly is challenging because37

of lighting changes, texture similarity, shadow interference, limited computation and network38

resources, etc. Figure 1 (a) shows a real outdoor garden for our gardening robot Trimbot’s139

navigation and plant pruning. In real applications, there are two big challenges2 for image-based40

dense 3D reconstruction with high fidelity: 1) Movement (rotation or translation) between adjacent41

1Trimbot2020 project URL: http://trimbot2020.webhosting.rug.nl/
2For more description about the challenges in the real world, please read the following file: https://github.

com/Canpu999/Trimbot-Wageningen-SLAM-Dataset/blob/main/Real-challenges.pdf
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frames is big because of e.g. a gardening robot’s fast speed (1m/s translation or 90 deg/s rotation),42

the temporal downsampling ratio of the frames3 (1/10), and the image sensors’ low frame rate (1243

FPS); 2) Disparity maps4 from existing methods in real outdoor environments are not accurate,44

dense and robust enough because of texture similarity, lighting changes, and shadows.45

According to a recent survey (Chen et al., 2022), SLAM5 systems are classified by the input46

data source or the sensors used. Figure 2 shows the SLAM classification results. Given that the47

input data to our proposed framework is from a newly-designed panoramic stereo camera (see48

Figure 1 (b), Figure D.1 or Figure D.3) and there is no existing similar work as far as we know,49

we have defined a new branch in the pure visual SLAM class called ‘Panoramic Stereo SLAM’50

with abbreviation ‘PS-SLAM’. Panoramic stereo SLAM is a class of pure visual SLAM51

methods with panoramic stereo images as input (e.g. our ring of stereo vision cameras52

to achieve 360◦ perception). Our proposed framework belongs to PS-SLAM which is in the53

pure visual SLAM area.54

Instead of following the existing main-stream pure visual SLAM technique [pose recovery by55

feature extraction and mapping (e.g. Campos et al. (2021); Schonberger and Frahm (2016)); pose56

recovery by minimizing the pixel-wise photo-metric error (e.g. Engel et al. (2017))], we start a new57

approach (slightly similar to the RGB-D SLAM algorithm Kinectfusion (Izadi et al., 2011)) to do58

pose recovery by using the point clouds rather than the features or pixel intensities (which are59

sensitive to illumination, scene appearance, and shadows). To guarantee point cloud quality out-60

doors, a new disparity fusion algorithm is first introduced into the SLAM pipeline, whose outputs61

are then improved by some practical techniques. To deal with fast motion or rotation of the robot,62

an innovative multi-stage pose trajectory estimation method with joint information (Algorithm 1)63

is developed based on loop closure (LC), view switching, and global & local information transi-64

tion. The integration of multi-level fusion modules, various supporting algorithms and different65

innovative strategies make the proposed hybrid framework unique and able to cope with the real66

challenges mentioned above, on which the traditional SLAM frameworks (e.g. Orbslam3 (Campos67

et al., 2021), Open3D reconstruction system (Zhou et al., 2018), and the commercial software68

‘ContextCapture’) perform badly.69

More specifically, to solve the two big challenges above in a real garden for the trimming robot,70

the TrimBot2020 project team designed a new hardware configuration called the ‘panoramic stereo71

camera’ along with a novel 3D reconstruction software framework containing three fusion modules72

to compute accurate disparity maps, estimate relative pose, and geometrically integrate the maps.73

Figure 1 (b) shows the panoramic stereo camera which is mounted on the TrimBot2020 robot,74

and which is primarily used for navigation and visual servoing when the vehicle is near to plants75

to be trimmed. The diagram in Figure 1 (b) shows the panoramic stereo camera with 5 stereo76

vision cameras (10 image sensors ‘Cam0’ - ‘Cam9’) arranged in a pentagon shape. The panoramic77

stereo camera streams the synchronized panoramic stereo images (see Figure 1 (c)) from the 1078

image sensors (‘Cam0’ - ‘Cam9’) for the following three modules to deal with. First, in the79

disparity fusion module, rectified stereo images are combined to compute the initial disparity80

maps by multiple stereo vision algorithms. Then the initial disparity maps along with the image81

information are input into a disparity fusion network to produce a refined disparity map. Next,82

the refined disparity map is converted into a full-view (360◦) point cloud or a single-view (72◦)83

point cloud for the pose fusion module (see Algorithm 1). In the first stage of pose fusion, each84

two 360◦ local point clouds are registered by a global point cloud matching algorithm to get the85

corresponding transformation for the global pose graph’s edge, which realizes loop closure (LC)86

essentially. The global pose graph is then optimized to produce a coarse global pose trajectory of87

the robot’s path through the garden. In the second stage, a refined pose graph is computed based88

3Because of the mobile network speed, we pick one out of every ten frames to transfer to the server for online
3D reconstruction.

4In a stereo configuration, disparity and depth are interchangeable measures: depth = focal length ×
baseline/disparity. When input data is from a depth sensor like Lidar or time of flight sensor, the depth in-
formation can be converted into disparity information by using a constant baseline and focal length. Thus, in this
paper we regard the two terms as the same and won’t distinguish them.

5The abbreviations in this manuscript are listed in Appendix A List of Abbreviations. And the frequently-used
symbols in this manuscript are listed in Appendix B List of Symbols.
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(a) The TrimBot2020 test garden

(b) A panoramic stereo camera

(c) 10 synchronized images from the panoramic stereo camera consisting of 5 stereo vision cameras (10 image sensors
in total)

Figure 1: Figure (a) shows the TrimBot2020 outdoor test garden; Figure (b) shows the newly-
designed ‘panoramic stereo camera’ hardware, which is mounted on the trimming robot. The
panoramic stereo camera with a pentagon shape consists of 5 stereo vision cameras (10 image
sensors, ‘Cam0’ - ‘Cam9’). Figure (c) shows ten synchronized raw images from the 5 stereo
camera pairs (the left image sensors in the stereo configuration are color cameras and the right
image sensors are gray scale). The images in this figure are from the Trimbot2020 project. For
viewing small details in this figure, readers are recommended to view the electronic version.
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on the coarse global pose graph. Local point cloud registration along with the coarse global pose89

trajectory from the first stage jointly update all the available edges in the refined pose graph, which90

is then optimized to estimate an accurate global sensor pose trajectory. Lastly, in the volumetric91

fusion module, the global poses of all the nodes in the refined pose graph are used to integrate92

the corresponding depth maps or point clouds into a volume to produce the surface mesh of the93

whole garden, which could be used for task planning and the remote visualization. Figure 3 gives94

an overview of the whole fusion pipeline.95

In conclusion, there are three major contributions which could be regarded as the foundation96

of the PS-SLAM approach. The major contributions are :97

(1) First real garden dataset (Figure 6) for future PS-SLAM research, which contains the98

ground truth of the fully-dense depth maps, the semantic maps, the global poses, the rectified99

stereo images, sparse Lidar scans, and the semantic 3D model;100

(2) First hybrid 3D dense reconstruction framework based on panoramic stereo images, which101

could be regarded as the initial baseline framework (Figure 3) for future PS-SLAM research;102

(3) First two-stage full-view-to-single-view global-coarse-to-local-fine pose trajectory estima-103

tion method (Algorithm 1), which is robust to fast or large transformations between adjacent104

frames.105

Additionally, there are three notable minor contributions to solve the related problems or106

improve the related performance in this paper:107

1) Theoretical proof (Appendix C.1) that the Frobenius-norm-based transformation difference108

loss function (Equation 4) is a special case of the maximum likelihood loss function when applied109

to the pose graph optimization problem;110

2) Two practical strategies (in Section 3.1.2) with the theoretical proof (Appendix C.2) to111

improve the disparity fusion accuracy by setting the maximum distance of interest (denoted by112

‘Maximum Distance’) and up-and-down resolution transformation (denoted by ‘High Definition’);113

114

3) Three rules (in Section 3.2.2) to optimize the edge set which constrains the pose graph’s115

loss function, boosting the estimated pose’s accuracy.116

The remainder of this paper is structured as follows. Section 2 presents previous research117

about SLAM classification, influence factors, and the dataset. Section 3 presents the proposed118

multi-level fusion framework including the disparity fusion module, the pose fusion module, and119

the volumetric fusion module. Section 4 describes the real garden dataset and demonstrates the120

performance of the fusion framework including the disparity fusion module, the pose fusion module121

and the volumetric fusion module on the real garden dataset. Section 5 presents a discussion and122

summary of the work.123

2 Related Works124

This section reviews the existing SLAM classification and positioning the proposed new SLAM125

framework within it. Secondly, we analyse factors which influence the framework’s performance.126

Lastly, the outdoor datasets used for visual SLAM are reviewed.127

128

2.1 SLAM Classification129

According to a recent survey (Chen et al., 2022), SLAM systems are classified by the input data130

source or the sensors used. Figure 2 shows the classification of different SLAM systems. SLAM131

systems have been divided into two main categories: Lidar SLAM (e.g. Lego-Loam (Shan and132

Englot, 2018)) and visual SLAM. Within the visual SLAM category, there are two sub-categories:133

semantic visual SLAM (e.g. Blitz-slam (Fan et al., 2022)) and traditional visual SLAM. RGB-D134

SLAM (e.g. Kinectfusion (Izadi et al., 2011), Elasticfusion (Whelan et al., 2016)), pure visual135

SLAM and visual-inertial SLAM (e.g. Vins-mono (Qin et al., 2018)) constitute the traditional136

visual SLAM family. Monocular SLAM with a single image sensor (e.g. Colmap (Schonberger and137
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Figure 2: The figure shows SLAM classification (Chen et al., 2022) based on the input data source
or the used sensors. As far as we know, our proposed framework is the first work in the branch
‘Panoramic Stereo SLAM’.

Frahm, 2016)), stereo SLAM with a stereo vision camera (e.g. Stereo LSD-SLAM (Engel et al.,138

2015)), and our proposed framework with a panoramic stereo camera belong to the pure visual139

SLAM class.140

While the newly-designed panoramic stereo camera (a ring of 5 synchronized stereo vision141

cameras mounted in a pentagon shape) extends the category of stereo SLAM, there are significant142

differences which stem from the specifics of the panoramic arrangement of multiple cameras. Thus,143

we define a new traditional pure visual SLAM branch ‘Panoramic Stereo SLAM’ (PS-SLAM),144

which uses a panoramic stereo camera - a ring of synchronized stereo vision cameras - to input145

a 360◦ view. Although there is a stereo panoramic vision system (Guo et al., 2022) that uses a146

stereo vision camera containing two panoramic vision sensors with a wide field of view (FOV) ,147

that approach still largely follows the classic stereo SLAM concept with some improvements to148

the stereo SLAM framework. As far as we know, our proposed framework (Figure 3) is the first149

true PS-SLAM research.150

Compared with mainstream panoramic SLAM algorithms (Chen et al., 2021, 2019; Ji et al.,151

2020; Wang et al., 2022; Zhang and Huang, 2021; Zhao et al., 2022; Zhu et al., 2019), one difference152

between ours and theirs is that they cannot provide dense global depth information because there153

is only one monocular camera at each viewpoint inside their panoramic camera whereas in our154

case multiple stereo images from different perspectives create the panoramic image. The second155

difference is that they still follow the typical visual SLAM pipeline (e.g. SFM (Schonberger156

and Frahm, 2016), Orb-slam (Mur-Artal et al., 2015)): feature extraction and mapping, pose157

estimation by triangulation, loop closure detection, and global optimization, which makes them158

sensitive to lighting changes unlike our proposed method. Additionally, these algorithms only159

produce a sparse reconstruction of the scene based on matched feature points as compared to our160

dense reconstruction.161

Meanwhile, some researchers (Ahmadi et al., 2023; Kang et al., 2021) projected the point162

clouds from a Lidar scanner to the image plane of a panoramic image from a panoramic camera163

to form a panoramic RGB-D image first. Then, the panoramic RGB-D images were input into164

