
Eu
lidean Fitting RevisitedPetko Faber and Bob FisherDivision of Informati
s, University of Edinburgh,Edinburgh, EH1 2QL, UKnpf|rbf�dai.ed.a
.ukAbstra
tThe fo
us of our paper is on the �tting of general 
urves and surfa
es to 3D data. In the pastresear
hers have used approximate distan
e fun
tions rather than the Eu
lidean distan
e be
auseof 
omputational eÆ
ien
y. We now feel that ma
hine speeds are suÆ
ient to ask whether it isworth 
onsidering Eu
lidean �tting again. Experiments with the real Eu
lidean distan
e show thelimitations of suggested approximations like the Algebrai
 distan
e or Taubin's approximation. Inthis paper we present our results improving the known �tting methods by an (iterative) estimationof the real Eu
lidean distan
e. The performan
e of our method is 
ompared with several methodsproposed in the literature and we show that the Eu
lidean �tting guarantees a better a

ura
y withan a

eptable 
omputational 
ost.1 MotivationOne fundamental problem in building a re
ognition and positioning system based on impli
it 3D 
urvesand surfa
es is how to �t these 
urves and surfa
es to 3D data. This pro
ess will be ne
essary forautomati
ally 
onstru
ting CAD or other obje
t models from range or intensity data and for buildingintermediate representations from observations during re
ognition. Of great importan
e is the ability torepresent 2D and 3D data or obje
ts in a 
ompa
t form. Impli
it polynomial 
urves and surfa
es arevery useful representations. Their power appears by their ability to smooth noisy data, to interpolatethrough sparse or missing data, their 
ompa
tness and their form being 
ommonly used in numerous
onstru
tions. Let f2(~x) be an impli
it polynomial of degree 2 given byf2(~x) = p0 + ~x0 � ~p1 + ~x0 � ~P2 � ~x = 0; ~x 2 R2 or ~x 2 R3 : (1)Then, we only have to determine the set of parameters whi
h des
ribes the data best. The parameter es-timation problem is usually formulated as an optimization problem. Thereby, a given estimation problem
an be solved in many ways be
ause of di�erent optimization 
riteria and several possible parameteri-zations. Generally, the literature on �tting 
an be divided into two general te
hniques: 
lustering (e.g.[4, 6℄) and least-squares �tting (e.g. [2, 5, 7℄). While the 
lustering methods are based on mapping datapoints to the parameter spa
e, su
h as the Hough transform and the a

umulation methods, the least-squares methods are 
entered on �nding the sets of parameters that minimize some distan
e measuresbetween the data points and the 
urve or surfa
e. Unfortunately, the minimization of the Eu
lideandistan
es from the data points to a general 
urve or surfa
e has been 
omputationally impra
ti
al, be-
ause there is no 
losed form expression for the Eu
lidean distan
e from a point to a general algebrai

urve or surfa
e, and iterative methods are required to 
ompute it. Thus, the Eu
lidean distan
e hasbeen approximated. Often, the result of evaluating the 
hara
teristi
 polynomial f2(~x) is taken, or the�rst order approximation, suggested by Taubin [12℄ is used. However, experiments with the Eu
lideandistan
e show the limitations of approximations regarding quality and a

ura
y of the �tting results.The quality of the �tting results has a substantive impa
t on the re
ognition performan
e espe
iallyin the reverse engineering where we work with a 
onstrained re
onstru
tion of 3D geometri
 models ofobje
ts from range data. Thus it is important to get good �ts to the data.2 Fitting of algebrai
 
urves and surfa
esAn impli
it 
urve or surfa
e is the set of zeros of a smooth fun
tion f : Rn ! Rk of the n variables:Z(f) = f~x : f(~x) = 0g. In our appli
ations we are interested in three spe
ial 
ases for their appli
ations1



in 
omputer vision and espe
ially range image analysis: Z(f) is a planar 
urve if n = 2 and k = 1, it isa surfa
e if n = 3 and k = 1 and it is a spa
e 
urve if n = 3 and k = 2.Given a �nite set of data points D = f~xig, i 2 [1;m℄, the problem
xt

