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Abstract

The focus of our paper is on the fitting of general curves and surfaces to 3D data. In the past
researchers have used approximate distance functions rather than the Euclidean distance because
of computational efficiency. We now feel that machine speeds are sufficient to ask whether it is
worth considering Euclidean fitting again. Experiments with the real Euclidean distance show the
limitations of suggested approximations like the Algebraic distance or Taubin’s approximation. In
this paper we present our results improving the known fitting methods by an (iterative) estimation
of the real Euclidean distance. The performance of our method is compared with several methods
proposed in the literature and we show that the Euclidean fitting guarantees a better accuracy with
an acceptable computational cost.

1 Motivation

One fundamental problem in building a recognition and positioning system based on implicit 3D curves
and surfaces is how to fit these curves and surfaces to 3D data. This process will be necessary for
automatically constructing CAD or other object models from range or intensity data and for building
intermediate representations from observations during recognition. Of great importance is the ability to
represent 2D and 3D data or objects in a compact form. Implicit polynomial curves and surfaces are
very useful representations. Their power appears by their ability to smooth noisy data, to interpolate
through sparse or missing data, their compactness and their form being commonly used in numerous
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constructions. Let fo(F) be an implicit polynomial of degree 2 given by
f@)=p+7 P+ P-F=0, fcR orfe R . (1)

Then, we only have to determine the set of parameters which describes the data best. The parameter es-
timation problem is usually formulated as an optimization problem. Thereby, a given estimation problem
can be solved in many ways because of different optimization criteria and several possible parameteri-
zations. Generally, the literature on fitting can be divided into two general techniques: clustering (e.g.
[4, 6]) and least-squares fitting (e.g. [2, 5, 7]). While the clustering methods are based on mapping data
points to the parameter space, such as the Hough transform and the accumulation methods, the least-
squares methods are centered on finding the sets of parameters that minimize some distance measures
between the data points and the curve or surface. Unfortunately, the minimization of the Euclidean
distances from the data points to a general curve or surface has been computationally impractical, be-
cause there is no closed form expression for the Euclidean distance from a point to a general algebraic
curve or surface, and iterative methods are required to compute it. Thus, the Euclidean distance has
been approximated. Often, the result of evaluating the characteristic polynomial fo(%) is taken, or the
first order approximation, suggested by Taubin [12] is used. However, experiments with the Euclidean
distance show the limitations of approximations regarding quality and accuracy of the fitting results.

The quality of the fitting results has a substantive impact on the recognition performance especially
in the reverse engineering where we work with a constrained reconstruction of 3D geometric models of
objects from range data. Thus it is important to get good fits to the data.

2 Fitting of algebraic curves and surfaces

An implicit curve or surface is the set of zeros of a smooth function f : R* — R* of the n variables:
Z(f) ={& : f(Z) = 0}. In our applications we are interested in three special cases for their applications



in computer vision and especially range image analysis: Z(f) is a planar curve if n =2 and k = 1, it is
a surface if n = 3 and k =1 and it is a space curve if n = 3 and k = 2.

Given a finite set of data points D = {Z;}, i € [1,m], the problem
of fitting an algebraic curve or surface Z(f) to the data set D is usually
cast as minimizing the mean square distance
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— 3 " dist (#;, 2(f))* = Minimum (2)
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from the data points to the curve or surface Z(f), a function of the set Figure 1: Euclidean distance
of parameters of the polynomial. The problem that we have to deal dist(Z;, Z(f)) of a point Z; to
with is how to answer whether the distance from a certain point #; to 5 ,or0 set Z(f)

a set Z(f) of zeros of f : R® — RF is the (global) minimum or not.

The distance from the point #; to the zero set Z(f) is defined as the minimum of the distances from ;
to points & in the zero set Z(f)

dist(Z;, Z(f)) = min{|| 7 — 7| : £(F) = 0}. (3)

Thus, the Euclidean distance dist(#;, Z(f)) between a point Z; and the zero set Z(f) is the minimal
distance between #; and the point Z; in the zero set whose tangent is orthogonal to the line joining &;
and Z; (see Fig.1). As mentioned above there is no closed form expression for the Euclidean distance
from a point to a general algebraic curve or surface and iterative methods are required to compute it.
In the past researchers have often replaced the Euclidean distance by an approximation. But it is well
known that a different performance function can produce a very biased result. In the following we will
summarize the methods used to approximate the real Euclidean distance by the algebraic distance and
an approximation suggested by Taubin ([12], [13]).

