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ABSTRACT

This paper presents an algorithm for classification of non-
melanoma skin lesions based on a novel hierarchical K-
Nearest Neighbors (K-NN) classifier. The K-NN classifier
is simple, quick and effective. The hierarchical structure
decomposes the classification task into a set of simpler prob-
lems, one at each node of the classification. Feature selection
is embedded in the hierarchical framework that chooses the
most relevant feature subsets at each node of the hierarchy.
Colour and texture features are extracted from skin lesions.
The accuracy of the proposed hierarchical scheme is higher
than 93% in discriminating cancer and pre-malignant lesions
from benign lesions, and it reaches an overall classification
accuracy of 74% over five common classes of skin lesions,
including two non-melanoma cancer types. This is the most
extensive published result on non-melanoma skin cancer clas-
sification from colour images acquired by a standard camera
(non-dermoscopy).

Index Terms— skin lesion images, hierarchical frame-
work, K-NN classifier, skin cancer

1. INTRODUCTION

There are a considerable number of published studies on clas-
sification methods related to the diagnosis of cutaneous ma-
lignancies. Since 1987 the number of published papers has
increased every year and the significant progress that has oc-
curred in this field is demonstrated by the recent journal spe-
cial issue that summarises the state of the art in Computer-
ized analysis of skin cancer images and provides future di-
rections for this exciting subfield of medical image analy-
sis [1]. Different techniques for segmentation, feature extrac-
tion and classification have been reported by several authors.
Numerous features have been extracted from skin images, in-
cluding shape, colour, texture and border properties. Classi-
fication methods range from discriminant analysis to neural
networks and support vector machines. See Maglogiannis et
al. [2] for a review of the state of the art of computer vision
system for skin lesion characterisation. These methods are
mainly developed for images acquired by epiluminescence
microscopy (ELM or dermoscopy) and they focus on differen-
tiating melanocytic nevi (moles) from melanoma. Whilst this
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Fig. 1. Examples of skin lesion images used in this work
is undeniably important (as malignant melanoma is the form
of skin cancer with the highest mortality), in the “real-world”
the majority of lesions presenting to dermatologists for as-
sessment are not covered by this narrow domain. Most sys-
tems ignore other benign lesions and crucially the two most
common type of skin cancer (Squamous Cell Carcinomas and
Basal Cell Carcinomas).

Our key contribution is to focus on 5 common classes of
skin lesions: Actinic Keratosis (AK), Basal Cell Carcinoma
(BCC), Melanocytic Nevus / Mole (ML), Squamous Cell Car-
cinoma (SCC), Seborrhoeic Keratosis (SK). Some images are
shown in Fig. 1. Moreover, we use only high resolution colour
images acquired using standard camera (non-dermoscopy).

A large number of classifier combinations have been pro-
posed in the literature [3]. The schemes for combining mul-
tiple classifiers can be grouped into three main categories ac-
cording to their architecture: 1) parallel, 2) cascading, and 3)
hierarchical. In the hierarchical architecture, individual clas-
sifiers are combined into a structure, which is similar to a de-
cision tree classifier. The advantage of this architecture is the
high efficiency and flexibility in exploiting the discriminant
power of different types of features and therefore improving
the recognition accuracy [3]. The approach used in our re-
search falls within the hierarchical model. Our approach di-
vides the classification task into a set of smaller classification
problems corresponding to the splits in the classification hi-
erarchy. Each of these subtasks is significantly simpler than
the original task, since the classifier at a node in the hierarchy
need only distinguish between a smaller number of classes.
Therefore, it may be possible to separate the smaller num-
ber of classes with higher accuracy. Moreover, it may be
possible to make this determination based on a smaller set
of features. The reduction in the feature space avoids many
problems related to high dimensional feature spaces, such as
the “curse of dimensionality” problem [3]. The main idea
of feature selection is to choose a subset of input features



by eliminating features with little or no predictive informa-
tion. It is important to note that the key here is not merely
the use of feature selection, but its integration with the hier-
archical structure. In practice we build different classifiers
using different sets of training images (according to the set of
classification made at the higher levels of the hierarchy). So
each classifier uses a different set of features optimised for
those images. This forces the individual classifiers to con-
tain potentially independent information. Hierarchical clas-
sifiers are well known [4] and commonly used for document
and text classification, including a hierarchical K-NN classi-
fier [5]. While we found papers describing applications of
hierarchical systems to medical image classification tasks, to
the best of our knowledge only a hierarchical neural network
model has been applied to skin lesions [6]. They claim over
90% accuracy on 58 images including 4 melanomas. On the
other hand, only poor performance was reported relative to
the classification of melanoma using the K-NN method [7, 8].