xidi

Figure 1: Eu
lidean distan
edist(~xi;Z(f)) of a point ~xi toa zero set Z(f)
of �tting an algebrai
 
urve or surfa
e Z(f) to the data set D is usually
ast as minimizing the mean square distan
e1m mXi=1 dist (~xi;Z(f))2 ! Minimum (2)from the data points to the 
urve or surfa
e Z(f), a fun
tion of the setof parameters of the polynomial. The problem that we have to dealwith is how to answer whether the distan
e from a 
ertain point ~xi toa set Z(f) of zeros of f : Rn ! Rk is the (global) minimum or not.The distan
e from the point ~xi to the zero set Z(f) is de�ned as the minimum of the distan
es from ~xito points ~xt in the zero set Z(f)dist(~xi;Z(f)) = min fk ~xi � ~xt k : f(~xt) = 0g : (3)Thus, the Eu
lidean distan
e dist(~xi;Z(f)) between a point ~xi and the zero set Z(f) is the minimaldistan
e between ~xi and the point ~xt in the zero set whose tangent is orthogonal to the line joining ~xiand ~xt (see Fig.1). As mentioned above there is no 
losed form expression for the Eu
lidean distan
efrom a point to a general algebrai
 
urve or surfa
e and iterative methods are required to 
ompute it.In the past resear
hers have often repla
ed the Eu
lidean distan
e by an approximation. But it is wellknown that a di�erent performan
e fun
tion 
an produ
e a very biased result. In the following we willsummarize the methods used to approximate the real Eu
lidean distan
e by the algebrai
 distan
e andan approximation suggested by Taubin ([12℄, [13℄).Algebrai
 �tting. The algebrai
 �tting is based on the approximation of the Eu
lidean distan
e betweena point and the 
urve or surfa
e by the algebrai
 distan
edistA (~xi;Z(f)) = f2(~xi) : (4)To avoid the trivial solution, where all parameters are zero, and any multiple of a solution, theparameter ve
tor may be 
onstrained in some way (e.g. [1, 5, 7℄ and [10℄). The pros and 
ons ofusing algebrai
 distan
es are a) the gain in 
omputational eÆ
ien
y, be
ause 
losed form solutions
an usually be obtained, on the one hand and b) the often unsatisfa
tory results on the other hand.Taubin's �tting. An alternative to approximately solve the minimization problem is to repla
e theEu
lidean distan
e from a point to an impli
it 
urve or surfa
e by the �rst order approximation[13℄. There, the Taylor series is expanded up to �rst order in a de�ned neighborhood, trun
atedafter the linear term and then the triangular and the Cau
hy-S
hwartz inequality were applied.distT (~xi;Z(f)) = jf2(~xi)jkrf2(~xi)k (5)Besides the fa
t that no iterative pro
edures are required, the fundamental property is that it is a�rst order approximation to the exa
t distan
e. But, it is important to note that the approximatedistan
e is also biased in some sense. If, for instan
e, a data point ~xi is 
lose to a 
riti
al point ofthe polynomial, i.e., krf2(~xi)k � 0, but f2(~xi) 6= 0, the distan
e be
omes large. This is 
ertainly alimitation.Note, neither the Algebrai
 distan
e nor Taubin's approximation are invariant with respe
t to Eu-
lidean transformations.2.1 Eu
lidean distan
eTo over
ome the problems with the approximated distan
es, it is natural to repla
e them again by thereal geometri
 distan
es, that means the Eu
lidean distan
es, whi
h are invariant to transformations inEu
lidean spa
e and are not biased. For primitive 
urves and surfa
es like straight lines, ellipses, planes,
ylinders, 
ones, and ellipsoids, a 
losed form expression exists for the Eu
lidean distan
e from a pointto the zero set and we use these. However, as the expression of the Eu
lidean distan
e to other 2nd order
urve and surfa
es is more 
ompli
ated and there exists no known 
losed form expression, an iterativeoptimization pro
edure must be 
arried out. For more general 
urves and surfa
es the following simpleiterative algorithm will be used (see also Fig.2):



