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Abstract. At-home health monitoring technologies have extensive use-
cases, including gait assessment, disease diagnosis, gait anomaly detec-
tion and disease severity quantification. Despite the volume of research
into this domain, novel machine learning models and data collection
pipelines are often benchmarked on curated datasets, collected in labo-
ratory conditions and annotated by specialists. This separation between
the experimental and practical domain is apparent in the lack of inter-
disciplinary work in the physical design of these systems. In this work,
a series of interviews with 10 healthcare professionals is conducted to
co-design an at-home gait monitoring system, with the initial prototype
informed by 3 focus groups of older adults. A series of recording exper-
iments are then conducted with the prototype in the homes of 10 older
adults to investigate its effectiveness and feasibility when subjected to
the conditions of genuine at-home data recording. With novel ST-GCN
based models achieving up to 0.93 f1 on the task of gait recognition us-
ing only data collected at home, it can be asserted that the developed
gait monitor prototype is capable of reliably collecting data of sufficient
quality to build accurate profiles of gait. This is achieved despite the
design concessions made in the interest of stakeholder acceptability and
the challenges presented by at-home gait data.

Keywords: Computer Vision · Gait Assessment · Health Monitoring.

1 Introduction

Gait-based health analysis is far from a new field of study. Before the advent of
machine learning, medical science has long known of the descriptive power of gait
to indicate a variety of health conditions [Khera and Kumar, 2020]. Research in
machine learning-based gait assessment has expanded, with multiple monitoring
paradigms from vision-based [Yan et al., 2018, Sabo et al., 2022, Yin et al., 2023],
wearables [Fernandes et al., 2018, Jung et al., 2023], and other sensors [Turner
and Hayes, 2019, Clever et al., 2022] emerging as a means of developing gait
assessment tools to diagnose disease and assess general health.

Despite the advances in this field, with multiple recent studies demonstrating
accuracy approaching clinical levels for disease diagnosis [Guo et al., 2022], dis-
ease severity assessment [Fernandes et al., 2018] and fall detection [Wang et al.,
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2020], much of this research is under-utilized. A common shortcoming in much of
the literature is the lack of multidisciplinarity [Lochhead and Fisher, 2025]. Most
technical papers are designed without any input from healthcare professionals,
with their participation often limited to the annotation of datasets [Lochhead
et al., 2025, Sabo et al., 2022]. As a result, many studies of end-users of older
adult care systems find that issues such as cost, stigma and impracticality are
often common features in these systems, with little to no consideration given for
these design barriers.

Presented in this work is a prototype at-home gait monitoring system, devel-
oped through both public and patient interaction (PPI) workshops with older
adults as well as qualitative interviews with healthcare professionals from a va-
riety of backgrounds associated with older adult care. The gait monitor proto-
type employs a similar data collection and pre-processing method to [Lochhead
and Fisher, 2025] to produce more reliable gait data despite the challenges of
recording in different homes with a single camera at different viewpoints. The
utility of the collected data is then evaluated via a supervised person-recognition
task across participants using the state-of-the-art machine learning model from
Lochhead and Fisher [2025]. The research question for this work can be defined
as “Can a prototype gait monitor system be developed that satisfies the technical
requirements to achieve clinical levels of gait recognition accuracy while satis-
fying the requirements identified by different groups of stakeholders that would
be likely to use this system in practice?”. The contributions of this work can be
summarized as follows:

– A prototype system for ambient at-home vision-based gait monitoring, co-
designed through a multidisciplinary approach with healthcare professionals.

– An analysis of the preferences of different healthcare professions (n = 10)
when considering the development of at-home health monitors.

– A co-designed output document developed to provide explainability to the
gait evaluation and hence greater usability and trustworthiness.

– An experiment and analysis of the prototype in the homes of older adults (n
= 10) to assess its effectiveness and utility in practice using the supervised
gait recognition task as the evaluation domain.

The literature on gait-based health monitoring is reviewed in Section 2. The
method of co-design employed for the design and implementation of the gait
monitoring system is then introduced (see Section 3.1), along with the structure
of the live experiment of the system (see Section 3.2). Then, the results of the
live experiment are discussed along with an analysis of the priorities of the
various healthcare professions during the design phase (see section 4). This work
concludes with a discussion on the successes and shortcomings of this research
and potential future work (see Section 5).
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2 Related Work

2.1 Analysis of Existing Live Studies

There is a growing volume of qualitative analysis of the opinions of older adults
and other end-users regarding various at-home monitoring technologies. The
most comprehensive reviews in this field are typically on the “Smart home”; de-
fined as a technological framework established in a synthetic or real home, in
which multiple overlapping monitoring and assistive technologies can be used
simultaneously [Liu et al., 2016, Majumder et al., 2017, Ghorayeb et al., 2021,
Wang et al., 2020]. [Majumder et al., 2017] investigates overlapping health mon-
itoring methods involving wearable sensors, focusing on the technical metrics
of these devices, such as the precision of the measurement. Although they do
not consult directly with prospective end users, they do identify issues such as
privacy and cost as potential factors that impact uptake and effectiveness.