2. FEATURE EXTRACTION

Here, skin lesions are characterised by their colour and tex-
ture. In this section we will describe a set of features that can
capture such properties.

Colour features are represented by the mean colours
µ = (µR, µG, µB) of the lesion and their covariance matrices
Σ. Let µX = 1

N

∑N
i=1Xi and CXY = 1

N

[∑N
i=1XiYi

]
−

µXµY where: N is the number of pixels in the lesion, Xi

is the colour component of channel X (X,Y ∈ {R,G,B})
of pixel i. In the RGB (Red, Green, Blue) colour space, the

covariance matrix is: Σ =
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work, RGB, HSV (Hue, Saturation, Value) and CIE Lab,
CIE Lch and Otha colour spaces were considered. Four nor-
malisation techniques were investigated to reduce the impact
of lighting, which were applied before extracting colour fea-
tures. In the end, we normalised each colour component by
dividing each colour component by the average of the same
component of the healthy skin of the same patient, because
it had best performance compared to the other normalisation
techniques. After experimenting with the 5 different colour
spaces, we choose the normalised RGB, because it gave
slightly better results than the other colour spaces.

Texture features are extracted from generalised co-
occurrence matrices (GCM), that are the extension of the
co-occurrence matrix [9] to multispectral images. Assume an
image I havingNx columns,Ny rows andNg grey levels. Let
Lx = {1, 2, · · · , Nx} be the columns, Ly = {1, 2, · · · , Ny}
be the rows, and Gx = {0, 1, · · · , Ng − 1} be the set of
quantised grey levels. Let u and v be two colour channels.
The generalised co-occurrence matrices are: P (u,v)

δ (i, j) =
#{((k, l), (m,n)) ∈ (Ly × Lx) × (Ly × Lx)|Iu(k, l) =
i, Iv(m,n) = j} i.e. the number of co-occurrences of the pair
of grey levels i and j which are a distance δ = (d, θ) apart. In

our work, the pixel pairs (k, l) and (m,n) have distance d =
5, 10, 15, 20, 25, 30 and orientation θ = 0◦, 45◦, 90◦, 135◦,
i.e. (m = k + d, n = l), (m = k + d/

√
2, n = l +

d/
√

2), (m = k, n = l+d), (m = k−d/
√

2, n = l+d/
√

2).
In order to have orientation invariance for our set of GCMs,
we averaged the matrices with respect to θ. Quantisation lev-
els NG = 64, 128, 256 are used for the three colour spaces:
RGB, HSV and CIE Lab. From each GCM we extracted
12 texture features: energy, contrast, correlation, entropy, ho-
mogeneity, inverse difference moment, cluster shade, cluster
prominence, max probability, autocorrelation, dissimilarity
and variance as defined in [9], for a total of 3888 texture fea-
tures (12 features × 6 inter-pixel distances × 6 colour pairs
× 3 colour spaces × 3 gray level quantisations). Two sets of
texture features are extracted from GCMs calculated over the
lesion area of the image, as well as over a patch of healthy
skin of the same image. Differences and ratios of each of
the lesion and normal skin values are also calculated giving 2
more sets of features. This gives a total of 4× 3888 = 15552
possible texture features, from which we extracted a good
subset. All features are normalised to zero mean and unit
variance.

The colour and texture features are combined to con-
struct a distance measure between each test image T and
a database image I . For colour covariance-based features,
the Bhattacharyya distance metric: BDCF (T, I) = 1
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is used,

where µT and µI are the average (over all pixels in the
lesion) colour feature vectors, ΣT and ΣI are the covari-
ance matrices of the lesion of T and I respectively, and
| · | denotes the matrix determinant. The Euclidean distance

EDTF (T, I) = ‖fTsubset − f Isubset‖ =
√∑S

i=1(fTi − f Ii )2

is used for distances between a subset of S texture features
fsubset, selected as described later. Other metric distances
have been considered, but gave worse results. We aggre-
gated the two distances into a distance matching function as
Dist(T, I) = w ·BDCF (T, I)+(1−w)·EDTF (T, I) where
w is a weighting factor that has been selected experimentally,
after trying all the values: {0.1, 0.2, · · · , 0.9}. In our case,
w = 0.7 gave the best results. A low value of Dist indicates
a high similarity.