1. Sele
t the initial point ~x[0℄t . In the �rst step we determine the initial solution by interse
ting the
urve or surfa
e with the straight line de�ned by the 
enter point ~xm and the point ~xi. By theinitial solution, the upper bound for the distan
e is estimated.2. Update the a
tual estimation ~x[k+1℄t = F (~x[k℄t ), k = 0; 1; 2; : : :. In the se
ond step a new solution isdetermined. The sear
h dire
tion will be determined by the gradient of the 
urve r(f(~x[k℄t )).~x[k+1℄t = ~x[k℄t + �[k℄rf �~x[k℄t � : (6)The method is an adaptation of the steepest des
ent method. As the result we get two possiblesolutions, ~x[k℄t and ~x[k+1℄t (
f. Fig 2), and we have to de
ide by an obje
tive fun
tion F , if ~x[k+1℄twill be a

epted as new solution.
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Figure 2: Steps to estimate the Eu
lidean distan
e distE(~xi;Z(f)) of a point ~xi to the zero set Z(f) ofan ellipse3. Evaluate the new estimation ~x[k+1℄t . The set of solutions is evaluated by the obje
tive fun
tionF(~xi; ~x[k+1℄t ;Z(f)) = min(distE(~xi; ~x[k℄t ); distE(~xi; ~x[k+1℄t ). If the distan
e from the new estimation~x[k+1℄t is smaller, we a

ept this as the new lo
al solution. Otherwise ~x[k+1℄t = ~x[k℄t and �[k+1℄ =���[k℄, � > 0. Then, the algorithm will be 
ontinued with step 2 until the di�eren
e between thedistan
es of the old and the new estimation is smaller then a given threshold. To speed up theestimation a 
riterion to terminate the updating may be used like e.g. k~x[k+1℄t � ~x[k℄t k � �d, ork � �k.2.2 Estimation error of surfa
e �tGiven the Eu
lidean distan
e error for ea
h point, we then 
ompute the 
urve or surfa
e �tting erroras distE(~xi;Z(f)). The standard least-squares method tries to minimize Pi dist2E(~xi;Z(f)), whi
h isunstable if there are outliers in the data. Outlying data 
an give so strong an e�e
t in the minimizingthat the parameters are distorted. Repla
ing the squared residuals by another fun
tion 
an redu
e thee�e
t of outliers. Appropriate minimization 
riteria in
luding fun
tions were dis
ussed in for instan
e [3℄and [14℄. It seems diÆ
ult to sele
t a fun
tion whi
h is generally suitable. Following the results givenin [11℄ the best 
hoi
e may be the so-
alled Lp (least power) fun
tion: Lp := jdistE(~xi;Z(f))j�=�. Thisfun
tion represents a family of fun
tions in
luding the two 
ommonly used fun
tions L1 (absolute power)with � = 1 and L2 (least squares) with � = 2. Note, the smaller �, the smaller is the in
uen
e of largeerrors. For values � � 1:2, a good error estimation may be expe
ted [11℄.2.3 OptimizationGiven a method of 
omputing the �tting error for the 
urves and surfa
es, we now show how to minimizethe error. Many te
hniques are readily available, in
luding Gauss-Newton algorithm, Steepest GradientDes
ent, and Levenberg-Marquardt algorithm. Our implementation is based on the Levenberg-Marquardt(LM) algorithm [8, 9℄ whi
h has be
ome the standard of nonlinear optimization routines. The LM method
ombines the inherent stability of the Steepest Gradient Des
ent with the quadrati
 
onvergen
e rate ofthe Gauss-Newton method. The (iterative) �tting approa
h 
onsists of three major steps:1. Sele
t the initial �tting P [0℄. The initial solution P [0℄ is determined by Taubin's �tting method.2. Update the estimation P [k+1℄ = FLM(P [k℄) using the Levenberg-Marquardt (LM) algorithm.3. Evaluate the new estimation P [k+1℄. The updated parameter ve
tor is evaluated using the Lpfun
tion on the basis of the distE(~xi;Z(f)). P [k+1℄ will be a

epted if Lp(P [k+1℄) < Lp(P [k℄) andthe �tting will be 
ontinued with step 2. Otherwise the �tting is terminated and P [k℄ is the desiredsolution.