OpenVSLAM (Sumikura et al., 2019), an open-source third-party library containing commonly165

used visual SLAM algorithms (e.g. RGB-D SLAM algorithm in Orb-slam framework (Campos166

et al., 2021; Mur-Artal and Tardós, 2017)). Compared with our solution, their Lidar sensor167

is expensive and does not produce a dense point cloud. In summary, the existing panoramic168

SLAM algorithms follow the traditional visual SLAM pipeline and ours has a different theoretical169

framework. Based on our newly-designed panoramic stereo camera, we provide an economic dense170

reconstruction solution which is robust to light changes and scene appearance.171

Different from previous frameworks (Chen et al., 2022; Kazerouni et al., 2022; Xu et al.,172

2022; Zhang et al., 2021), the proposed framework is designed specifically for a panoramic stereo173

camera set and concentrates on depth quality improvement under some challenging conditions174
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(illumination changes, similar texture, etc.) and accurate global pose trajectory estimation while175

coping with the robot’s fast motion or rotation. Thus, some new features are proposed to enhance176

the SLAM framework, such as the disparity fusion module, the field of view switching (360◦ versus177

72◦), the novel multi-stage global pose trajectory estimation algorithm 1.178

To summarize, the proposed framework is the first to do 3D dense reconstruction in the PS-179

SLAM research subfield, and so is a baseline to facilitate the progress of PS-SLAM. Compared180

with the popular SLAM frameworks (e.g. OrbSLAM3 (Campos et al., 2021), Open3D reconstruc-181

tion system (Zhou et al., 2018), and the commercial software ‘ContextCapture’), the integration182

of multi-level fusion modules, various supporting algorithms, and different innovative strategies183

makes the proposed framework both unique and capable of performing well even given the two184

real challenges facing any real outdoor robot: depth data quality and fast robot motion.185

186

2.2 Performance Factors187

188

2.2.1 Depth Quality189

Compared with Lidar scanners (expensive and their point cloud is sparse) and ToF sensors190

(sensitive to infrared light outdoors), etc., image-based depth estimation methods (e.g. stereo191

vision algorithms) are economical and produce dense depth map indoors and outdoors robustly.192

In our proposed framework, the stereo vision algorithms estimate the raw disparity maps and the193

disparity fusion algorithm is used to refine the raw disparity maps from the stereo vision algorithms194

to get a refined disparity map.195

The most well-known classical stereo vision algorithm is the semi-global matching method (Hirschmuller,196

2005), which conducts pixel-wise matching using mutual information with a global smoothness ap-197

proximation. With the rise of deep neural networks, Flownet (Dosovitskiy et al., 2015) is the first198

to use an end-to-end convolutional neural network to estimate the disparity map between two im-199

ages. A recent survey (Poggi et al., 2021) gives an overview of the latest progress of stereo vision200

algorithms. Although stereo vision algorithms have made huge progress recently, a single stereo201

vision algorithm still has different advantages and disadvantages, and fails to estimate disparity202

maps accurately at all pixels in all scenes. Disparity fusion is a good method for refining the203

initial raw disparity maps (from the same viewpoint) from several individual disparity estimation204

algorithms to estimate a more accurate and robust disparity map based on their complementary205

properties. The majority of classical disparity fusion methods (Marin et al., 2016; Poggi et al.,206

2019; Zakeri et al., 2020) share the same pipeline: estimate the disparity map and a confidence207

map from different sensors, and then use a specific fusion method to fuse the disparity maps208

using the confidence maps as weights. Because it is hard to estimate the confidence map and209

disparity distribution accurately, these classical methods have a lower precision compared with210

deep-learning-based methods (Pu and Fisher, 2019; Pu et al., 2019; Sandström et al., 2022). To211

highlight, Sdf-man (Pu et al., 2019) is the first to input multiple initial disparity maps with aux-212

iliary information (e.g. RGB, gradients) into the refiner network to produce a refined disparity213

map. It used a discriminator to classify the refined disparity map and the ground truth disparity214

map as real or fake to improve the refined disparity map’s accuracy.215

In existing SLAM system surveys (Chen et al., 2022; Kazerouni et al., 2022; Xu et al., 2022;216

Zhang et al., 2021), the emerging concept of ‘disparity fusion’ was not mentioned and we saw217

no mention of using a disparity fusion algorithm in the SLAM system to improve the 3D dense218

reconstruction accuracy. We are the first to encode the disparity fusion part in the front end of our219

proposed SLAM system based on Sdf-man (Pu et al., 2019). Although Sdf-man achieved state-220

of-art real-time performance in an outdoor garden, its error rate still lies at ˜10 cm level. In this221

paper, we propose two new practical strategies (Section 3.1.2) along with a proof (Appendix C.2)222

to improve the disparity fusion accuracy, as demonstrated by experiments in Section 4.2.223
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2.2.2 Pose Accuracy224

Compared with image feature matching (e.g. SIFT (Ng and Henikoff, 2003), ORB (Rublee et al.,225

2011)) to estimate the 6D pose between different views, estimation based on point clouds can226

produce a more reliable and accurate result. Currently, there are three classes of point cloud227

matching algorithms to estimate the relative 6D pose. A recent survey (Huang et al., 2021) has228

an overview. The first class of algorithms (e.g. Gu et al. (2022); Junior et al. (2022); Segal et al.229

(2009)) is derived from ICP (Besl and McKay, 1992), which calculates the relative 6D pose between230

two point clouds by finding the closest corresponding points in two point clouds and minimizing231

their Euclidean distance. Exactly corresponding points seldom exist in the real cases, so the ICP-232

based methods have low accuracy (and initialization issues). The second class is feature-based233

algorithms (Ao et al., 2021; Wu et al., 2021; Zeng et al., 2017; Zhou et al., 2016). They extract234

local descriptors from two point clouds first and then do feature matching to estimate the relative235

6D pose between the two point clouds. This class is sensitive to noisy and sparse point clouds236

which may lead to inaccurate local descriptors and could even make the algorithm collapse when237

the density is too sparse or the noise is too strong. The third class (Huang et al., 2022; Liu et al.,238

2021; Myronenko and Song, 2010; Pu et al., 2018) treats point cloud registration as a probability239

matching problem. They use probabilistic models to describe the geometric distribution of the240

two point clouds first and then maximize the likelihood of two probabilistic models overlap to241

calculate the relative 6D pose of the two point clouds. This class of algorithms aligns point clouds242

more accurately and robustly compared with the previous two classes, but is slow because of their243

computational complexity.244

Pairwise point cloud registration algorithms only compute the relative 6D pose between two245

local segments within a whole pose trajectory, and do not guarantee estimation of the global246

optimum of the whole global pose trajectory. That is, registering point clouds sequentially247

produces a sensor pose trajectory which inherently drifts over time because of the accumulated248

error. Building an optimized pose graph (Barath et al., 2021; Grisetti et al., 2010; Mendes et al.,249

2016) could reduce the accumulated error and give an optimized global solution. Ordinarily, loop250

closure helps resolve this issue, but here the 360 degree point clouds allow many overlapping point251

sets. Based on the full-view and single-view point clouds, we are the first to develop a two-stage full-252

view-to-single-view global-coarse-to-local-fine pose trajectory estimation method (Algorithm 1),253

which can cope well with the fast motion of the real robot outdoors.254

2.2.3 Volumetric Fusion255

With a range of depth maps and their corresponding global poses, volumetric fusion methods (Cur-256

less and Levoy, 1996; Zhou and Koltun, 2013) integrate the surface geometry information into a257

volume that represents the 3D space in the world coordinate system. Using volumetric integration258

to build the 3D model of the garden and the marching cube technique (Grosso and Zint, 2022;259

Lewiner et al., 2003) to extract the surface mesh and its corresponding point cloud is a good260

option to remove outliers and noise, which could result in good quality when reconstructing the261

3D garden model. We use an existing volumetric fusion technique (Section 3.3) for completeness262

and visualization purposes and do not claim a contribution for this part.263

264

2.3 Dataset265

There are multiple outdoor datasets for visual SLAM research, such as Kitti (Geiger et al., 2013;266

Menze and Geiger, 2015) and Cityscapes (Cordts et al., 2016) for autonomous driving in the city.267

Besides our dataset, some other datasets (e.g. Alam et al. (2022); Chebrolu et al. (2017); Hu et al.268

(2022); Polvara et al. (2022)) for agricultural robots have recently been announced. For example,269

LettuceMOT (Hu et al., 2022) and TobSet (Alam et al., 2022) have only semantic information for270

lettuce, tobacco crop, weed detection and tracking. The Sugar Beets Dataset (Chebrolu et al.,271

2017) contains the data from an RGB-D sensor (Kinect v2), a 4-channel multi-spectral camera272
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Figure 3: The proposed hybrid multi-level fusion framework based on panoramic stereo images for
3D dense reconstruction

(JAI AD-130GE), two on-board Lidar scanners (Velodyne VLP-16 Puck) and two GPS sensors273

(Leica RTK GPS and Ublox GPS) as well as wheel encoders to facilitate the research relevant to274

plant classification, localization and mapping in a sugar beet field. The BLT Dataset6 (Polvara275

et al., 2022) contains the data from two RGB-D sensors (ZED), an IMU (RSX-UM7), a 2D Lidar276

scanner (SICK MRS1000) and a 3D Lidar scanner (Ouster OS1-16) for long-term mapping and277

localization in a vineyard.278

Compared with all the previous datasets, the obvious difference in our dataset is the inclusion279

of fully dense ground truth depth maps, a fully dense ground truth semantic 3D model and the280

synchronized joint panoramic stereo information (including RGB & intensity, fully-dense depth,281

semantic labels, sparse laser scan and global pose) for the first time. Our released dataset could282

facilitate multiple research topics in SLAM, including sensor calibration, depth estimation, se-283

mantic segmentation, pose estimation, and all types of SLAM frameworks (Lidar SLAM, semantic284

visual SLAM, and traditional visual SLAM). To the best of our knowledge, this is the first public285

dataset (Section 4.1) in the panoramic stereo SLAM domain.286

3 Methodology287

Figure 3 shows the proposed hybrid 3D dense reconstruction framework based on images from288

a panoramic stereo camera rig. Five calibrated binocular cameras inside the panoramic stereo289

camera (each with a FOV of 72◦) stream five pairs of rectified stereo images from the related left290

and right cameras synchronously into the disparity fusion module. The stereo image pairs are291

fed into two separate stereo vision algorithms to compute disparity maps in the same view. The292

disparity maps are used by the disparity fusion algorithm to produce the refined disparity map,293

which can be converted into the corresponding full-view (FOV = 360◦) or single-view (FOV =294

72◦) point cloud. The point clouds’ outliers are removed by post-processing.295

In the pose fusion module, the full-view point clouds from different frame times are first296

registered with each other by a global point cloud matching algorithm for a coarse global pose297