3. HIERARCHICAL SYSTEM

The hierarchy is fixed a priori by grouping our image classes
into two main groups. The first group, hence called Group1,
contains lesion classes: Actinic Keratosis (AK), Basal Cell
Carcinoma (BCC) and Squamous Cell Carcinoma (SCC). The
second group, hence called Group2, contains lesions classes:
Melanocytic Nevus/ Mole (ML) and Seborrhoeic Keratosis
(SK). We note that AK, BCC, SCC, ML and SK are diagnostic
classes defined by dermatologists. The two groups were con-
structed by clustering classes containing images which were



visually similar at this first split. However we can give some
meaning to two groups observing that the first group com-
prises BCC and SCC that are the two most common types
of skin cancer and AK which is considered a pre-malignant
condition that can give rise to SCCs and sometimes can be vi-
sually similar to early superficial BCCs. In the second group
ML and SK are both benign forms of skin lesions having a
similar appearance. The class grouping leads to the hierarchi-
cal structure shown in Fig. 2. This structure makes a coarse
separation between classes at the upper level while finer de-
cisions are made at a lower level. As a result, this scheme
decomposes the original problem into 3 sub-problems.

DATABASE

GROUP 1 GROUP 2

AK BCC SCC ML SK

Fig. 2. Hierarchical organisation of our skin lesion classes

We perform feature selection for the three distinct K-NN
classifier systems, one at the top level, and two at the bottom
level. The top level classifier is fed with all the images in
the training set. It classifies them into one of the two groups.
The other two classifiers are trained using only the images
of the corresponding group (i.e. AK/BCC/SCC or ML/SK)
that have been correctly (when in the training stage) classi-
fied by the top classifier, and classifies them into one of the 2
or 3 diagnostic classes. A sequential forward selection algo-
rithm (SFS) is used for feature selection. The goal for choos-
ing features is the maximisation of the classification accuracy.
We used a weighted classification accuracy due to the uneven
class distribution of our data set. This is the rate with which
the system is able to correctly identify each class. Then we
take an average of these rates with respect to the number of
classes. Therefore our overall classification accuracy is de-
fined as 1

M

∑M
j=1

correctly classified(Cj)
number of test images(Cj) where M is the num-

ber of classes. A leave-one-out cross-validation method is
used during feature selection. Each image is used as a test
image, all the remaining images in the training set are ranked
according to their similarity index to the test image. Finally
the test image is classified to the class which is most frequent
among the K samples nearest to it. The features that max-
imise the classification accuracy over all the images in the
training set are selected among all the extracted features. At
the end, there will be three sets of features for the three clas-
sification tasks, one selected for the top classifier and two se-
lected for the subclassifiers. Note that, since every subnode
in the hierarchy has only a subset of the total classes, and
the subnodes each have fewer images, the additional cost of
feature selection is not substantially more than that of a flat
classification scheme.

In the classification phase all the test images are classified
through the hierarchical structure. Each image is first classi-

fied into one of the two groups by the top level classifier that
uses the first set of features. Then one of the classifiers of
the second level is invoked according to the output group of
the top classifier and therefore the image is classified in one
of the 5 diagnostic classes using one of the two other sub-
sets of features. A drawback of the proposed method is that
errors on the first classification level can not be corrected in
the second level. If an example is incorrectly classified at the
top level and assigned to a group that does not contain the
true class, then the classifiers at lower levels have no chance
of achieving a correct classification. An attempt to solve this
problem could be to use classifiers on the second level which
classify in more than the two or three classes for which they
are optimised. Our attempts in this direction show us that
not only these classifiers gave much worse results, but also
incur additional problems due to the very small number of
images wrongly classified in the first level, that makes the
classes more unbalanced.

4. RESULTS

Our image database comprises 960 lesions, belonging to 5
classes (45 AK, 239 BCC, 331 ML, 88 SCC, 257 SK). The
ground truth used for the experiments is based on the agreed
classifications by 2 dermatologists and a pathologist. Images
are acquired using a Canon EOS 350D SLR camera. Light-
ing was controlled using a ring flash and all images were cap-
tured at the same distance (∼50 cm) resulting in a pixel res-
olution of about 0.03 mm. Lesions are segmented using the
method described in [10]. Specular highlights have been re-
moved [11]. The features described in previous sections have
very different value ranges. To account for this, an objec-
tive rescaling of the features is achieved by normalising to
z-scores of each feature set. In addition, feature values out-
side the values at 5-95 percentiles have been truncated to the
5th or 95th percentile value, and the normalising µ and σ cal-
culated from the truncated set. The normalising parameters
were selected as constant over all experiments.