Algebraic fitting. The algebraic fitting is based on the approximation of the Euclidean distance between
a point and the curve or surface by the algebraic distance

dista (%3, Z(f)) = f2(7) . (4)

To avoid the trivial solution, where all parameters are zero, and any multiple of a solution, the
parameter vector may be constrained in some way (e.g. [1, 5, 7] and [10]). The pros and cons of
using algebraic distances are a) the gain in computational efficiency, because closed form solutions
can usually be obtained, on the one hand and b) the often unsatisfactory results on the other hand.

Taubin’s fitting. An alternative to approximately solve the minimization problem is to replace the
Euclidean distance from a point to an implicit curve or surface by the first order approximation
[13]. There, the Taylor series is expanded up to first order in a defined neighborhood, truncated
after the linear term and then the triangular and the Cauchy-Schwartz inequality were applied.

o fo ()]
distr (7 2() = 15 7y )
Besides the fact that no iterative procedures are required, the fundamental property is that it is a
first order approximation to the exact distance. But, it is important to note that the approximate
distance is also biased in some sense. If, for instance, a data point Z; is close to a critical point of
the polynomial, i.e., ||V fo(Z;)|| & 0, but fa2(F;) # 0, the distance becomes large. This is certainly a
limitation.

Note, neither the Algebraic distance nor Taubin’s approximation are invariant with respect to Eu-
clidean transformations.

2.1 Euclidean distance

To overcome the problems with the approximated distances, it is natural to replace them again by the
real geometric distances, that means the Euclidean distances, which are invariant to transformations in
Euclidean space and are not biased. For primitive curves and surfaces like straight lines, ellipses, planes,
cylinders, cones, and ellipsoids, a closed form expression exists for the Euclidean distance from a point
to the zero set and we use these. However, as the expression of the Euclidean distance to other 2nd order
curve and surfaces is more complicated and there exists no known closed form expression, an iterative
optimization procedure must be carried out. For more general curves and surfaces the following simple
iterative algorithm will be used (see also Fig.2):



1. Select the initial point .7‘:'[/0]. In the first step we determine the initial solution by intersecting the
curve or surface with the straight line defined by the center point #,, and the point Z;. By the

initial solution, the upper bound for the distance is estimated.

2. Update the actual estimation i’LkH] = F(i'[,k]), k=0,1,2,.... In the second step a new solution is
determined. The search direction will be determined by the gradient of the curve V(f(i’gk]))

R = M 4 kg (.fg’“]) . (6)
The method is an adaptation of the steepest descent method. As the result we get two possible
solutions, fgk] and :E’yc“] (cf. Fig 2), and we have to decide by an objective function F, if a':’LkH}

will be accepted as new solution.

xiH
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Figure 2: Steps to estimate the Euclidean distance distg(%;, Z(f)) of a point #; to the zero set Z(f) of
an ellipse

3. FEvaluate the new estimation f£k+]]. The set of solutions is evaluated by the objective function

f(fi,££k+]],2(f)) = min(distE(n':',;,.i:'[/k]), dist g (7;, n':'£k+]]). If the distance from the new estimation
i’LkH] is smaller, we accept this as the new local solution. Otherwise i’LkH] = i’gk] and off 1 =
—7alkl, 7 > 0. Then, the algorithm will be continued with step 2 until the difference between the
distances of the old and the new estimation is smaller then a given threshold. To speed up the
estimation a criterion to terminate the updating may be used like e.g. ||n'7'£k+]] - f,[:k]H < T4, OT