3 Experimental resultsWe present experimental results 
omparing Eu
lidean �tting (EF ) with Algebrai
 �tting (AF ), andTaubin's �tting (TF ) in terms of quality, robustness and speed.3.1 RobustnessTo test the robustness of the proposed EF method, we used three di�erent surfa
e types: 
ylinders,
ones, and general quadri
s. Note that plane estimation is the same for all three methods. To enfor
ethe �tting of a spe
ial surfa
e type we in
lude in all three �tting methods the same 
onstraints whi
hdes
ribe the expe
ted surfa
e type. The 3D data were generated by adding isotropi
 Gaussian noise� = f1%; 5%; 10%; 20%g. Additionally the surfa
es were partially o

luded. The visible surfa
es werevaried between 1=2 (maximal 
ase), 5=12, 1=3, 1=4, and 1=6 of the full 3D 
ylinder (see Fig.4). In all our

a) b) c) d)Figure 3: View of the 3D data points for a 
ylinder (maximal 
ase) with added isotropi
 Gaussian noisea) � = 1%, b) � = 5%, 
) � = 10%, and d) � = 20%.experiments the number of 3D points was 5000. And �nally, ea
h experiment runs 100 times to measurethe average �tting error. The mean least power errors (MLPE 's) of the di�erent �ttings are in Tab.1.We determined the real geometri
 distan
e between the 3D data points and the estimated surfa
es usingthe method des
ribed in Se
.2.1. That means we 
al
ulated the MLPE for all �tting results on the basisof the estimated Eu
lidean distan
e. Otherwise, a 
omparison of the results will be useless. Based onthis table we evaluate the three �tting methods with respe
t to quality and robustness. The EF requires

a) b) c) d)Figure 4: View of the 3D data points of partially o

luded 
ylinders, a) 1=2 (maximal 
ase), b) 5=12, 1=3(see Fig.3b)), 
) 1=4, and d) 1=6. Added isotropi
 Gaussian noise � = 5%.an initial estimate for the parameters, and we have found that the results depend on the initial 
hoi
e.A qui
k review of the values in Tab.1 shows that the results of TF are better for initializing than the



results of AF. Maybe another �tting method 
an give a better initialization, but here we use TF be
auseof its advantages. As expe
ted, the TF and EF yield the best results respe
t with to the mean andAF TF EF[ � � ℄ � 10�2 [ � � ℄ � 10�2 [ � � ℄ � 10�2


ylinder1(rad
=50,length=5
00) �=1% 6=12 [ 9:06� 1:55℄(0:08) [ 1:14� 0:06℄ [ 0:71� 0:03℄5=12 [33:19� 3:90℄(0:22) [ 1:30� 0:13℄ [ 0:65� 0:04℄4=12 [44:91� 3:72℄(0:02) [ 2:75� 0:43℄ [ 0:72� 0:05℄3=12 [55:06� 2:04℄(0:08) [ 3:82� 0:80℄ [ 0:94� 0:11℄2=12 [58:05� 3:07℄(0:13) [ 3:94� 0:49℄ [ 1:30� 0:10℄�=5% 6=12 [14:80� 1:88℄(0:03) [ 1:32� 0:17℄ [ 0:62� 0:03℄5=12 [36:11� 2:21℄(0:14) [ 2:92� 0:13℄ [ 0:93� 0:12℄4=12 [25:56� 2:76℄(0:08) [ 5:27� 0:32℄ [ 1:35� 0:32℄3=12 [55:13� 3:50℄(0:02) [ 5:07� 0:75℄ [ 1:97� 0:45℄2=12 [55:93� 3:08℄(0:15) [ 4:13� 1:03℄ [ 2:34� 0:81℄�=10% 6=12 [10:44� 1:09℄(0:10) [ 2:05� 0:29℄ [ 0:97� 0:12℄5=12 [23:10� 3:47℄(0:18) [ 3:48� 0:74℄ [ 1:71� 0:63℄4=12 [37:76� 3:45℄(0:23) [ 3:90� 0:79℄ [ 1:78� 0:49℄3=12 [56:37� 2:73℄(0:09) [ 4:28� 1:04℄ [ 1:83� 0:34℄2=12 [58:46� 3:33℄(0:03) [ 8:98� 3:46℄ [ 3:02� 1:13℄�=20% 6=12 [15:34� 1:93℄(0:03) [ 2:38� 0:35℄ [ 1:09� 0:10℄5=12 [49:40� 3:18℄(0:13) [ 2:90� 0:56℄ [ 1:07� 0:07℄4=12 [55:61� 3:24℄(0:11) [ 3:69� 0:64℄ [ 1:41� 0:11℄3=12 [22:49� 2:66℄(0:10) [ 4:05� 0:95℄ [ 1:72� 0:38℄2=12 [41:37� 3:22℄(0:12) [ 9:20� 3:55℄ [ 3:00� 1:13℄