To assess performance, training and test sets were created
by randomly splitting the data set into 3 equal subsets. The
only constraint on otherwise random partitioning was that a
class was represented equally in each subset. A 3-fold cross-
validation method was used, i.e. 3 sets composed of two-
thirds of the data were created and used as training sets for
feature selection and the remaining one-third of the data as
the test set using the selected features for classification. Thus
no training example used for feature selection was used as a
test example in the same experiment. Three experiments were
conducted independently and performance reported as mean
and standard deviation over the three experiments. Classifica-
tion results when varying the value of K of the K-NN classi-
fiers have been evaluated [11]. Experiments also showed that
is reasonable to use 10 features [11].

The overall classification accuracy on the test set is
74.3 ± 2.5%, as shown in the right column of Table 1. The



Table 1. Average percentage accuracy of the three subclassi-
fiers and combined classifier over the three training sets and
test sets. Note that the Group1/2 results are only over the le-
sions correctly classified at the top level. On the other hand,
the full classifier results report accuracy based on both levels.

Top level Group1 Group2 Full classifier
Training set 95.7 ± 0.6 81.9 ± 3.6 91.9 ± 0.5 83.4 ± 1.4
Test set 93.9 ± 0.7 72.6 ± 2.4 86.2 ± 0.6 74.3 ± 2.5

Table 2. Comparison of the overall accuracy of the hierarchi-
cal and flat classifiers over the three training and test sets.

Flat KNN HKNN Flat Bayes Hierarc. Bayes
Training set 77.6 ± 1.4 83.4 ± 1.4 74.3 ± 2.2 81.9 ± 1.5
Test set 69.8 ± 1.6 74.3 ± 2.5 67.7 ± 2.3 69.6 ± 0.4

overall result also includes the ∼6% misclassified samples
from the first level. The accuracy of the top classifier and
the two subclassifiers at the bottom levels are reported in
Table 1. The values are the mean ± standard deviation over
the three training and test sets. Recall the top level classifier
discriminates between cancer and pre-malignant conditions
(AK/BCC/SCC) and benign forms of skin lesions (ML/SK).
Therefore, its very high accuracy (above 93%) indicates the
good performance of our system in identifying cancer and
potential at risk conditions.

In Table 2 we compare our results of our Hierarchical K-
NN classifier (HKNN) with the results obtained using a non
hierarchical approach, i.e. a flat K-NN classifier and a Bayes
classifier that use a single set of features for all the 5 classes.
The flat classifiers were trained using the same set of features
selected using the same SFS algorithm. Results of a hier-
archical Bayes classifier, having the same hierarchy as the
HKNN classifier and whose subclassifiers were trained using
the same set of features and the same SFS algorithm, are also
reported in the table. We see that the use of hierarchy gives
an improvement both over the training and test sets.

Table 3 shows the confusion matrix of the whole HKNN
system on the test images. This matrix has been obtained
from adding the three confusion matrices on the three test
sets, as they are disjoint. We note a good percentage of cor-
rectly classified BCC, ML and SK. The number of correctly
classified AK and SCC at a first glance looks quite low. This
is due to the small number of images in each of these two
classes. However most of the AKs are misclassified as BCC
and we should remember that AK is a pre-malignant lesion.
Also many SCC are classified as BCC which is another kind
of cancer. Therefore consequences of these mistakes are not

Table 3. Classification results: confusion matrix on the test
images. Rows are true classes, columns are the selected
classes.

AK BCC ML SCC SK
AK 7 27 1 9 1
BCC 2 210 6 14 7
ML 6 7 269 7 42
SCC 8 34 5 36 5
SK 9 8 33 8 199

as dramatic as if they were diagnosed as benign. An addi-
tional split in the hierarchy may improve results.

5. CONCLUSIONS

We have presented an algorithm (based on a hierarchical K-
NN classifier tree) for the classification of 5 common classes
of non-melanoma skin lesion. The performance (∼74%) is
not yet at the 90% level (achieved after 20+ years of research)
for differential diagnosis of moles versus melanoma. How-
ever, our work makes 2 key contributions:

1) These results are based only on normal colour images,
unlike the dermoscopy method, which requires a specialised
sensor.

2) Our multi-class classification method covers the ma-
jority of skin lesion types. This differentiates us from most
other approaches that concentrate on only two or three class
instances of the problem.
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