6BLT dataset: https://lcas.lincoln.ac.uk/wp/research/data-sets-software/blt/
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estimate, which becomes the corresponding edge’s transformation in the global pose graph. Then,298

the global pose graph is optimized to produce a coarse global sensor pose trajectory. In the299

second pose fusion stage, the refined pose graph is initialized by the global pose graph. Each300

pose graph edge’s transformation is an input into q local point cloud registration algorithm to301

obtain a more accurate global pose, which will be used to update each edge’s transformation in302

the refined pose graph. Finally, the refined pose graph is optimized to output a more accurate303

global pose trajectory, which transforms each single-view point cloud (or depth map) into the304

global coordinate system in the volumetric fusion module to create a mesh of the whole garden.305

In the following, Section 3.1 introduces the disparity fusion module including the stereo vision306

algorithms, the disparity fusion algorithm, and the post-processing step. Section 3.2 introduces307

the pose fusion module, including the global pose graph and refined pose graph. Section 3.3308

introduces the volumetric fusion module.309

3.1 Disparity Fusion Module310

3.1.1 Disparity Estimation311

In this stage, stereo vision algorithms with complementary properties estimate the initial dispar-312

ity maps from the stereo images. Based on common sense and experience, classical stereo vision313

algorithms (e.g. Hirschmuller (2005)) perform better at the edges and small objects while the314

methods based on deep learning (e.g. Mayer et al. (2016)) perform better at other aspects (e.g.315

flat planes, close shots). We have chosen DispNet (Mayer et al., 2016) and Semi-global match-316

ing (Hirschmuller, 2005) as suitable representatives to compute the initial disparity maps in our317

project, but other stereo vision algorithms can be used as well. In the following, the initial dispar-318

ity maps and auxiliary information (intensity and gradient information) are fed into the disparity319

fusion network to get a refined disparity map.320

3.1.2 Disparity Fusion321

In order to obtain a more accurate disparity map robustly, fusing disparity maps from multiple322

sources is a good solution considering cost and performance, under the assumption that the initial323

disparity inputs are from the same viewpoint at the same time. Fusing multiple input disparity324

maps to get a refined disparity map output is called disparity fusion, and we base it on Sdf-man (Pu325

et al., 2019) with some small differences, motivated by a machine learning ensemble approach. As326

demonstrated in (Pu et al., 2019), the disparity fusion algorithm Sdf-man can refine the initial327

disparity inputs effectively and produce a more accurate disparity map robustly compared with328

its initial disparity inputs, even where the disparity inputs are inaccurate on their own.329

Similar to the GAN approach, Sdf-man (Pu et al., 2019) consists of two adversarial networks330

(refiner and discriminator) to perform a mini-max two-player game strategy to make the refiner331

network output a more accurate disparity map. However, unlike standard GANs (Goodfellow332

et al., 2014), the input is the initial disparity maps plus intensity and gradient information rather333

than random noise, and its output is deterministic during inference.334

For the sake of readability, we summarize the Sdf-man (Pu et al., 2019) method; more back-335

ground and details can be found in the original paper.336

The refiner neural network R (which is similar to the generator G in (Goodfellow et al., 2014))337

is trained to output a refined disparity map that is not classified as “fake” by the discriminator338

network D. The discriminator network D is trained simultaneously to conclude that the input339

disparity map from the ground truth is real and the input disparity map from the refiner network340

R is fake. With a minimax two-player game strategy, it leads the output distribution from the341

refiner to approximate the real disparity data distribution. The full system pipeline is shown in342

Figure 4.343

To train the refiner network and discriminator network, the following loss function is used in344

a fully supervised way:345
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Figure 4: Overview of the disparity fusion algorithm Sdf-man. The refiner network R is trained
to map initial disparity maps (disparity map 1 and disparity map 2 ) from two stereo vision
algorithms to the ground truth disparity map based on the corresponding image information
(intensity, gradient). The refiner network R attempts to produce a refined disparity map, which
is closer to the ground truth. The discriminator network D attempts to discriminate whether its
input is the real (real disparity map (GT) from the ground truth) or a fake (refined disparity map
from R). The refiner network and discriminator network are updated alternately. (a) Refiner: a
network to produce a refined disparity map; (b) Negative examples (fake): a discriminator network
with refined disparity maps as input; (c) Positive examples (real): a discriminator network with
real disparity maps (GT) as input. For small details in this figure, readers are recommended to
view the electronic version.
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L(R,D) = θ1LLd
L1

(R)

+ θ2LLd
sm(R) + θ3

∑M
i=1 LLd

GAN (R,Di)
(1)

where θ1, θ2, θ3 are the weight values of the different loss terms. M is the number of scale levels346

used. R represents the refiner network and D represents the discriminator network. LLd
L1

(R) is a347

gradient-based L1 distance training loss, which applies a bigger weight to the disparity information348

at the scene edges to avoid blurring at scene edges. LLd
sm(R) is a gradient-based smoothness term,349

which is used to propagate more accurate disparity values from scene edges to other areas, assuming350

that the disparity values of neighboring pixels should be close if their image intensities are similar.351

LLd
GAN (R,Di) is a disparity relationship training loss, which assists the refiner in outputting a352

disparity map whose distribution is closer to the real distribution. Ld is the labelled data, which353

is fed in the supervised learning process.354

In this paper, we updated the original method (Pu et al., 2019) to improve its performance in355

the real robot application with the following two practical strategies:356

(1) Maximum Distance strategy: The disparity fusion network does not require to output357

all the disparity information in the source stereo images because the mobile robot needs more358

accurate depths of the nearby surroundings (rather than the remote scene). Thus, a maximum359

distance threshold max dist constrains the output of the disparity fusion network rather than360

the maximum disparity threshold max disp. More specifically, in the initial stages, at the end361

of the refiner network, it uses the function tanh to output an intermediate map w and uses the362

function initial disp = max disp·(w+1)
2 to convert the intermediate map w into the disparity map363

initial disp. The intermediate map’s size (width, height, channel) is identical to the disparity364

map’s. In this paper, the difference is that we use a modified function new disp = 2fb
max dist·(w+1)365

to map the tanh output to the new disparity map new disp where f and b are the focal length and366

baseline of the stereo vision camera. This strategy effectively reduces the disparity fusion error367

(see the experiments in Section 4.2). The theoretical proof can be found in Appendix C.2.368

(2) High Definition strategy: The initial disparity fusion network (Pu et al., 2019) outputs369

a disparity map with the same resolution as that of the stereo images, which will result in small370

details being lost in the fused disparity map. To produce a more detailed result in the fused371

disparity map, the new disparity fusion network is required to output an HD (High Definition)372

disparity map first. The ratio between the HD width resolution and the initial width resolution is373

φw and the ratio between the HD height resolution and the initial height resolution is φh. Then374

the HD disparity map is downsampled to the initial resolution (same as the input stereo images).375

The refiner and the discriminator from Sdf-man are able to adjust their networks adaptively to376

any resolution of images, as shown in Sdfman (Pu et al., 2019) (Figures 2,3). What is done377

differently here is: 1) upscaling the data input first and then inputing the upscaled data into the378

networks to train autonomously; 2) downscaling the disparity output from the refiner network to379

the resolution of the initial stereo images as the final result. The reason why the up-and-down380

resolution transformation strategy works is that Sdf-man will include more neurons in the refiner381

and discriminator network structure to capture more small details autonomously when the input382

resolution becomes higher. Experiments in Section 4.2 demonstrate this is an effective strategy.383

After disparity fusion, a refined disparity map is produced registered to the left view in the384

stereo configuration. Given that there are still some outliers in the refined disparity map, the385

refined disparity map is converted into a local point cloud with the outliers removed in the next386

stage.387

3.1.3 Post-processing388

The disparity post-processing part consists of three steps: 1) converting the disparity map into389

a depth map; 2) converting the depth map into a local point cloud using the camera calibration390

parameters; 3) removing the point cloud outliers.391

In the first step, the refined disparity map is converted into the depth map using Equation 2.392
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depth =
focal length× baseline

disparity
(2)

In the second step, the depth map is back-projected into a 3D point cloud using the camera393

intrinsic parameters (Szeliski, 2010). In Equation 3, (u, v) is the coordinate of the 2D point on394

the image plane and (X,Y, Z) is the corresponding 3D point in the camera space. fx, fy are the395

focal lengths on the x, y axes and cx, cy are the coordinates of the principle point on the x, y axes.396

D is the depth value.397

D

uv
1

 =

fx 0 cx
0 fy cy
0 0 1

XY
Z

 (3)

In the third step, any points that 1) have less than Np neighboring points in a given sphere398

with the radius radius or 2) are farther away from their Nn neighboring points than a threshold399

distance ratio dist ratio (which is equal to the mean distance to their Nn neighboring points400

divided by the distance standard deviation to the Nn neighboring points) are treated as outliers401

and are removed.402

After post-processing stage, the local single-view (72◦) and full-view (360◦) point clouds in the403

current frame are produced and used in the following pose fusion module.404

3.2 Pose Fusion Module405

3.2.1 First Stage: Global Pose Graph406

As a single-view point cloud (72◦) has limited features for point cloud matching, we combine407

the local point clouds from five views (5 stereo vision cameras) at the same time to form a408

full-view (360◦) point cloud for point cloud registration. This representation improves tracking409

robustness against fast or big transformations, by using the full-view (360◦) point clouds for global410

registration. The full-view (360◦) point cloud Xm
i , the single-view (72◦) point cloud Xs

i and their411

corresponding global pose Pi in the world frame will constitute a pose graph node Vi. The global412

pose Pi is also the pose of the node Vi. Every pair of nodes Vi and Vj have an edge Eij containing413

a transformation matrix Tij that aligns their full-view point clouds Xm
i and Xm

j . The nodes Vi414

and the edges Eij form a global pose graph G(V,E). V is the set of nodes and E is the set of415

edges.416

Every pair of full-view point clouds in different nodes are registered to get the corresponding
edge’s transformation matrix by using the feature-based fast global registration algorithm (Zhou
et al., 2016), which essentially implements loop closure (LC). The global pose graph G(V,E) is
then optimized to produce a coarse global pose trajectory {P1, ..., Pn} by minimizing loss:

L(G(V,E)) = arg min
{P1,...,Pn}∈SE(3)n

∑
(i,j)∈E

||Tij − PiP
−1
j ||

2
F (4)

|| • ||F is the Frobenius norm, SE(3) is the special Euclidean group in 3 dimensions and n is the417

number of the pose graph nodes. The loss function represented by Equation 4 derives from the418

maximum likelihood estimation formula in (Moreira et al., 2021a) when setting the uncertainty419

of the translations to be identical to the rotations. We use the optimization method in (Moreira420

et al., 2021a) to minimize the loss function based on the implementation available at: https:421

//github.com/gabmoreira/maks.422

The derivation and proof of Equation 4 can be found in Appendix C.1. The same deduction423

and optimization methods can be applied to Equation 6 below.424
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3.2.2 Second Stage: Refined Pose Graph425

The global pose graph has edges between every pair of nodes possibly, even if there is little or no426

overlap between their corresponding single-views. This can lead to local distortions. This stage427

optimizes the global pose graph by using the poses from overlapping views. The refined pose graph428