kZTk-

2.2 Estimation error of surface fit

Given the Euclidean distance error for each point, we then compute the curve or surface fitting error
as distp (4, Z(f)). The standard least-squares method tries to minimize Y, dist3;(#;, Z(f)), which is
unstable if there are outliers in the data. Outlying data can give so strong an effect in the minimizing
that the parameters are distorted. Replacing the squared residuals by another function can reduce the
effect of outliers. Appropriate minimization criteria including functions were discussed in for instance [3]
and [14]. It seems difficult to select a function which is generally suitable. Following the results given
in [11] the best choice may be the so-called L, (least power) function: L, := |distg(Z;, Z(f))|”/v. This
function represents a family of functions including the two commonly used functions Ly (absolute power)
with v = 1 and Lo (least squares) with v = 2. Note, the smaller v, the smaller is the influence of large
errors. For values v ~ 1.2, a good error estimation may be expected [11].

2.3 Optimization

Given a method of computing the fitting error for the curves and surfaces, we now show how to minimize
the error. Many techniques are readily available, including Gauss-Newton algorithm, Steepest Gradient
Descent, and Levenberg-Marquardt algorithm. Our implementation is based on the Levenberg-Marquardt
(LM) algorithm [8, 9] which has become the standard of nonlinear optimization routines. The LM method
combines the inherent stability of the Steepest Gradient Descent with the quadratic convergence rate of
the Gauss-Newton method. The (iterative) fitting approach consists of three major steps:

1. Select the initial fitting P[°. The initial solution P! is determined by Taubin’s fitting method.
2. Update the estimation PF 1 = Fy \(PIF) using the Levenberg-Marquardt (LM) algorithm.

3. Ewvaluate the new estimation P¥+1. The updated parameter vector is evaluated using the L,
function on the basis of the distx(;, Z(f)). P+ will be accepted if L,(P¥+1) < L,(Pl) and
the fitting will be continued with step 2. Otherwise the fitting is terminated and P!*! is the desired
solution.



3 Experimental results

We present, experimental results comparing Euclidean fitting (EF) with Algebraic fitting (AF'), and
Taubin’s fitting (TF') in terms of quality, robustness and speed.

3.1 Robustness

To test the robustness of the proposed FF method, we used three different surface types: cylinders,
cones, and general quadrics. Note that plane estimation is the same for all three methods. To enforce
the fitting of a special surface type we include in all three fitting methods the same constraints which
describe the expected surface type. The 3D data were generated by adding isotropic Gaussian noise
o = {1%,5%,10%,20%}. Additionally the surfaces were partially occluded. The visible surfaces were
varied between 1/2 (maximal case), 5/12, 1/3, 1/4, and 1/6 of the full 3D cylinder (see Fig.4). In all our
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Figure 3: View of the 3D data points for a cylinder (maximal case) with added isotropic Gaussian noise
a) o =1%,b) 0 = 5%, ¢) 0 = 10%, and d) o = 20%.

d)

experiments the number of 3D points was 5000. And finally, each experiment runs 100 times to measure
the average fitting error. The mean least power errors (MLPE’s) of the different fittings are in Tab.1.
We determined the real geometric distance between the 3D data points and the estimated surfaces using
the method described in Sec.2.1. That means we calculated the MLPFE for all fitting results on the basis
of the estimated Euclidean distance. Otherwise, a comparison of the results will be useless. Based on
this table we evaluate the three fitting methods with respect to quality and robustness. The EF requires
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Figure 4: View of the 3D data points of partially occluded cylinders, a) 1/2 (maximal case), b) 5/12,1/3
(see Fig.3b)), ¢) 1/4, and d) 1/6. Added isotropic Gaussian noise o = 5%.

an initial estimate for the parameters, and we have found that the results depend on the initial choice.
A quick review of the values in Tab.1 shows that the results of TF are better for initializing than the



results of AF. Maybe another fitting method can give a better initialization, but here we use TF because
of its advantages. As expected, the TF and EF yield the best results respect with to the mean and