ylinder2(rad
=250,length=
500) �=1% 6=12 [26:68� 1:37℄(0:02) [ 6:40� 0:05℄ [ 4:26� 0:02℄5=12 [21:82� 0:96℄ [ 6:83� 0:13℄ [ 3:68� 0:21℄4=12 [25:39� 0:88℄ [ 7:28� 0:25℄ [ 4:12� 0:17℄3=12 [21:93� 1:76℄(0:01) [10:67� 0:74℄ [ 3:18� 0:48℄2=12 [25:80� 2:26℄ [23:24� 1:67℄ [ 5:43� 0:70℄�=5% 6=12 [25:31� 1:26℄(0:03) [ 6:67� 0:21℄ [ 4:73� 0:33℄5=12 [18:54� 0:83℄ [ 8:06� 0:71℄ [ 3:22� 0:18℄4=12 [25:32� 1:05℄ [ 8:38� 0:72℄ [ 5:26� 0:70℄3=12 [18:29� 1:10℄(0:07) [15:91� 1:60℄ [ 6:47� 1:08℄2=12 [40:08� 1:90℄(0:02) [25:38� 1:57℄ [ 8:88� 1:36℄�=10% 6=12 [26:27� 1:45℄(0:09) [ 6:71� 0:23℄ [ 3:99� 0:30℄5=12 [19:31� 0:84℄ [ 7:46� 0:48℄ [ 3:79� 0:45℄4=12 [27:33� 0:84℄ [ 8:19� 0:90℄ [ 4:11� 0:52℄3=12 [23:42� 1:92℄ [15:87� 1:70℄ [ 5:32� 0:85℄2=12 [31:89� 1:85℄(0:02) [25:68� 2:04℄ [ 7:15� 0:92℄�=20% 6=12 [24:74� 1:33℄(0:02) [ 6:80� 0:27℄ [ 3:49� 0:13℄5=12 [18:55� 0:87℄(0:07) [ 7:11� 0:56℄ [ 3:95� 0:33℄4=12 [27:08� 0:90℄ [ 7:43� 0:35℄ [ 5:24� 0:35℄3=12 [22:32� 1:36℄(0:04) [15:17� 1:79℄ [ 6:60� 0:91℄2=12 [35:18� 2:28℄(0:02) [38:71� 8:81℄ [11:30� 2:22℄Table 1: Least power error �tting 
ylinder 1 and 2. The visible surfa
es were varied between 1=2 (maximal
ase), 5=12, 1=3, 1=4, and 1=6 of the full 3D 
ylinder. Gaussian noise � was 1%, 5%, 10%, and 20%. ForAF the per
entage of failed �ttings is given in bra
kets. The number of trials was 100.standard deviation, and the mean for EF is always lower than for the other two algorithms. The resultsof AF are not a

eptable be
ause of their high values for mean and standard deviation. The results ofTF are mu
h better, 
ompared with the AF. But, in the dire
t 
omparison with the EF these resultsare also una

eptable. Furthermore, note that AF give sometimes wrong results whi
h means that the�tted 
urve or surfa
e typo does not 
ome up with our expe
tations. We removed all failed �ttings outof the 
onsiderations. The per
entage of failures is given as footnote in Tab.1. For TF and EF we hadno failures in our experiments.