G̃(Ṽ , Ẽ) is initialized by the global pose graph G(V,E).429

Since the fast global registration algorithm (Zhou et al., 2016) is not accurate enough compared430

with local registration algorithms (e.g. GICP (Segal et al., 2009), DUGMA (Pu et al., 2018)),431

we input each edge’s transformation matrix Tij (from Eij in the global pose graph G(V,E))432

into the local registration algorithm GICP (Segal et al., 2009) as a global initialization to align433

the corresponding single-view (72◦) point clouds7 Xs
i and Xs

j . The local registration algorithm434

GICP (Segal et al., 2009) outputs a new estimated transformation matrix T l
ij for the corresponding435

edge.436

Then, every pair of point clouds Xs
i and Xs

j are transformed into the same coordinate system437

using the transformation matrix T l
ij . We calculate the number of the corresponding point pairs438

within a distance threshold (similar to finding corresponding closest point pairs in ICP). The439

overlap percentage of one point cloud after registration is equal to the number of the corresponding440

pairs divided by the number of the points in the point cloud. The overlap percentage of the pair441

of point clouds after registration is equal to the overlap percentage of the point cloud with the442

fewest points. Based on the registration results above and the coarse global pose trajectory from443

the first stage, the edges Ẽij in the refined pose graph are updated using the following three rules:444

(1) Prune: If the overlap percentage of the two point clouds after registration is lower than445

the threshold OLmin, prune the edge (remove the edge between the two nodes).446

(2) Update: If the overlap percentage of the two point clouds after registration is higher than447

threshold OLmax and if the transformation PiP
−1
j (whose 6D pose is denoted as the 6D vector448

~vP ) between the two nodes (Vi, Vj) is similar to the newly calculated transformation T l
ij (whose449

6D pose is denoted as the 6D vector ~vT ), update the edge.450

(3) Keep: As for the ‘else’ case, keep but do not update the edge transformation.451

Equation 5 gives the precise logic for the three rules above:452

T̃ij =


Null β < OLmin [rule1]

T l
ij β > OLmax & |~vP − ~vT | < ~vth [rule2]

Tij else [rule3]

(5)

In Equation 5, T̃ij is the transformation matrix of the edge Ẽij in the refined pose graph. β453

is the overlap percentage of the two point clouds after registration. ~vth is 6D pose threshold in454

vector format and | • | means getting the absolute value of each element to form a new vector.455

Null denotes ”deleting this edge”. The two rules (Prune and Update) act on the edge set to456

constrain the loss function - Equation 6. An accurate constraint could give a more accurate457

global pose estimation, which is demonstrated by the ablation study in Section 4.3.1. After edge458

refinement, the refined pose graph G̃(Ṽ , Ẽ) is optimized using Equation 6 to produce a more459

accurate global pose trajectory {P̃1, ..., P̃n}. The refined accurate global pose P̃i of each node Ṽi460

and their corresponding single-view point cloud (or depth map) will be used in the volumetric461

fusion process to construct the surface mesh of the whole garden.462

L(G̃(Ṽ , Ẽ)) = arg min
{P̃1,...,P̃n}∈SE(3)n

∑
(i,j)∈Ẽ

||T̃ij − P̃iP̃
−1
j ||

2
F (6)

To conclude, we have proposed a two-stage full-view-to-single-view global-coarse-to-local-fine463

pose trajectory estimation method in this subsection. We name this proposed method for pose tra-464

7When using the extrinsic transformation matrices to merge the point clouds from the five stereo vision cameras
on the camera ring, the error from the extrinsic parameters will cause the full-view (360◦) point cloud to be not as
accurate as the single-view point cloud.
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jectory estimation as ‘Multi-stage Pose Trajectory Estimation with Joint Information (MPTEJI)’.465

Algorithm 1 shows the pseudocode of the proposed algorithm MPTEJI, which gives a formal466

overview of the whole proposed method.467

Algorithm 1 Multi-stage Pose Trajectory Estimation with Joint Information (MPTEJI)

Input: single-view (72◦) and full-view (360◦) point clouds

1: procedure with full view . 1st stage
2: global registration (feature-based) → Loop Closure
3: coarse pose graph G(V,E) ← Equation 4

4: procedure with single view . 2nd stage
5: pose graph inheritance ← G(V,E)
6: local registration (ICP-based) ← Tij
7: edge refinement ← Equation 5
8: refined pose graph G̃(Ṽ , Ẽ) ← Equation 6

Output: an accurate global pose trajectory {P̃1, ..., P̃n}
468

3.3 Volumetric Fusion Module469

Fusing the range images (containing depth information) into a voxel-based volumetric scene repre-470

sentation is called volumetric fusion (Curless and Levoy, 1996). The refined accurate global pose471

trajectory {P̃1, ..., P̃n} gives where to integrate the associated RGB-D range images projected from472

the single-view point clouds into a voxel-grid-based TSDF (Truncated Signed Distance Field) vol-473

ume. The value of each voxel here represents the signed distance to the closest surface interface474

in the global space, which is in turn used to obtain the mesh of the reconstructed scene, using the475

marching cubes (Lorensen and Cline, 1987) algorithm.476

More specifically, the single-view point clouds are projected back into the image planes to get477

the related depth maps first, creating again RGB-D images. We use the refined single-view point478

clouds to compute the depth maps rather than use the original depth maps from the disparity479

fusion (Section 3.1.2) directly because the single-view point clouds after the third step ‘outlier480

removal’ in the post-processing section (Section 3.1.3) are more accurate. Then the pairwise data481

(the RGB-D images and the corresponding global poses) are integrated into the global TSDF482

volume using the technique from Izadi et al. (2011); Zhou and Koltun (2013). Finally, we extract483

the surface mesh using marching cubes (Lewiner et al., 2003; Lorensen and Cline, 1987), based on484

a publicly available implementation8.485

The volumetric fusion module produces a smooth and watertight 3D mesh of the reconstructed486

scene in the global coordinate system. The corresponding dense 3D point cloud of the reconstructed487

scene can be produced by extracting all the vertexes of the 3D mesh above. Simply put, the488

volumetric fusion performs like a weighted average filter in the 3D global space to reduce the noise489

and remove the outliers from multiple local segments by using the joint global information in the490

global coordinate system. That is the reason why we use the volumetric fusion to extract the mesh491

and the corresponding point cloud sequentially, rather than stitching the single-view point clouds492

together using their corresponding pose directly.493

4 Experiments494

All the experiments in this section are conducted on a machine with Intel Core i7-12700KF pro-495

cessor (12 cores, 20 threads, 25 MB cache, up to 5 GHz) and Nvidia GeForce GTX 1080 Ti.496

Section 4.1 gives the description of the real outdoor garden dataset we released and used in this497

8 https://github.com/qianyizh/ElasticReconstruction/tree/master/Integrate
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(a) Manually labeled 3D semantic model of the whole garden. Legend: grass (bright green), rail fence (blue),
tree (dark green), hedge (brown), board fence (soil color), rose (red), boxwood (dark blue), potted plant (light
blue) (Sattler et al., 2017)

(b) The robot platform used for collecting data (c) Route for the training & testing dataset in the garden

Figure 5: Figure (a) shows the 3D model of the real garden; Figure (b) shows the robot platform
for collecting data; Figure (c) shows the routes for training and testing dataset.

paper. Section 4.2 evaluates the performance improvement of the disparity fusion module quan-498

titatively compared with the initial disparity inputs (Hirschmuller, 2005; Mayer et al., 2016), the499

ground truth of DSF (Poggi and Mattoccia, 2016) and the initial version of Sdf-man (Pu et al.,500

2019). Section 4.3 evaluates the global pose trajectory’s accuracy from the pose fusion module501

quantitatively compared with ORB-SLAM3 (Campos et al., 2021) and the ”reconstruction sys-502

tem” in the latest version (0.15.1) of Open3D (Zhou et al., 2018). Section 4.4 gives a view of503

the reconstructed point cloud from the volumetric fusion module qualitatively and quantitatively504

compared with Open3D (Zhou et al., 2018).505

4.1 Dataset Description506

Figure 5 shows the 3D model of the outdoor garden, the robot platform and the route path for507

collecting the raw data. All the data in our dataset were recorded within the same half day to508

avoid interference from vegetation growth. The raw data is from the ”test around garden” bagfile9509

in the Trimbot Garden 2017 dataset (Sattler et al., 2017; Tylecek and Fisher, 2020). The raw data510

was divided into two parts in the post-processing step: one for network training and one for testing.511

Figure 5 (c) shows the robot navigation path for the training and testing datasets. In Figure 5512

(c), the ”route 1” trajectory (black loop curve) around the whole garden is for the SLAM testing513

and the ”route 2” trajectory10 (red curve) is for the network training (e.g. depth estimation,514

semantic segmentation, etc.). We use a robot (See Figure 5 b) equipped with a ring of 5 stereo515

vision cameras (for live operations), Velodyne Puck (VLP-16) Lidar sensor (for sparse lidar scans516

9https://www.research.ed.ac.uk/en/datasets/trimbot2020-dataset-for-garden-navigation-and-bush-trimming.
10All the scenes in ”route 1” can be seen in ”route 2”.
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collection), STIM300 IMU sensor and Topcon PS Series Robotic Total Station position tracking517

system (for ground-truth positions) to collect the raw images, sparse Lidar scans and the global518

pose of the robot. The raw stereo vision images are calibrated and rectified using the Kalibr519

package11. The sparse Lidar scan from the Velodyne Puck (VLP-16) Lidar sensor is projected520

to the camera plane of each left camera in the 5 stereo settings. Robot navigation poses were521

recorded in the coordinate system of Topcon PS Series Robotic Total Station along with STIM300522

IMU sensor first and then transformed into each image sensor’s global pose. Structure-from-523

motion (Schonberger and Frahm, 2016) is used to refine each image sensor’s pose subsequently.524

The 3D model of the whole garden is collected using Leica ScanStation P15 equipment and is525

semantically labelled manually. Figure 5 (a) shows the semantic 3D model of the whole garden.526

Using the semantic 3D model and each camera’s pose in the garden, the dense depth map and527

semantic map are acquired by projecting the semantic 3D model into each camera’s plane. More528

details about the data collection process can be found in Appendix D.529

Table 1: Parameters of the Trimbot Wageningen SLAM Dataset

Parameter Name Parameter Value
The number of panoramic stereo camera rigs 1;

The number of stereo vision cameras 5;
The number of image sensors 10;

The number of panoramic frames - 360◦
In the training subset: 68; In the test
subset: 67;

The number of stereo vision frames - 72◦
In the training subset: 340; In the test
subset: 335;

Image resolution 752× 480 pixels (width × height);
The mean relative pose between adjacent frames
([translation on x axis, translation on y axis, trans-
lation on z axis, roll, pitch, yaw])

[0.29 m, 0.21 m, 0.00 m, 9.04 deg, 0.97
deg, 1.16 deg];

The standard deviation of the relative pose between
adjacent frames ([translation on x axis, translation
on y axis, translation on z axis, roll, pitch, yaw])

[0.18 m, 0.18 m, 0.00 m, 13.32 deg, 0.76
deg, 0.89 deg];

The maximum translation value on each axis be-
tween adjacent frames

X axis:0.47 m; Y axis: 0.67 m; Z
axis: 0.02 m;

The maximum rotation value on each axis between
adjacent frames

X axis: 81.64 deg; Y axis: 3.21 deg; Z
axis: 4.46 deg;

Data support
RGB — intensity, dense depth, sparse
lidar, semantics, pose, point cloud, cal-
ibration.