AF TF EF
[ w o] 102 p o] 102 [ p o] 1072
6/12 |[ [ 9.06 = 1.55](008) | [ 1.14 £ 0.06] [0.71£ 0.03]
X 5/12 || [33.19+ 3.90](0.22) | [ 1.30+ 0.13] [ 0.65+ 0.04]
2 (0.22)
| 4/12 || [44.91+ 372000 | [ 275+ 0.43] [ 0.72+ 0.05]
o 3/12 || [55.06 + 2.04]0s) | [ 3.82+ 0.80 094+ 0.11
_ (0.08)
S 2/12 || [58.05+ 3.07)(015) | [ 3-94% 0.49] [ 130+ 0.10]
o 6/12 || [14.80 = 1.88](00s) | | 132 % 0.17] [0.62+ 0.03]
= X 5/12 || 36114+ 221]g1q) | [ 2924 0.13] [ 093+ 0.12]
= S (0.1)
2 4/12 || [25.56 £ 2.76](0.08) | [ 5.27+ 0.32 135+ 0.32
g (0.08)
= o 312 [5513+ 3.50).0) | [ 507+ 0.75] [ 1.97+ 0.45]
2 2/12 || [55.93+ 3.08](015 | [ 413+ 1.03] [ 234+ 0.81]
< " 6/12 | [1044E 10910 | [ 205 % 0.29] [0.97+ 0.12]
E E 512 [23.10% 347 | [ 348+ 0.74] [ 171+ 0.63]
= 4/12|| 3776+ 345]00) | [ 3.90% 0.79] [ 178+ 0.49]
—
£ o 3/12 [56.37+ 2.73](000) | [ 428+ 1.04] [ 1.83+ 0.34]
£ 2/12 || [58.46 £ 3.33](00s) | [ 8:98%+ 3.46] [ 3.02+ 1.13]
&~ 6/12 |[ [1534% 193] | | 2.38+ 0.39] [1.09+ 0.10]
N 5/12 | 4940+ 3.18](g4s) | [ 290+ 0.56] [ 1.07+ 0.07]
T4/12 | [55.61+ 3.24]00 | [ 3.69% 0.64] [ 141+ 0.11]
o 3/12 | [22.49% 2.66](010) | [ 405+ 0.95] [ 1.72+ 0.38]
2/12 || [41.37+ 3.22]0.19) | [ 920+ 3.55] [ 3.00+ 1.13]
6/12 || [26.68 = 1.37](0.02) | | 640 £ 0.05] [4.26 £ 0.02]
X 5/12 || [21.82+ 0.96] [ 6.83+ 0.13] [ 3.68+ 0.21]
| 4/12 || 2539+ 0.88] [ 7.28+ 0.25] [ 412+ 0.17]
o 3/12| [21.93+ 1.76)00r1) | [10.67+ 0.74] [ 318+ 0.48]
2 2/12 || [25.80+ 2.26] [23.24+ 1.67] [ 5.43+ 0.70]
i 6/12 || [25.31 = 1.26](0.03) | | 6.67 = 0.21] [473% 0.33]
T X 5/12 | 1854+ 0.83] [ 8.06+ 0.71] [ 3.224 0.18]
g 4/12 | [25.32+ 1.05] [ 8.38+ 0.72] [5.26+ 0.70]
= o 3/12| [1829+ 1.10]0r | [15.91%+ 1.60] [ 6.47+ 1.08]
2 2/12 || [40.08+ 1.90](p0y) | [25.38+ 1.57] [ 8.88+ 1.36]
A T 6/12 [ [26.2T £ 145](0.00) | [ 6.71E 0.23] [3.99 = 0.30]
E 3 5/12| [1931+ 0.84] [ 746+ 0.48] [ 3.79+ 0.45]
N 412 2733+ 0.84] [ 819+ 0.90] [ 411+ 0.52]
E o 3/12| [23.42+ 1.92] [15.87 + 1.70] [ 532+ 0.85]
E 2/12 || [31.89+ 1.85](00y) | [25.68+ 2.04] [ 715+ 0.92]
T T 6/12|[ 2474 £ 133)(0.05) | [ 6:80F 0.27] [349+ 0.13]
X 5/12 | [1855+ 0.87](00r | [ 7114 0.56] [ 3.95+ 0.33]
T4/12 | [27.08+ 0.90] [ 743+ 0.35] [5.24+ 0.35]
o 3/12 | [22.32+ 1.36](g04) | [15.17+ 1.79] [ 6.60+ 0.91]
2/12 || [35.18 + 228002 | [38.71+ 8.81] [11.30 + 2.2]