3.2 Noise sensitivityThe se
ond experiment is perhaps more important and assesses the stability of the �tting with respe
tto di�erent realizations of noise with the same varian
e. The noise has been set to a relatively high levelbe
ause the limits of the three methods are more visible then. It is very desirable that the performan
e isa�e
ted only by the noise level, and not by a parti
ular realization of the noise. In Tab.1 the �'s and �'sare shown for four di�erent noise levels. If we analyze the table regarding noise sensitivity, we observe:� The stability of all �ttings, re
e
ted in the standard deviation, is in
uen
ed by the noise level ofthe data. The degree of o

lusion has an additional in
uen
e on stability. Parti
ularly serious isthe 
ombination of both high noise level( � � 20%) and strong o

lusion (visible surfa
e < 1=4).� AF is very unstable, even with a noise level of � = 1%. In some experiments with AF the �ttingfailed and the estimated mean least power error between the estimated surfa
e and the real 3D datawas greater than a given threshold. We removed all failed �ttings, sometimes up to 23 per
ent (seeTab.1: �tting 
ylinder 1, 1=4 visible and � = 10%). Thus, the performan
e of the Algebrai
 �ttingis strongly a�e
ted by the parti
ular realization of the noise, whi
h is absolutely undesirable.� TF is also a�e
ted by parti
ular instan
es of the noise, but on a signi�
antly lower level.� The noise sensitivity of EF has a similar good performan
e. The 
ause for the instability of the EFis the initialization.3.3 Sample densityIn the third experiment we examined the in
uen
e of the sample density. The 
ardinality of the 3D pointset was varied a

ordingly. On the basis of the MLPE for the several �ttings (see Tab.2) it 
an be seenthat, with in
reasing the number of points, the �tting be
omes a) more robust and b) less noise sensitive.Note, not only is the absolute number of points important, but the point density is 
ru
ial.However noise sensitivity in
reases with in
reasing o

lusion for both TF and EF, so that the �ttingbe
omes altogether more unstable. Similar 
on
lusions about AF as in Se
.3.1 and Se
.3.2 also applyhere.3.4 Computational 
ostThe algorithms have been implemented in C and the 
omputation was performed on a SUN Spar
 ULTRA5 workstation. The average 
omputational 
osts in millise
onds per 1000 points for the three algorithmsare in Tab.3.As expe
ted. the AF and TF supply the best performan
e, be
ause the EF algorithm requires arepeated sear
h for the point xt 
losest to xi and the 
al
ulation of the Eu
lidean distan
e. A qui
kreview of the values in Tab.3 shows that the 
omputational 
osts in
rease if we �t an ellipti
al 
ylinder,a 
ir
ular or an ellipti
al 
one respe
tively a general quadri
. The algorithm to estimate the distan
eby the 
losed form solution respe
tively the iterative algorithm is more 
ompli
ated in these 
ases (
f.Se
.2.1).The number of ne
essary iterations is also in
uen
ed by the required pre
ision of the LM algorithmto terminate the updating pro
ess.4 Con
lusionWe revisited the Eu
lidean �tting of 
urves and surfa
es to 3D data to investigate if it is worth 
onsideringEu
lidean �tting again. The fo
us was on the quality and robustness of Eu
lidean �tting 
ompared withthe 
ommonly used Algebrai
 �tting and Taubin's �tting. Now, we 
an 
on
lude that robustness anda

ura
y in
reases suÆ
iently 
ompared to both other methods and Eu
lidean �tting is more stable within
reased noise.The main disadvantage of the Eu
lidean �tting, 
omputational 
ost, has be
ome less important dueto rising 
omputing speed. In our experiments the 
omputational 
osts of Eu
lidean �tting were onlyabout 2-19 times worse than Taubin's �tting. This relation probably 
annot be improved substantially infavor of Eu
lidean �tting, but the absolute 
omputational 
osts are be
oming an insigni�
ant deterrentto usage, espe
ially if high a

ura
y is required.