Figure 6 shows frames from the new dataset “The Trimbot Wageningen SLAM Dataset”, which530

is the augmentation of the Trimbot Garden 2017 dataset used in the semantic reconstruction531

challenge of ICCV 2017 workshop “3D Reconstruction meets Semantics” (Sattler et al., 2017). In532

the new Trimbot Wageningen SLAM dataset, we release all the rectified images from the 10 image533

sensors (5 stereo vision cameras) ranging from cam 0 to cam 9 (See Figure 1b for the position of534

the 10 image sensors). The newly released sparse Lidar scan (from the onboard Lidar sensor -535

Velodyne Puck (VLP-16)), dense depth map and semantic map are in the coordinate system of536

each left image sensor (Cam 0, Cam 2, Cam 4, Cam 6, Cam 8). Each image sensor’s global pose in537

the garden, their intrinsic parameters and distortion models are available in the new dataset. We538

subsample one out of every 10 frames from the initial raw data bagfile to form the new dataset.539

Table 1 lists the key dataset properties and their corresponding values in the Trimbot Wageningen540

SLAM Dataset. Figure 6 gives an overview of the new dataset. See the dataset website for more541

details: https://github.com/Canpu999/Trimbot-Wageningen-SLAM-Dataset.542

11https://github.com/ethz-asl/kalibr
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Figure 6: Trimbot Wageningen SLAM Dataset
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4.2 Disparity Fusion Module543

In the disparity fusion module, we use the SGM (Hirschmuller, 2005) (with Matlab implemen-544

tation12) and Dispnet13 (Mayer et al., 2016) stereo vision algorithms to get the initial disparity545

maps. With the initial disparity maps and auxiliary information (left intensity image and left gra-546

dient information), we train our supervised disparity fusion network on our outdoor real garden547

dataset - ”Trimbot Wageningen SLAM Dataset”. All 340 samples (≈ 50%) in the training set548

are used to train and all 335 samples (≈ 50%) in the test set are used to test. The initial super-549

vised method (Pu et al., 2019) is named ”Sdfman-initial” and the updated method using the two550

practical strategies presented in Section 3.1 is named ”Sdfman-star”. The parameter max dist is551

set to 5 meters14. The parameters φw and φh (resolution ratio between the HD and initial image552

width and height) are set to 2. Disparity fusion algorithms DSF (Poggi and Mattoccia, 2016) and553

”Sdfman-initial” (Pu et al., 2019) are compared to the new method ”Sdfman-star”. Additionally,554

an ablation study is conducted by adding two internal comparison algorithms (”Sdfman-max-dist”555

and ”Sdfman-HR”). ”Sdfman-max-dist” is an internal comparison algorithm that only applies the556

”Maximum Distance” strategy to ”Sdfman-initial”. ”Sdfman-HR” is an internal comparison algo-557

rithm that only applies the ”High Definition” strategy to ”Sdfman-initial”. Table 2 summarizes558

the algorithms’ names with the corresponding strategies.559

Table 2: Algorithm definition.

Algorithm Name Strategy
Sdfman-initial Default

Sdfman-max-dist Maximum Distance
Sdfman-HR High Definition
Sdfman-star Maximum Distance + High Definition

When calculating the error of each algorithm, we omit the pixels whose ground truth depth560

exceeds the maximum distance threshold max dist = 5 m. Table 3 shows the accuracy of each561

algorithm. We use meter (m) rather than pixel disparity as the units for the error to give a562

more intuitive sense of the error magnitudes. With the initial input (Matlab SGM (Hirschmuller,563

2005), Dispnet (Mayer et al., 2016)), DSF (Poggi and Mattoccia, 2016) reduces the mean absolute564

depth error from 0.40 m (Matlab SGM) and 0.24 m (Dispnet) to 0.18 m (DSF), which is larger565

than that of Sdfman-initial (0.09 m). Compared with Sdfman-initial (0.09 m), Sdfman-max-dist,566

Sdfman-HR and Sdfman-star are more accurate, which demonstrates that each of the proposed567

strategies contributes to improving the fusion accuracy. Algorithm Sdfman-star performs best568

with the mean absolute depth error (0.03 m) and achieves this at 34.21 frames per second. In the569

following experiments, we omit the two internal algorithms (Sdfman-max-dist and Sdfman-HR)570

because they are only used for the ablation study.571

Table 3: Mean absolute depth error of the disparity fusion on Trimbot Wageningen SLAM Dataset
(SD=Sdfman)

Inputs Comparison Ablation Study
Matlab SGM Dispnet DSF SD-initial SD-max-dist SD-HR SD-star

Error 0.40 m 0.24 m 0.18 m 0.09 m 0.07 m 0.08 m 0.03 m

Figure 7 (a) compares the mean absolute error of each frame’s depth map in the test dataset572

from all the algorithms. The accuracy of Sdfman-star is better than the other algorithms at all573

12Matlab Implementation URL:https://www.mathworks.com/help/vision/ref/disparitysgm.html
13The authors of Dispnet (Mayer et al., 2016) were our project partners and they trained Dispnet on the project

dataset to get their best performance.
14As the focal length and baseline are fixed, depth estimation is inversely proportional to its corresponding

disparity value - see Equation 2. When the depth is 5 meters, the corresponding disparity is about 3 pixels.
Estimated depth values larger than 5 meters (i.e. disparity value smaller than 3 pixels) have a larger error compared
with depths closer than 5 meters.
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Figure 7: The mean absolute error (MAE) of the estimated depth map per frame and the total
bad X scores

frames, which shows the robustness of Sdfman-star. Define parameter badX to be the percentage574

of pixels whose absolute depth errors in the depth map are bigger than X * 0.025 m (X is a positive575

number). Figure 7 (b) shows the percentage of badX pixels for different badX thresholds (values576

of X). Compared with the other algorithms, Sdfman-star has fewer pixels whose absolute depth577

error is bigger than 0.025 m, 0.05 m, 0.075 m and 0.1 m respectively. More than 95% of the pixels578

(bad4) from Sdfman-star have an absolute depth error less than 0.1 m.579

Figure 8 shows one qualitative result from one image sensor (Cam 0). Compared with the other580

algorithms, Sdfman-star is more accurate globally and also preserves small details more vividly581

(e.g. object edges, the trees’ trunks).582
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(a) Ground truth
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(b) RGB image
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(c) Matlab SGM
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(d) SGM error
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(e) Dispnet
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(f) Dispnet error
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(g) Sdfman-initial
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(h) Sdfman-initial error

Figure 8: See Continuation
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(i) Sdfman-star
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(j) Sdfman-star error

Figure 8: One qualitative result for disparity fusion. The lighter pixels in (d,f,h,j) represent bigger
depth error.

In the post-processing step, Np is set as 20 and radius is set as 0.05 m. Nn is set as 20 and583

dist ratio is set as 1.5. Figure 9 shows one example of the point clouds from the depth maps after584

outlier removal. Compared with the ground truth, the remote objects (e.g. trunk) in the point585

clouds from Sdfman-star are noisy, which can be expected.586

4.3 Pose Fusion Module587

Section 4.3.1 presents results from an ablation study to show that the strategies proposed in Sec-588

tion 3.2 are effective. Section 4.3.2 compares Orbslam3 (Campos et al., 2021) and Open3D (Zhou589

et al., 2018) with the proposed pose fusion method.590

Two methods are used to evaluate the 6D pose estimate accuracy. The first one uses the 6D591

pose vector [tx, ty, tz, r, p, y] ([translation on X axis, translation on Y axis, translation on Z axis,592

roll, pitch, yaw]). The unit for tx, ty, tz is meters and the unit for r, p, y is degrees. The absolute593

difference between the ground truth and the estimated 6D vector is a measure of the 6D pose’s594

accuracy on each axis. The second method uses the rotation matrix and translation vector.595

The overall accuracy of the 6D poses is computed using Equation 7 and Equation 8 (Huynh,596

2009)597

ER = ||I − RgtR
−1
est||F (7)

Et = ||tgt − test||F (8)

where ||• ||F is the Frobenius norm. Rgt, tgt are the ground truth and Rest, test are the estimated598

values, respectively. Equation 7 does not have a physical unit although smaller is better and is599

a measure of better point cloud overlap. Equation 8 is the distance between the two coordinate600

systems’ origins (the ground truth and estimated coordinate system) and its unit is meter. Both601

ways of the above methods evaluate the 6D pose’s accuracy, although their error values and their602

error estimation methods are different.603
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(k) Single-view point cloud from Sdfman-star

(l) Single-view point cloud from ground truth

(m) Full-view point cloud from Sdfman-star

(n) Full-view point cloud from ground truth

Figure 9: A single-view (72◦) and full-view (360◦) point cloud from Sdfman-star and ground truth

22



4.3.1 Ablation Study604

Table 4: Model definition.

Model Name Strategy
Ours the proposed method in Section 3.2
Ours-global disable the refined pose graph

in Section 3.2.2
Ours-prune disable rule 1: ”Prune”
Ours-update disable rule 2: ”Update”
Ours-gtdepth replace the depth from Sdfman-star

with the depth from GT depth
Ours-single-stereo input the stereo images from the

front stereo camera only

We define six models to compare each proposed strategy’s effectiveness. Table 4 lists the defined605

model names and the strategies. The model ”Ours” is the proposed method in Section 3.2 with606

the point cloud input from Sdfman-star and is the baseline model, from which the other models607

are derived by changing only one strategy or factor. Model ”Ours-global” disables the second-608

stage pose graph - the refined pose graph in Section 3.2.2. Model ”Ours-prune” disables rule609

1 - ”Prune” and thus will not prune any edge, no matter what the edge’s reliability is. Model610

”Ours-update” disables rule 2 - ”Update” and thus will not update the transformation matrix of611

each edge. Model ”Ours-gtdepth” replaces the input point clouds from Sdfman-star with the point612

clouds from the ground truth depth. Model ”Ours-single-stereo” only inputs the stereo images613

from the front stereo camera (which consists of image sensors Cam0 and Cam1) rather than the614

panoramic stereo images from the ring of synchronized stereo cameras.615

For all models, the overlapping rate threshold OLmin = 0.33 and OLmax = 0.35. The 6D pose616

vector ~vth is set to [0.4 m, 0.4 m, 0.4 m, 15◦, 15◦, 15◦] ([translation on X axis, translation on Y617

axis, translation on Z axis, roll, pitch, yaw]). Figure 10 shows the 2D trajectories from all the618

models when looking downward from above at the whole garden.619

The trajectory of Ours-gtdepth is closest to the ground truth. The trajectories of Ours and620

Ours-prune are similar and rank 2nd together. The remaining models perform worse. In particular621

note that Ours-single-stereo did not work correctlyin the latter part of the global pose trajectory,622

with completely wrong pose estimates. All the models except Ours-single-stereo have similar623

performance on the rotation factor, but perform on the translation factor variously. Table 5 shows624

the overall performance of each model by using the metrics in Equation 7 and Equation 8.