The smart home review in [Ghorayeb et al., 2021] provides information on
the human aspect of the applicability of these technologies. Not only do they
identify commonly identified human barriers such as privacy and stigma, they
also identify potential solutions. For example, providing manual override buttons
for end users to “pause” the system to provide a greater feeling of control and
privacy. [Morita et al., 2023] identify that a possible root cause of the lack of
end-user analysis is that the majority of technical research into monitoring tech-
nologies lack a multidisciplinary approach. Although there exist some reviews in
the literature regarding the opinions of end-users, they did not find reviews of
articles on the opinions and preferences of healthcare professionals for at-home
medical monitoring devices. The findings in [Lochhead et al., 2025] concur with
this assessment and are able to qualitatively measure a significant drop in the
quality of outcomes of single-discipline versus multi-discipline research where
the goal is developing health monitoring systems for use in the real world. Using
their metric, they find single-discipline papers score on average 3.06/10 versus
5.43/10 for multidisciplinary work.

A vital component of this type of research is domain-specific experimentation
carried out in controlled settings. Although many ML-based approaches employ
pre-recorded videos annotated by experts [Sabo et al., 2022, Yan et al., 2018,
Guo et al., 2022] or use datasets crafted in a laboratory setting using simulated
gait anomalies [Yin et al., 2023, Ortells et al., 2018], there is a movement in
the research toward so-called “live studies”. These are studies in which the data
collected is of participants who belong to the target demographic of the system
and tested outside of the laboratory, typically in the participants’ own home.
For example, researchers in [Pais et al., 2020] conduct a year-long study using
ambient and wearable sensors for their ‘Domo’ system for monitoring various
daily events of older adults as a means of allowing nursing staff to more com-
prehensively monitor their health.
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2.2 Machine Learning and Visualization for Gait Analysis

Much of the recent literature on computerized gait analysis rely on ML solutions
using different data collection and representation paradigms, with the dominant
form of gait analysis using wearable sensors [Wang et al., 2021, Khera and Ku-
mar, 2020]. [Khera and Kumar, 2020] however, identifies a minority (12%) of
research in gait analysis for healthcare being carried out using computer vision-
based approaches.

One promising method for ML-based gait analysis employs the use of Spatio-
temporal Graph Convolutional Networks (ST-GCN) [Yu et al., 2017]. [Yin et al.,
2023] make novel contributions to both the data representation and the ST-GCN
itself. Their Spatio-temporal joint-adjacency GCN employs 3 streams: one for
joint co-ordinates, velocities and a third novel stream using the calculated vectors
between connected joints as bone angle representations. They also append the
ST-GCN with an attention module to achieve 93.17% accuracy in classifying gait
abnormalities on a dataset of healthy participants acting out various common
gait conditions (n = 22). Research in [Lochhead and Fisher, 2025, 2024], simplify
this general pipeline, reducing model sizes and input streams to achieve state-of-
the-art results on gait assessment (94.38% and 97.00% respectively) on systems
that are deployed to collect data using constraints not dissimilar to those likely to
be found in an at-home setting (single camera viewpoints, cluttered backgrounds,
no requirements for clothing, environmental obstacles).

An important component needed for gait analysis frameworks to be effective
is explainability. [Gupta et al., 2023] identifies several articles involving Parkin-
son’s diagnosis and severity estimation using interactive online tools that process
a variety of input modalities from brain imaging data to voice recordings. The
majority of this research provides little focus on visualizations for communicat-
ing specific findings, instead focusing on the interactive element of these tools,
such as chat-bots and web applications. In [Oliveira et al., 2018], researchers
utilize T-SNE to visualize the separation between different classes of data for
diagnosing Parkinson’s Disease. While this method is potentially more intuitive,
it still relies on prior knowledge of T-SNE to be understandable, and lacks input
from healthcare professionals regarding the practicality of these visualizations.
Researchers in [Jung et al., 2023] develop a novel segmented pie chart style vi-
sualization that explains specific abnormalities in gait. While their approach is
demonstrably more oriented toward being understandable to lay people, they
don’t indicate in the development of this methodology any input or analysis
from healthcare professionals to justify either their design choices or the data
categories they use in their outputs.