AF TF EF[ � � ℄ � 10�2 [ � � ℄ � 10�2 [ � � ℄ � 10�2

ylinder1

500 6=12 [15:88� 2:54℄(0:03) [ 2:94� 0:80℄ [ 1:17� 0:30℄5=12 [29:73� 3:31℄(0:03) [ 1:55� 0:11℄ [ 0:86� 0:06℄4=12 [32:96� 2:55℄(0:05) [ 4:39� 0:90℄ [ 2:30� 0:68℄3=12 [23:67� 3:01℄(0:04) [ 3:81� 0:51℄ [ 1:55� 0:12℄2=12 [24:36� 1:51℄(0:06) [ 6:86� 2:45℄ [ 4:37� 1:63℄1000 6=12 [16:61� 2:42℄(0:08) [ 1:57� 0:17℄ [ 0:85� 0:11℄5=12 [36:17� 3:52℄(0:17) [ 3:52� 1:40℄ [ 1:75� 0:59℄4=12 [35:06� 2:70℄(0:06) [ 2:79� 0:33℄ [ 1:24� 0:15℄3=12 [22:01� 3:03℄(0:02) [ 4:51� 0:71℄ [ 1:68� 0:16℄2=12 [25:43� 1:91℄ [ 4:10� 1:17℄ [ 1:47� 0:12℄2000 6=12 [16:85� 3:00℄(0:08) [ 1:61� 0:26℄ [ 0:72� 0:03℄5=12 [45:99� 2:94℄(0:07) [ 1:93� 0:43℄ [ 0:73� 0:04℄4=12 [38:38� 2:81℄(0:15) [ 3:30� 0:76℄ [ 1:22� 0:29℄3=12 [19:79� 2:52℄(0:06) [ 4:60� 1:16℄ [ 2:05� 0:56℄2=12 [24:28� 1:64℄(0:07) [ 2:22� 0:28℄ [ 1:30� 0:08℄

ylinder2

500 6=12 [23:27� 0:98℄ [ 7:08� 0:24℄ [ 4:10� 0:32℄5=12 [20:05� 1:94℄ [ 7:82� 0:56℄ [ 3:72� 0:22℄4=12 [25:19� 1:30℄ [10:55� 0:62℄ [ 4:66� 0:28℄3=12 [21:12� 1:85℄(0:04) [17:10� 1:68℄ [ 7:18� 0:87℄2=12 [38:13� 2:77℄(0:17) [24:74� 2:86℄ [ 7:90� 0:81℄1000 6=12 [25:84� 1:28℄(0:05) [ 7:11� 0:31℄ [ 3:97� 0:39℄5=12 [20:19� 1:59℄ [ 7:60� 0:37℄ [ 3:33� 0:19℄4=12 [25:11� 0:89℄ [ 8:37� 0:40℄ [ 4:23� 0:17℄3=12 [20:61� 1:33℄(0:06) [14:82� 1:21℄ [ 8:27� 1:03℄2=12 [38:37� 2:73℄(0:10) [21:61� 1:76℄ [ 6:66� 0:84℄2000 6=12 [24:30� 1:11℄(0:02) [ 6:39� 0:17℄ [ 3:74� 0:29℄5=12 [18:95� 0:82℄(0:02) [ 7:03� 0:32℄ [ 3:08� 0:17℄4=12 [27:31� 0:87℄ [ 7:98� 0:34℄ [ 4:36� 0:16℄3=12 [20:31� 1:02℄(0:06) [14:92� 1:50℄ [ 5:36� 0:79℄2=12 [35:16� 2:15℄(0:05) [24:90� 1:76℄ [ 8:82� 1:21℄Table 2: Mean squares error for 
ylinder �tting by varied sample density. The density was 500, 1000,and 2000 3D points. Gaussian noise was � = 5%. For AF the per
entage of failed �ttings is given as afootnote.5 A
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