Table 5: Ablation study for pose fusion

Metric Ours Ours-
global

Ours-
prune

Ours-
update

Ours-
gtdepth

Ours-single-
stereo

ER 0.11 0.08 0.12 0.08 0.08 0.98
σER

0.07 0.04 0.07 0.04 0.05 0.99

Et (m) 0.33 0.48 0.34 0.52 0.27 2.47
σEt

(m) 0.18 0.32 0.20 0.29 0.16 1.99
Time (s) 233.24 210.86 233.14 233.15 230.41 179.28

625

The running time of all the models are close (about 230 s) except Ours-global (210.86 s) and626

Ours-single-stereo (179.28 s). From the quantitative aspect, it is obvious that Ours-single-stereo627

fails compared with the other models. Thus, using the panoramic stereo images from the ring of628

synchronized stereo vision cameras in the proposed framework is vital to overcome the challenges629

of the fast or large transformations between adjacent frames when a real robot navigates in a630

real outdoor environment. The reason is that the 360◦ field of view makes the overlap between631
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Figure 10: The estimated trajectory using each model
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successive views high, which ensures the success of the global point cloud matching in the first632

stage of the pose fusion - global coarse pose graph optimization - to avoid the possibility of the633

whole 3D reconstruction framework collapsing. This strongly supports our major contribution (3)634

because we are the first to combine the two-stage full-view-to-single-view global-coarse-to-local-635

fine pose graph optimization with a ring of synchronized stereo vision cameras simultaneously to636

handle the robot’s fast movement in the real world. The performance the other models (except637

Ours-single-stereo) on the rotation factor are similar (0.08 - 0.12) but the performance on the638

translation factor fluctuates (0.27 m - 0.52 m). The translation accuracy of the model ”Ours-639

global” and ”Ours-update” is much lower than that of the model ”Ours”, which demonstrates the640

two-stage from-coarse-to-fine pose graph optimization and rule 2 - ”Update” are effective. The641

accuracy of the model ”Ours-prune” is slightly worse than that of the model ”Ours” on both642

rotation and translation factors, which shows that rule 1 - ”Prune” is effective. Rule 1 ”Prune”643

and rule 2 ”Update” improve the performance because they make the transformation of the edge644

set Ẽ more accurate and reliable which improves the constraint encoded in the loss function (see645

Equation 6). A more accurate constraint leads to to a more accurate pose estimate. The accuracy646

of model ”Ours-gtdepth” is better than that of the model ”Ours”, which demonstrates that better647

recovery of the input point clouds leads to better pose fusion accuracy. Thus, one topic for future648

work is to continue improving the accuracy of the input point clouds.649

4.3.2 Comparison with Existing Methods650

We compare the model ”Ours” with existing state-of-the-art algorithms, represented by the651

RGBD SLAM algorithm in Orbslam3 (Campos et al., 2021) and the reconstruction system in652

Open3d (Zhou et al., 2018) as available online15. The depth maps that all the algorithms re-653

ceive as input are the output from the Sdfman-star fusion algorithm. The parameter setting in654

model ”Ours” is the same as that in Section 4.3.1. For Orbslam3, we set the number of fea-655

tures per image ”ORBextractor.nFeatures” as 10000. The number of levels in the scale pyramid656

”ORBextractor.nLevels” is 15. The fast threshold ”ORBextractor.iniThFAST” is 5 and ”OR-657

Bextractor.minThFAST” is 3. The number of camera frames per second is 1. The rest of the658

parameters are the same as those in their released code. As the Orbslam3 framework does not659

support panoramic data, we input the RGB images and the corresponding depth maps from the660

image sensor ‘Cam0’ into the RGBD SLAM algorithm in the Orbslam3 framework. To make Orb-661

slam3 work better on the difficult dataset ”Trimbot Wageningen SLAM Dataset”, we additionally662

provide the ground truth pose to Orbslam3 when the adjacent frames have a large rotation and663

Orbslam3 lost tracking (at all the corners of the trajectory). More specifically, at Frames 20, 31,664

50, 54, 56, we provide the corresponding ground truth pose to Orbslam3. See Figure 11 (b) and665

Figure 11 (c) where both the rotation and translation error of Orbslam3 are equal to 0. Open3D666

failed to work if we only input the single-view point clouds. To make Open3D perform better, we667

modified its initial code to make it use our full-view and single-view point clouds. We also provide668

the comparison results under the same conditions in Appendix E.2 Fair Comparison With More669

Open-source Frameworks. Readers can test their own code on the ”Trimbot Wageningen SLAM670

dataset”.671

Figure 11 (a) shows the estimated global trajectory from GT, Orbslam3, Open3D, and Ours.672

Figure 11 (b) and (c) show the rotation and translation error at each frame time in the test dataset673

using Equation 7 and Equation 8. From Figure 11 we could see Open3D and Ours perform much674

more accurately and robustly than Orbslam3. Open3D and Ours have similar performance on the675

rotation and Ours performs more accurately than Open3D on the translation.676

If we use the absolute difference between the ground truth and the estimated 6D vector to677

describe the 6D pose accuracy, Table 6 compares the performance of the algorithms on each axis.678

Our approach’s mean bias and the related standard deviation of the translation on the x, y, and679

z axis are generally smaller than those of Orbslam3 and Open3D. The rotation performance of680

Ours and Open3D on x, y, and z axis is more accurate and robust than that of Orbslam3. Our681

15Orbslam3: https://github.com/UZ-SLAMLab/ORB_SLAM3 and Open3D: https://github.com/isl-org/Open3D
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(a) Global Pose Trajectories from Different Algorithms
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Figure 11: Figure (a) shows the global pose trajectory of the sensor in the real garden; Figure (b),
(c) show the overall rotation and translation error at each frame in the test dataset.
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rotation performance on x, y, and z axis is similar to that of Open3D.682

Table 6: Performance comparison of the algorithms on each axis

Metric Orbslam3 Open3D Ours
tx (m) 0.42 0.55 0.18
σtx (m) 0.36 0.44 0.14
ty (m) 0.44 0.21 0.20
σty (m) 0.50 0.15 0.18
tz (m) 0.26 0.18 0.11
σtz (m) 0.35 0.14 0.08
r (deg) 8.40 2.77 3.00
σr (deg) 12.28 1.95 3.34
p (deg) 1.96 2.40 1.03
σp (deg) 3.14 1.82 1.03
y (deg) 3.50 2.12 1.91
σy (deg) 4.98 1.58 1.52

Table 7 shows the overall performance of each algorithm using Equation 7 and Equation 8.683

Ours performs best, although it increases the running time slightly. Given the bad performance684

of Orbslam3 on the real outdoor garden dataset, we will omit Orbslam3 in the following text and685

compare Ours with Open3D in Section 4.4 ”Volumetric Fusion Module” only.686

Table 7: Overall performance comparison with external algorithms

Metric Orbslam3 Open3D Ours

ER 0.25 0.12 0.11
σER

0.31 0.06 0.07

Et (m) 0.78 0.68 0.33
σEt

(m) 0.57 0.37 0.18
Time (s) 67.82 229.76 233.24

4.4 Volumetric Fusion Module687

In this part, we set the maximum depth for integrating as 5 meters. The size of TSDF (Truncated688

Signed Distance Field) cube is 10 meters. The length of each voxel is 0.01 m (1 cm). The truncation689

value for the signed distance function (SDF) is set to 0.06.690

Figure 12 shows the mesh of the reconstructed garden and its details at different sites. Figure 12691

(a) shows the overview of the reconstructed whole garden. Figure 5 (a) shows the ground truth.692

Figure 12 (b) (c) (d) (e) show close-up views at sites 1, 2, 3, 4 in Figure 12 (a). The white blank693

areas in all the figures are regions that have not been scanned during driving. These regions did694

not have target plants for the trimming robot and thus were not scanned. From the details, the695

reconstructed scene is good enough for the remote visualization and coarse robot task planning.696

A video that shows the reconstructed garden is at: https://youtu.be/zGxcj0_NXCA.697

In the following, the reconstructed gardens from all the algorithms are compared to the ground698

truth 3D model of the whole garden in the same world coordinate system. The evaluation method699

consists of estimating the mean and standard deviation of the minimum distance between each700

point of the reconstructed garden and its closest point in the ground truth garden model. Thus,701

this metric measures how close the reconstructed garden is, on average, with respect to the ground702

truth garden model.703

Table 8 shows the mean dist and standard deviation σdist of the minimum distance between704

the corresponding closest points. The mean and standard deviation of the minimum distance’s705

absolute bias on x, y, and z axis are (dx, σdx), (dy, σdy) and (dz, σdz) respectively. The maximum706
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(a) Reconstructed 3D Garden

(b) Close-up shot 1 (c) Close-up shot 2

(d) Close-up shot 3 (e) Close-up shot 4

Figure 12: Figure (a) shows the reconstructed 3D model of the real garden; Figure (b) - (e) shows
close-up shots for sites 1 - 4.
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of the minimum distance’s absolute mean bias on all the three axes is dz (0.15 m) and the mean707

of the minimum distance dist is 0.18 m, which are good enough for the user’s remote visualization708

and robot global task planning16 on the reconstructed global model.709

Table 8: Reconstruction Accuracy

Metric Open3D Ours

dx (m) 0.06 0.05
σdx (m) 0.09 0.09

dy (m) 0.05 0.05
σdy (m) 0.09 0.07

dz (m) 0.20 0.15
σdz (m) 0.18 0.12

dist (m) 0.24 0.18
σdist (m) 0.19 0.14
Time /s 8.48 8.23

Figure 13 (a) (c) (e) show the reconstructed gardens from Open3D, Ours, and the ground710

truth garden model. Figure 13 (b) (d) (f) show the details on the same site in the real garden.711

Compared with ours, we could see Open3D fails to align the point clouds of the same tree, and712

makes it seem that there were two trees on that site.713

In addition to the experiments above, there are two other experiments. In the first experiment,714

the proposed framework is successfully tested with scene appearance and sunlight change. More715

details can be found in Appendix E.1. The second experiment compares our proposal with a popu-716

lar commercial software application ‘ContextCapture’ on the Trimbot Wageningen SLAM Dataset.717

The proposed approach again has better performance. For more details, see Appendix E.3.718

5 Conclusion and Discussion719

This paper presented an improved approach for recovering accurate outdoor 3D scene recon-720

struction, based on disparity fusion, pose fusion and volumetric fusion, and demonstrated its721

performance by reconstructing a real outdoor garden containing a variety of different natural and722

man-made structures. Avoiding the need for expensive and sparse Lidar scans, the proposed ap-723

proach inputs the disparity maps from two different stereo vision algorithms into a disparity fusion724

network to produce accurate disparity maps, which is a cheap, accurate and robust solution to725

get higher quality depth data. The depth data is converted into point clouds, whose outliers are726

removed, and then input into the pose fusion module. The pose fusion module uses a two-stage727

from-global-coarse-to-local-fine pose graph optimization to estimate a more accurate global pose728

trajectory. More specifically, in the first stage, we use fast global point cloud registration (Zhou729

et al., 2016) and full-view (360◦) point clouds to build a coarse global pose graph, which is robust730

to fast motion and big transformations between two consecutive frames. In the second stage, a731

local point cloud registration algorithm GICP (Segal et al., 2009) extended with three domain732

rules optimizes the refined pose graph, which produces a more accurate global pose trajectory.733

With the accurate global pose trajectory and the fused depth maps, the mesh of the whole garden734

can be reconstructed by volumetric fusion, as demonstrated on a real outdoor dataset.735

The key to a good 3D reconstruction of the real garden is the accurate depth map and global736

pose trajectory. In future work, more advanced disparity fusion networks will be explored to con-737

tinue to improve the disparity accuracy. The accuracy of the 6D pose that registers the point clouds738

affects the accuracy of the edges in the pose graph, which in turn influence the optimized global739

pose trajectory. More advanced and faster global and local point cloud registration algorithms740