3 Methodology

3.1 Healthcare Professional Interviews

To achieve the first three contributions outlined in Section 1, the concerns re-
garding usability and acceptability must be addressed. Users for this device fall
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into two broad categories; healthcare professionals and patients. As identified
in the previous section, there exists a strong trend in the literature for assess-
ing the opinions and considerations of the latter group, with far less, if any, of
the former. To address this shortcoming, a series of interviews were conducted
to identify and address the key issues to consider from the point of view of
healthcare professionals for this at-home monitoring system. Before undertaking
these interviews, a series of 3 Patient and Public Involvement (PPI) workshops
were carried out to inform the development of an initial gait monitoring proto-
type, as well as an initial output document (see figure 1). This prototype served
as a demonstration during the interviews for healthcare professionals to base
their feedback on. These focus groups were semi-structured group discussions
in which gait monitoring technology was discussed, particularly their current
technical requirements. From this setting, participants provided opinions and
ideas regarding the creation of an acceptable gait monitor prototype. The most
prominent themes throughout these workshops were concerns around privacy,
stigma and a sense of burden. Each workshop had between 6-12 participants
and occurred between June 2022 to August 2023. Participants were recruited
from a variety of sources, namely age-related disease charities in the UK as well
as those recruited from University networks and local community groups in Ed-
inburgh. All participants were either an older adult (defined as >65 years of
age) or a caregiver of an older adult with an age-related disease (spouses and
children, for example). These initial workshop sessions formed the basis for the
initial prototype described in this section.

A total of 10 healthcare professionals were interviewed between August 2023
and February 2024. To maximize the descriptive power of the interview results,
people from a variety of disciplines related to older adult care were recruited. All
participants were currently working healthcare professionals, working with older
adults in a role where assessment of gait was part of their duties. The breakdown
of professions was: one Geriatrician, one care home nursing manager, two Nurses,
two care workers, one mental health Nurse, one Occupational Therapist, one
Physiotherapist and one junior Doctor.

The interviews were carried out 1-to-1 in the place of work of the healthcare
professional. The interviews lasted 30-45 minutes and consisted of two phases; a
presentation followed by a semi-structured conversation. The presentation pro-
vided a layperson breakdown of the gait monitor prototype and what the purpose
of the participant’s involvement is. They were given a high-level overview of the
gait monitoring software’s capabilities, concluding with a concept illustration of
the output gait analysis file that the gait monitor prototype could produce. See
figure 1 for a comparison of the version of the output used during the interviews
with the final version made after collating the feedback from the interviews.

The co-designed output document (figure 1) contains six sections of informa-
tion that could be produced by the data collected by the platform (see Section
4.2) along with two sections for the purposes of interpretability. From top to
bottom, left to right these are:
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Fig. 1: Comparison of the original demo output synthesized with input from PPI
workshops of older adults (left) and the final refined system output following
integrating the suggestions made by healthcare professionals (centre). The doc-
uments on the right illustrate the profession-specific documents.

1. Patient description: contains information about the data, namely the per-
son recorded, the dates of the recordings, the number of instances recorded
and a percentage metric summary of the system’s belief that the participant’s
gait has changed from a prior period of monitoring.

2. Patient image: an example frame of the patient to confirm the patient is
correct.

3. A legend for gait metrics: namely knee flexion, step height and width for
interpretability of sections 5 and 6.

4. Abnormality heatmap: darker spots indicating areas of greatest impor-
tance to the change in gait. The technology to produce this type of out-
put given limited graph-based gait input is demonstrated in [Lochhead and
Fisher, 2024].

5. Knee flexion chart: plotting the angle of the knee across one gait cycle
produces a chart which can be directly compared to the baseline.

6. A table of numerical attributes such as speed and step height:
‘likelihood of abnormality’ corresponds to the confidence score produced by
[Lochhead and Fisher, 2024] indicating the confidence in the system that the
most recent gait assessment is different from the prior session.

7. Timeline of irregularities: a heatmap that indicates the time of day that
abnormal gait events occur.

8. Location of irregularities: A heatmap overlay of a background example.
Taken by grouping the mean severity scores from [Lochhead and Fisher,
2024] by their position in the field of view, with the intention of illustrating
if abnormal gait events are being influenced by environmental obstacles.