Table 1: Least power error fitting cylinder 1 and 2. The visible surfaces were varied between 1/2 (maximal
case), 5/12,1/3, 1/4, and 1/6 of the full 3D cylinder. Gaussian noise o was 1%, 5%, 10%, and 20%. For
AF the percentage of failed fittings is given in brackets. The number of trials was 100.

standard deviation, and the mean for EF is always lower than for the other two algorithms. The results
of AF are not acceptable because of their high values for mean and standard deviation. The results of
TF are much better, compared with the AF. But, in the direct comparison with the EF these results
are also unacceptable. Furthermore, note that AF give sometimes wrong results which means that the
fitted curve or surface typo does not come up with our expectations. We removed all failed fittings out
of the considerations. The percentage of failures is given as footnote in Tab.1. For TF and EF we had
no failures in our experiments.



3.2 Noise sensitivity

The second experiment is perhaps more important and assesses the stability of the fitting with respect
to different realizations of noise with the same variance. The noise has been set to a relatively high level
because the limits of the three methods are more visible then. It is very desirable that the performance is
affected only by the noise level, and not by a particular realization of the noise. In Tab.1 the u’s and o’s
are shown for four different noise levels. If we analyze the table regarding noise sensitivity, we observe:

e The stability of all fittings, reflected in the standard deviation, is influenced by the noise level of
the data. The degree of occlusion has an additional influence on stability. Particularly serious is
the combination of both high noise level( o > 20%) and strong occlusion (visible surface < 1/4).

e AF is very unstable, even with a noise level of ¢ = 1%. In some experiments with AF the fitting
failed and the estimated mean least power error between the estimated surface and the real 3D data
was greater than a given threshold. We removed all failed fittings, sometimes up to 23 percent (see
Tab.1: fitting cylinder 1, 1/4 visible and ¢ = 10%). Thus, the performance of the Algebraic fitting
is strongly affected by the particular realization of the noise, which is absolutely undesirable.

e TF is also affected by particular instances of the noise, but on a significantly lower level.

e The noise sensitivity of EF has a similar good performance. The cause for the instability of the EF
is the initialization.

3.3 Sample density

In the third experiment we examined the influence of the sample density. The cardinality of the 3D point
set was varied accordingly. On the basis of the MLPE for the several fittings (see Tab.2) it can be seen
that, with increasing the number of points, the fitting becomes a) more robust and b) less noise sensitive.
Note, not only is the absolute number of points important, but the point density is crucial.

However noise sensitivity increases with increasing occlusion for both TF and EF, so that the fitting
becomes altogether more unstable. Similar conclusions about AF as in Sec.3.1 and Sec.3.2 also apply
here.

3.4 Computational cost

The algorithms have been implemented in C and the computation was performed on a SUN Sparc ULTRA
5 workstation. The average computational costs in milliseconds per 1000 points for the three algorithms
are in Tab.3.

As expected. the AF and TF supply the best performance, because the EF algorithm requires a
repeated search for the point z; closest to x; and the calculation of the Euclidean distance. A quick
review of the values in Tab.3 shows that the computational costs increase if we fit an elliptical cylinder,
a circular or an elliptical cone respectively a general quadric. The algorithm to estimate the distance
by the closed form solution respectively the iterative algorithm is more complicated in these cases (cf.
Sec.2.1).

The number of necessary iterations is also influenced by the required precision of the LM algorithm
to terminate the updating process.

4 Conclusion

We revisited the Euclidean fitting of curves and surfaces to 3D data to investigate if it is worth considering
Euclidean fitting again. The focus was on the quality and robustness of Euclidean fitting compared with
the commonly used Algebraic fitting and Taubin’s fitting. Now, we can conclude that robustness and
accuracy increases sufficiently compared to both other methods and Euclidean fitting is more stable with
increased noise.