16Our trimming robot did coarse global task planning on the reconstructed global model first. When the robot
arrives at the specific location for trimming, the robot arm will move the depth cameras on the robot arm to scan
the target locally and build the accurate local 3D model with the precise pose update from the robot arm’s joints.
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Figure 13: Comparison of the reconstructed garden from Open3d, Ours and GT.
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that are robust against strong noise and large occlusions will be explored to get more accurate741

initial 6D pose estimation. The research proposed in this paper is adapted for use by a robot in742

a garden environment, but it can be generalized to different outdoor application scenarios. How-743

ever, this requires the related ground truth for the network training and performance evaluation.744

Expanding into related domains of robot applications is our priority for the near future.745
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Appendix A. List of Abbreviations759

FOV Field Of View
GAN Generative Adversarial Network
HD High Definition
ICP Iterative Closest Point
LC Loop Closure
MPTEJI Multi-stage Pose Trajectory Estimation

with Joint Information
ORB Oriented FAST and Rotated BRIEF
PS-SLAM Panoramic Stereo SLAM
SDF Signed Distance Function
SFM Structure From Motion
SIFT Scale Invariant Feature Transform
SLAM Simultaneous Localization And Mapping
TOF Time of Flight
TSDF Truncated Signed Distance Field

760

Appendix B. List of Symbols761

max dist The maximum distance threshold
φw The width resolution ratio between the HD

and the initial image
φh The height resolution ratio between the HD

and the initial image
Np The threshold number of the neighboring

points in a sphere
radius The radius of the sphere
Nn The number of the points in the neighborhood
dist ratio The distance ratio to remove the points
OLmin The minimum overlapping rate threshold
OLmax The maximum overlapping rate threshold
~vth 6D pose threshold in vector format

762

Appendix C. Formula derivation763

764

C.1 Loss Function765

In this subsection, we will prove that Equation 4 in this paper is equal to equation 4 in the766

paper (Moreira et al., 2021a) under the assumption that the uncertainty of the rotation is the767

same as the translation’s. Although ‘Equation 1’ in the paper (Moreira et al., 2021a) is similar to768

our Equation 4, the authors (Moreira et al., 2021a) did not prove that the Frobenius-norm-based769

transformation difference loss function (Equation 4) is a special case of the maximum likelihood770

loss function in the pose graph optimization, which is the motivation for this section.771

In Equation 4, G(V,E) is a connected pose graph with |V | = n poses (or vertices). The
rigid transformation Tij (here, computed using a point cloud registration algorithm) from the ith

pose (denoted by Pi) to the jth pose (denoted by Pj) could be written as {R̃ij , t̃ij} for the edge

(i, j) ∈ E. E is the edge set. R̃ij and t̃ij are the corresponding relative rotation and translation
estimates. The ith pose Pi could be written as {Ri, ti}i=1,...,n. In the following, we will use block-
matrix notation to represent Equation 4.
As the transformation is rigid, thus:
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R̃ijR̃
T
ij = I, RiR

T
i = I, RjR

T
j = I.

Let us write:

Tij =

[
R̃ij t̃ij
0 1

]
, Pi =

[
Ri ti
0 1

]
,

Pj =

[
Rj tj
0 1

]
, P−1j =

[
RT

j −RT
j tj

0 1

]
;

Thus, Equation 4 can be transformed into:

arg min
∑

(i,j)∈E

∥∥Tij − PiP
−1
j

∥∥2
F

=arg min
∑

(i,j)∈E

∥∥∥∥[ R̃ij −RiR
T
j t̃ij − ti + RiR

T
j tj

0 0

]∥∥∥∥2
F

=arg min
∑

(i,j)∈E

(
∥∥∥R̃ij −RiR

T
j

∥∥∥2
F

+
∥∥t̃ij − ti + RiR

T
j tj
∥∥2
F

)

(C.1)

According to the definition, Frobenius norm of a matrix A is defined as the square root of the
sum of the absolute squares of its elements in the matrix, which is equal to the square root of the
matrix trace of AAT . Additionally, tr(A) = tr(AT ).

Expanding the term
∥∥∥R̃ij −RiR

T
j

∥∥∥2
F

in Equation C.1:

∥∥∥R̃ij −RiR
T
j

∥∥∥2
F

=tr{(R̃ij −RiR
T
j )(R̃ij −RiR

T
j )T }

=tr(R̃ijR̃
T
ij + RiR

T
j RjR

T
i − R̃ijRjR

T
i −RiR

T
j R̃T

ij)

=tr(I + I)− tr(R̃ijRjR
T
i )− tr{(R̃ijRjR

T
i )T }

=6− 2tr(R̃ijRjR
T
i )

(C.2)

Substitute the term
∥∥∥R̃ij −RiR

T
j

∥∥∥2
F

in Equation C.1 with Equation C.2 and neglect the constant

term:

arg min
∑

(i,j)∈E

∥∥Tij − PiP
−1
j

∥∥2
F

=arg min
∑

(i,j)∈E

{
∥∥t̃ij − ti + RiR

T
j tj
∥∥2
F
− 2tr(R̃ijRjR

T
i )}

(C.3)

In Equation C.3 we minimize the loss function to get the estimated rotation and translation by
maximizing its negative. Thus, divide the right part of the equal sign by the negative constant
−2σ2

R, we get:

arg min
∑

(i,j)∈E

∥∥Tij − PiP
−1
j

∥∥2
F

=arg max{− 1

2σ2
R

∑
(i,j)∈E

∥∥t̃ij − ti + RiR
T
j tj
∥∥2
F

+
1

σ2
R

∑
(i,j)∈E

tr(R̃ijRjR
T
i )}

(C.4)

Compare our term Equation C.4 with the log-likelihood term equation 4 in the paper (Moreira
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et al., 2021a), which is shown in the following Equation C.5:

logL(θ|y)

=− 1

2σ2
t

∑
(i,j)∈E

∥∥t̃ij − ti + RiR
T
j tj
∥∥2
F

+
1

σ2
R

∑
(i,j)∈E

tr(R̃ijRjR
T
i )

(C.5)

772

When the noise level for the rotation and translation in the paper (Moreira et al., 2021a) is773

assumed to be equal (i.e. σt = σR), Equation C.4 (in our paper) and Equation C.5 (which is774

same with equation 4 in Moreira et al. (2021a)) are completely the same. Thus, we could use775

the optimization method17 in Moreira et al. (2021a) to optimize our error function. Finding the776

optimum rotation parameters first and then solving for the translation parameters turns it into777

a least-squares problem. To deduce the Equation C.5, refer to Page 9 - 10 in (URL: https://778

drive.google.com/file/d/1ML7mkLSIALm3x5DtID7ozHD3YL7S1iNC/view?usp=sharing) or the779

most related papers (Carlone et al., 2015a,b; Moreira et al., 2021a,b).780

To conclude, Equation 4 can be turned into a maximum likelihood estimation problem under the781

assumption of the proper noise level for rotation and translation. From another aspect, there is782

a more intuitive way to express the physical meaning of Equation 4. That is: estimate the pose783

of each node accurately, which in turn makes the existing relative pose measurements between784

different nodes closer to the post-calculated relative pose between different nodes based on their785

estimated global pose.786

C.2 Maximum Distance787

In the initial work Sdf-man (Pu et al., 2019), at the end of the refiner network (see Figure 2 on
page 7 in Pu et al. (2019)) the method uses the function ‘tanh’ to output an intermediate map w
and each value in w is in (−1, 1).

initial disp =
max disp · (w + 1)

2
(C.6)

Then it uses Equation C.6 to convert the intermediate map w to the disparity map initial disp.
max disp is the maximum disparity threshold. Converting the disparity map initial disp into a
depth map using Equation 2 gives Equation C.7.

initial depth =
2fb

max disp · (w + 1)
(C.7)

f and b are the focal length value and baseline value of the stereo vision camera. As w ranges788

from -1 to 1, the initial depth values will range from fb
max disp to +∞.789

In this paper, the difference is that we use a new Equation C.8 to map the intermediate map
w to the new disparity map new disp rather than Equation C.6.

new disp =
2fb

max dist · (w + 1)
(C.8)

max dist is set as the maximum distance threshold of interest. Converting the new disparity map
new disp into the depth map format using Equation 2 gives Equation C.9, whose value domain is
(0,max dist).

new depth =
max dist · (w + 1)

2
(C.9)

17The URL of the released code: https://github.com/gabmoreira/maks
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790

Comparing the value domain of new depth in Equation C.9 and initial depth Equation C.7,791

the domain ( fb
max disp ,+∞) of initial depth is larger than the domain (0,max dist) of new depth792

considerably, though their definition domains are the same. Thus, as for noise with the same793

granularity in the input, new depth from the proposed strategy will output a more robust and794

accurate result. By setting the maximum distance threshold of interest and the new mapping795

function Equation C.8, we effectively narrow the value domain of the depth output to increase796

depth accuracy. This alternative approach has also been confirmed by the experiment results in797

Section 4.2.798

Appendix D. More Details about Data Collection799

As Figure 5 (b) shows, the trimming robot Trimbot18 navigates around the outdoor garden19 to800

collect the raw data. The top of the robot resembles a ‘tower’ (see Figure D.1), which consists801

of a prism retroreflector, a Velodyne VLP16, and the panoramic stereo camera (a ring of 5 stereo802

cameras).803

The prism reflector on the robot is used to reflect the laser beam from Topcon PS Series Robotic804

Total Station (See Figure D.2), to estimate the robot’s position in 3D space. According to the805

datasheet of the Topcon PS Series Robotic Total Station20, the distance measurement accuracy806

with the prism could be down to 1.5mm+ 2ppm. To estimate the robot’s orientation [roll, pitch,807

yaw], a STIM300 IMU sensor inside the trimming robot is used to record the acceleration and808

rotation rate measurements. According to the datasheet of STIM300 IMU sensor21, the gyroscope809

input range is ±400deg/sec and its angular random walk is 0.15deg/
√
hr. The accelerometer810

range is ±10g and its velocity random walk is 0.06m/s/
√
hr. The in-run bias stability of the811

gyroscope and accelerometer is 0.5deg/hr and, 0.05mg respectively. Based on the precise mea-812

surements from the STIM300 IMU sensor, the orientation of the robot is estimated in an offline813

post-processing step by strap-down integration. The 3D position [tx, ty, tz] from Topcon PS Series814

Robotic Total Station and the orientation (roll, pitch, yaw) are appended to constitute the 6-DoF815

pose of the robot. Then, by calibration, the 6-DoF pose of the robot is transformed to get the816

pose of each rigidly placed image sensor in the panoramic stereo camera. Finally, structure-from-817

motion (Schonberger and Frahm, 2016) is used to refine each image sensor’s pose to form the818

ground truth pose of each image sensor, particularly to fix poses where the line of sight between819

the Topcon and prism was interrupted by obstacles.820

The Velodyne VLP16 lidar sensor is mounted on top of the panoramic stereo camera to record a821

reference point cloud from the Trimbot robot’s perspective. The lidar sensor has a 360◦ horizontal822

field of view with an angle resolution spanning from 0.1◦ to 0.4◦, which corresponds to the rotation823

rate from 5 Hz to 20 Hz. In the Trimbot Wageningen SLAM Dataset, the angular resolution is set824

to 0.2◦ and the rotation rate is set to 10Hz. The Velodyne VLP16 lidar sensor has 16 horizontal825

rays, which are distributed within a vertical field of view of ±15◦. According to its datasheet22,826

its scanning range could be up to 100 m with an accuracy of ±3cm. Then the lidar point cloud827

is projected to the image planes of the 10 image sensors in the panoramic stereo camera to form828

sparse depth maps.829

The panoramic stereo camera23 is built with ten MT9V024 CMOS image sensors from ON-830

Semiconductors24. The housing of the panoramic stereo camera has a pentagon shape and is831

18Trimbot’s hardware was mainly developed by our Trimbot2020 consortium member Robert Bosch GmbH based
on the Bosch Indigo lawn mower.