After the presentation, the output file was left open for the participant to
refer to and a semi-structured conversation was conducted following the prompts
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outlined in Table 1 of the supplementary materials. The prompts were designed
to address two core themes: usability and acceptability. Users were asked about
their own opinions on the system and the output file it produced, specifically
the usability of the system and any issues surrounding convenience. They were
also asked which sections were and weren’t useful; opinions varied depending on
profession (see areas of divergence and consensus on this topic in section 4.2).
Lastly, the conversation was steered towards barriers to uptake both for them
and any theoretical issues they could foresee their patients encountering.

Following the interviews, the output file was updated from the original to a
refined version (see Figure 1 center) with the option for bespoke smaller versions
of the output (right) which were designed for different healthcare professions.
See Section 4.2 for an overview of these compressed output documents.

3.2 Live Study

To address the final contribution outlined in Section 1, a limited live study
with 10 older adults across 7 homes was conducted. Recordings were carried out
between March 2024 and March of 2025, with the participants all being over 60
and not suffering from any disease where impacted gait is a symptom.

The monitor was placed according to the preferences of the participant. The
prototype hardware consists of one Jetson Nano computing device and one Intel-
lisense RGBD camera. The participants were asked to pick somewhere in their
home to place the system, with the only requirement being that it was within
1m of an electrical socket. Minor edge-cases were accounted for when deploying
the system, such as avoiding large pictures of people/faces within the view of
the system. Hanging jackets or other clothing were also avoided from the field
of view of the device where possible to reduce the number of incorrect person
detection instances.

The recording system is designed to be lightweight and robust to edge cases
to satisfy the requirements for diverse recording environments. It runs automat-
ically upon activation of the Jetson Nano, meaning participants had the option
to activate/deactivate the system at will without requiring researcher input. Due
to the low computational power and storage capabilities of the Jetson Nano (less
than 32GB of memory and no on-board GPU), paired with having only a single
viewpoint from a single camera, a number of efficiency modifications were made
to the system (see Table 2 in the supplementary materials).

After quality assurance and preprocessing, all data are stored as gait graphs
with original images discarded to address privacy concerns. Once placed, the
system was left to run for between 3 and 7 days. All but 3 of the 10 participants
kept the device for the entire 7 days. After the agreed-upon time period, the
prototype was retrieved and the collected data transferred to a PC to process
the recordings into gait graph data via pose-estimation and outlier removal. The
refined data was then applied to a supervised gait-based person recognition task
to assess the data quality. The pre-processing stage removed many unsuitable
sequences, such as removing any sequences with more than one person in it or
sequences where the participant did not walk more than 50% of the way through
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the frame. This latter requirement was designed to account for camera placement
that was in the view of a seating area, to prevent the inclusion of participants
sitting down into the final dataset.

The recording system was based on the setup used in Lochhead and Fisher
[2025], in which the Jetson Yolov5 model was used for person detection Omidi
et al. [2021]. This model was implemented using the yolov5n weights, the smallest
available pre-trained configuration. The system is set to detect humans and
disregard any detections below 85% confidence. This configuration was found
to be sufficient to operate on the prototype gait monitor and account for the
majority of false detections. Positive detections of humans were then recorded
for 5 seconds and the resulting video was stored as an individual gait instance
for later processing into gait graphs.

Further data decimation, pose estimation and feature extraction was not
carried out at the edge; rather the collected data was transferred to a PC after
recording to maintain the frame rate of the gait monitor.

An automated video clip deletion system removed two prominent edge-cases;
if there is more than one person in the video clip and if the person fails to
traverse at least 50% of the field of view of the monitor. Despite these edge-case
detector algorithms removing around 12.5% of the data, a manual pruning phase
was still necessary, in which a researcher manually verifies the collected data to
be of sufficient quality. A significant volume of examples were removed (around
85% of the remainder). The most frequent reasons were people walking too close
to the camera preventing an accurate pose-estimation, other forms of occlusion,
environmental false positives (such as hanging jackets) and people who were not
the participant (usually visitors) appearing in frame.

Each model was trained using a 70:20:10 train, validation and test ratio for
120 epochs with mean, f1 and accuracy calculated across 5 stratified folds. This
matches the training setup used in [Lochhead and Fisher, 2025] and [Lochhead
and Fisher, 2024]. Given that person recognition performance is similar across
all datasets, it can be hypothesized that the at-home data is likely to be of
sufficient quality that gait abnormalities would be detectable when recording
and processing at-home data that exhibited genuine abnormalities.