The main disadvantage of the Euclidean fitting, computational cost, has become less important due
to rising computing speed. In our experiments the computational costs of Euclidean fitting were only
about 2-19 times worse than Taubin’s fitting. This relation probably cannot be improved substantially in
favor of Euclidean fitting, but the absolute computational costs are becoming an insignificant deterrent
to usage, especially if high accuracy is required.



AF TF EF
[ w o] 10 p o] 10| [ p o] 1072

6/12 || [15.88+ 2.54](g.03) | [ 294+ 0.80] [1.17+ 0.30]

o 5/12| [29.73% 3.3y | [ 155+ 0.11] [ 0.86+ 0.06]

S 4/12 || [32.96+ 2.55](0.05) | [ 439+ 0.90] [ 2.30+ 0.68]
3/12 || [23.67+ 3.01](g.04) | [ 3.81 % 0.51] [ 155+ 0.12]

2/12 || [24.36 £ 1.51](g.06) | [ 6.86 £ 2.45] [ 437+ 1.63]

- 6/12 || [16.61 £ 2.42]g08) | [ 1.57 £ 0.17] [0.85% 0.11]
£ o 5/12 | [36.17+ 3.52]g17) | [ 3.524 1.40] [ 1.75+ 0.59]
T S 4/12 || [35.06 £ 2.70]00e) | [ 279+ 0.33] [ 1244 0.15]
£ 3/12 || [22.01+ 3.03](p.00) | [ 4.51+ 0.71] [ 1.68+ 0.16]
2/12 || [25.43+ 1.91] [ 410+ 1.17] [ 147+ 0.12]

6/12 || [16.85+ 3.00](0.08) | [ 1.61 £ 0.26] [0.72£ 0.03]

o 5/12 || [45.99+ 2.94]07) | [ 1.93+ 0.43] [ 0.734 0.04]

§ 4/12 || [38.38+ 2.81](p.15) | [ 3.30+ 0.76] [ 1.22+ 0.29]
3/12 || [19.79+ 2.52](g06) | [ 4.60+ 1.16] [ 2.05+ 0.56]

2/12 || [24.28+ 1.64](0.07) | [ 222+ 0.28] [ 1.30+ 0.08]

6/12 || [23.27+ 0.9§] [ 7.08+ 0.24] [410+ 0.32]

o 5/12 || [20.05+ 1.94] [ 7.824 0.56] [ 3.72+ 0.22]

S 4/12 || [25.19+ 1.30] [10.55 + 0.62] [ 4.66+ 0.28]
3/12 || [21.12+ 1.85](g.04) | [17.10£ 1.68] [ 718+ 0.87]

2/12 || [38.13+ 2.77)o.1r) | [24.7T4+ 2.86] [ 790+ 0.81]

o 6/12 || [25.84 £ 1.28](g.05) | [ 7-11£ 0.31] [3.97+ 0.39]
5 o 5/12 || [20.19+ 1.59] [ 7.60+ 0.37] [ 3.33+ 0.19]
T S 4/12|[ [25.11+ 0.89] [ 8.37+ 0.40] [ 423+ 0.17]
£ 3/12 || [20.61+ 1.33](g.06) | [14.82+ 1.21] [ 8.27+ 1.03]
2/12 || [38.37+ 2.73]p.10) | [21.61 £ 1.76] [ 6.66+ 0.84]

6/12 || [24.30£ 1.11J(g.09) | [ 6.39£ 0.17] [3.74+ 0.29]

o 5/12 | [18.95+ 0.82](p.02) | [ 7.03+ 0.32] [ 3.084 0.17]

S 4/12 | [27.31+ 0.87] [ 798+ 0.34] [ 4.36+ 0.16]
3/12 || [20.31+ 1.02](.06) | [14.92+ 1.50] [ 5.36+ 0.79]

2/12 || [35.16 £ 2.15](9.05) | [24.90 £ 1.76] [ 8.82+ 1.21]

Table 2: Mean squares error for cylinder fitting by varied sample density. The density was 500, 1000,
and 2000 3D points. Gaussian noise was o = 5%. For AF' the percentage of failed fittings is given as a
footnote.
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