19The garden was constructed by our Trimbot2020 consortium member Wageningen Research in Netherlands.
20Topcon PS Series Robotic Total Station: https://drive.google.com/file/d/

1Z54jDM0fkqhNgYq1SBsZRFX-XG14alIC/view?usp=sharing
21STIM300 IMU: https://drive.google.com/file/d/1PhFtSSABCs0msnu2Gwza0EhAg4mpUZar/view?usp=sharing
22Velodyne VLP16: https://drive.google.com/file/d/1ZYrYHf7wqI5PjuuKpxO7SPzDfmb33b1Y/view?usp=

sharing
23The panoramic stereo camera hardware was developed by our Trimbot2020 consortium member ETH Zürich

based on their previous work (Honegger et al., 2017).
24MT9V024 datasheet URL:https://github.com/Canpu999/Trimbot-Wageningen-SLAM-Dataset/blob/main/
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Velodyne VLP16 
lidar sensor

A prism reflector used in 
Topcon Robotic  Total 
Station position tracking 
system

  Panoramic Stereo Camera
- a ring of 5 stereo cameras

Figure D.1: Some sensors for collecting the data
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Figure D.2: Topcon PS Series Robotic Total Station estimated the robot’s 3D position by emitting
laser beams and receiving the beams reflected by he prism reflector on the top of the trimming
robot Trimbot.

manufactured by 3D printing. Figure D.3 shows the panoramic stereo camera from the top and832

side views. The image sensors have 752 × 480 (Horizontal × V ertical) pixels resolution with833

global shutter. The maximum frame rate of a single image sensor could be up to 60 FPS at full834

resolution. The five synchronized stereo vision cameras (10 image sensors) could only stream the835

synchronized panoramic stereo images (10 synchronized images) at 12 HZ because it is limited by836

the bandwidth of the panoramic stereo camera’s data bus. The image sensor’s operating tempera-837

ture ranges from −40◦C to +100◦C ambient. The active imager size is 4.51mm(H)×2.88mm(V ),838

whose diagonal size is 5.35 mm. The pixel size is 6.0 µm × 6.0 µm. We calibrated the image sensor839

using the Kalibr package25 by setting the camera model as pinhole and the distortion model as840

radial-tangential. The calibration accuracy of image sensors in terms of a mean reprojection error841

was 0.00 pixels on the X and Y axis, with standard deviation ranging from 0.1 pixels to 0.2 pixels.842

Given that the image sensors’ temperature and long operating time influences the robustness of843

the commercial hardware’s imaging quality, which will possibly influence the calibration accuracy,844

more engineering robustness tests would be future work.845

The 3D point cloud of the whole garden was collected by a Leica ScanStation P1526. The Leica846

ScanStation P15 measures the distance by a laser scanner and incorporates the corresponding847

RGB data from a color camera into the laser scanner’s coordinate system. The laser scanner’s848

working distance range varies from [0.4m, 40m]. The 3D position accuracy could be low to 3849

mm at 40 meters and the linearity error is smaller than 1 mm. The angular accuracy is 8” in850

the horizontal direction and 8” in the vertical direction. Figure D.4 shows the garden’s point851

clouds from different views with RGB data and colored height (different colors represent different852

heights). As the distance measurement and the RGB measurement are conducted sequentially,853

Image-sensor-MT9V024-datasheet-ON_Semiconductor.pdf
25https://github.com/ethz-asl/kalibr
26Leica ScanStation P15 Datasheet URL: https://github.com/Canpu999/Trimbot-Wageningen-SLAM-Dataset/

blob/main/Leica_ScanStation_P15_datasheet.pdf

37



(a) Top View

(b) Side View

Figure D.3: Figure (a) (b) shows the panoramic stereo camera from the top view and side view
respectively. The images are from ETH Zürich (Trimbot2020 consortium member).
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both measurements are not exactly synchronized. As a consequence, there may be wrong RGB854

values on moving objects’ point clouds. A moving leaf’s point cloud (taken at one timestamp)855

will show the sky’s color (taken at another timestamp) if the leaf moved at one timestamp (when856

the laser scanner was acquiring data) to another place at another timestamp (when the RGB857

sensor was acquiring data). Reflectance properties of glossy leaves can also result in color changes.858

Thus, in Figure D.4, the tree’s point clouds show a mixed color (green and sky-white). That is859

the reason why we did not include the point cloud with RGB data into the Trimbot Wageningen860

SLAM Dataset.861

Appendix E. Additional Qualitative Results862

E.1 Robustness to Environment Change863

As sunlight and the scene appearance outdoors will influence an image’s appearance directly, thus864

we vary sunlight from different time periods and scene appearance from different places in the865

following experiment to demonstrate the robustness of the proposed framework. Figure E.1 shows866

the experimental setting for the robustness test. In Scene 1, the robot drove straight along route867

A under sunlight A. In Scene 2, the robot drove straightly along route B (whose travelled distance868

is same with that of route A) under the same sunlight A. In Scene 3, the robot drove straightly869

along the route A, but under the different sunlight B. Since factors other than scene appearance870

and lighting should not influence the image appearance directly, we classify the other factors as871

Uncontrolled Random Factors. Table E.1 gives the precise value of each factor, and the values of872

the uncontrolled random factors are from a weather website 27.873

Figure E.2 shows the three scenes and the related 3D reconstruction results in surface mesh874

format by the proposed framework. As acquiring ground truth requires considerable expense and875

effort by a big team, we only show the corresponding qualitative results. Compare the shadows,876

trees, posts and bushes in the example images (Figure E.2 a c e) with the corresponding shapes877

in the reconstructed 3D meshes (Figure E.2 b d f). The high quality and believable shapes, even878

with different lighting and viewpoint, demonstrate the high quality of the 3D reconstruction by879

our proposed framework. Further robustness tests against other factors (e.g. temperature, wind880

speed, long operating time, humidity, foggy or snowy weather) are future work.881

Table E.1: Scene Definition with Different Condition Setting

Controlled Var Uncontrolled Random Factors
Scene route sun- time date temp wind humid dew pressure

light speed point
1 A A ∼ 15 : 30 2017-05-17 22.5◦C 12.7 km/h 76% 15.7◦C 995.6Mb
2 B A ∼ 15 : 30 2017-05-17 22.5◦C 12.7 km/h 76% 15.7◦C 995.6Mb
3 A B ∼ 11 : 00 2018-06-27 20.5◦C 12.7 km/h 75% 12.7◦C 1003.4Mb

E.2 Fair Comparison with More Open-source Frameworks882

Orbslam3 (Campos et al., 2021) and Open3D (Zhou et al., 2018) needed hints in Section 4.3.2883

to make them work. In this subsection, we will compare all the frameworks when using only884

one stereo vision camera (which consists of the image sensor Cam0 and Cam1) without any hints885

provided to any framework. We use the initial parameter setting of Open3D for a test (denoted886

by Open3D-initial). For Orbslam3, we test their RGBD SLAM algorithm (denoted by Orbslam3-887

rgbd), their stereo SLAM algorithm (denoted by Orbslam3-stereo), and their monocular SLAM888

algorithm (denoted by Orbslam3-monocular). For the parameter setting of each SLAM algorithm889

27https://tcktcktck.org/netherlands/gelderland/wageningen
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(a) The point cloud from view 1 with colored height (b) The point cloud from view 1 with registered
RGB data

(c) The point cloud from view 2 with colored height (d) The point cloud from view 2 with registered
RGB data

(e) The point cloud from view 3 with colored height (f) The point cloud from view 3 with registered RGB
data

(g) The point cloud from view 4 with colored height (h) The point cloud from view 4 with registered
RGB data

Figure D.4: Figure (a) (c) (e) (g) show the point clouds with colored height. Figure (b) (d) (f) (h)
show the point clouds with registered RGB data. All point clouds are from the Leica ScanStation
P15. The images are from our partner Robert Bosch GmbH in the Trimbot2020 project.
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Legend

sunlight A

route A

start point A

sunlight B

route B

start point B

Figure E.1: The experiment setting in the robustness test

from Orbslam3, please refer to the video at https://youtu.be/4luADtHNbuA. In this video28, we890

also show the performance of each algorithm from Orbslam3 on our Trimbot Wageningen SLAM891

dataset when having a random test29.892

Figure E.3 shows the global pose trajectory of each framework. The results of Orbslam3 are893

from the best trials among tens of random trials. Method ”Ours” is the method proposed in this894

paper with panoramic stereo images as input. Method ”Ours-single-stereo” denotes a method895

which is derived from the ”Ours” method, but with the input from only one stereo camera.896

Figure E.3 shows that all of the algorithms sucessfully estimate poses initially, but eventually897

fail, except ”Ours” when traversing the whole dataset. ”Ours-single-stereo” seems to work better898

compared with the external counterparts, although it still fails at the latter part of the global pose899

trajectory. The trajectory of Orbslam3-monocular (cyan trajectory) has only one dot to show at900

the starting point, near the coordinate (0 m, -1 m ), because Orbslam3-monocular almost lost901

tracking every frame. Given the bad performance of each external algorithm, it is meaningless to902

calculate the corresponding quantitative results. It is also the reason why we needed to provide903

”some extra help” to the external counterparts to get results to compare with in Section 4.3.2.904

E.3 Comparison with Software ‘ContextCapture’905

Above, we compared our proposed framework with the latest popular frameworks Orbslam3 (Cam-906

pos et al., 2021) and Open3D (Zhou et al., 2018). The experimental results have shown our907

framework’s performance superiority over the two open-source frameworks. Here, we compare the908

proposed framework with the commercial software called ”ContextCapture Center” from Bent-909

28There are many false extracted features near the edge of the robot in the above video. We refined the data input
of Orbslam3 by masking more areas near the robot and tuned the parameters to maximize Orbslam3’s performance.
The modified video (URL: https://youtu.be/9TaayXl4mJ4) shows the corresponding performance.

29Due to the stochastic property of the algorithm RANSAC (Fischler and Bolles, 1981) in the framework Orb-
slam3, the results from Orbslam3 are different each time.
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(a) Scene 1 (b) Reconstructed Model 1

(c) Scene 2 (d) Reconstructed Model 2

(e) Scene 3 (f) Reconstructed Model 3

Figure E.2: Figure (a) (c) (e) shows the scenes and Figure (b) (d) (f) shows the reconstructed
models.
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(a) One View (b) Another View

Figure E.4: Figures (a) and (b) show the reconstructed models from the professional 3D recon-
struction Software ‘ContextCapture’.

ley30, which is known for its image-based 3D reconstruction and aerial photogrammetry. Because910

the commercial software ContextCapture’s 3D reconstruction framework does not support 360◦911

image-based 3D reconstruction, we could only input the RGB images from our image sensor Cam0912

in our Wageningen SLAM Dataset. Figure E.4 shows the reconstructed meshes from two views.913

From the strange reconstruction results, we could easily see that the ContextCapture reconstruc-914

tion system failed at our task. The reason is that the real robot’s fast movement and large915

transformation between frames when navigating in the real outdoor garden lead ContextCapture916

to lose tracking (please read the acquisition report31 from ContextCapture). The quality report32917

from the software ContextCapture reveals more reconstruction details about its failure.918
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