4 Results

This section first addresses the analysis of the opinions of healthcare professionals
on the usability and acceptability of home health monitoring technology. The
goal of this analysis is to determine whether the developed prototype is both
acceptable from an older adult’s point of view whilst still capable of collecting
enough quality data to perform accurate gait analysis. An assessment of the
collected gait data is then performed using a supervised gait recognition task to
establish the quality of the collected data using the prototype.
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Table 1: Overview of the most prominent sources of praise and concern identified
during the interviews with the healthcare professionals.
Praise Concern

System is likely to be acceptable to a
wide range of people within the age de-
mographic.

From a design POV, the initial color scheme is
not friendly to the color-blind, and the green-
blue range suggests green-good, whereas the
model is only supposed to indicate change.

System is clearly unobtrusive and easy
to manage, not requiring training or
maintenance. This is especially clear
upon briefing by a researcher about the
nature of the data collected.

There were mutually exclusive metrics of in-
terest to one but not necessarily all groups.
For example, knee-flexion was of interest to
the Physiotherapist but not the Care workers,
leading to unnecessary report content.

The output document is largely intu-
itive and contains at least some impor-
tant and easily interpretable data for
each healthcare discipline.

The length of the output may make real-life
use difficult, as GPs, Nurses, and Care work-
ers all highlighted the limited amount of time
they’d have to analyze the results.

The system can be positively conveyed
as a means for older adults to look af-
ter themselves rather than a device to
monitor them for healthcare teams.

More attention should be afforded to develop-
ing a system that accommodates those who are
less confident using novel technology or more
reluctant to use it.

4.1 Analysis of Healthcare Professional Interviews.

Table 4.1 lists the key points of praise and concern for the existing system from
the point of view of healthcare professionals. Participants were universally sup-
portive of the robustness of the system using only one camera and not requiring
user input or maintenance. In four interviews, comparisons were drawn between
this system and monitoring systems that participants already had experience
with. A common concern was how often these systems are deemed ineffective
due to the burden on the patient to remember to charge or carry the system.
Other areas of support included the design of the output document being in-
tuitive, the metrics the collected data can produce and the potential for this
system to improve the precision of care.

Multiple common concerns are also identified, for example the color scheme of
the output document with respect to color-blind users. Other concerns included
the need for additional training to use the system and concerns with uptake
due to societal concern about AI and privacy. Different comments were made
following a common theme; namely that certain portions of the output file were
less useful than others to specific disciplines. One participant made the following
recommendation:

The knee-flexion part and the numerical metrics aren’t terribly important
to me, and I would worry that having the time to even glance at this entire
document wouldn’t be feasible.



10 C. Lochhead et al.

This reflects a trend identified in other interviews that the output document
could be optimized and that certain sections were only useful to certain pro-
fessions. For example, the knee-flexion portion was only viewed as useful by
participants with a background in physiotherapy and medical doctors were most
prominently in favor of the table of numerical output metrics. One criticism
made by a participant with a background in NHS governance and management
concerned ethical barriers to uptake in application:

NHS technology governance and data sharing regulations could cause
problems if you wanted to integrate something like this into current meth-
ods of care.

This concern was borne out of the manner of data collection, being an at-home
monitor capable of recording raw images of people’s faces and the interiors of
their homes. More specifically, there was concern surrounding the first section of
the output document revealing a person’s face and living space which end-users
may wish to opt out of.

The changes in the output document from the one shown to healthcare pro-
fessionals during the interviews to its final iteration are illustrated in Figure 1. A
domain-specific modular design is adopted, producing smaller bespoke outputs
produced for different healthcare professions. The color scheme has been changed
to be monochromatic to address legibility concerns for color-blindness and com-
municate that changes in gait are not necessarily negative. For example, changing
gait in someone recovering from a broken hip would likely be a positive indica-
tor whereas it would be negative in someone suffering from a dementia-related
illness. How to interpret any changes in gait is the domain of the healthcare
professional, so it was deemed appropriate design practice to avoid any aspects
of design which may impact a users’ assessment of the data. The content that
appears in each domain-specific output was compiled from consensus from each
profession. Knee-flexion charts for example appear only for Physiotherapy where
they were explicitly commented on positively. The prototype system itself was
modified based on these healthcare professional interviews. Firstly, the minimum
original recording time was reduced from 5 days to 3 days from the initial pro-
posal. This was due to the consensus that 3 days is considerably easier for the
patient and will produce more than the estimated 10 gait instances required to
build a gait profile to support supervised person recognition. When installing
the system, the decision was also made to take additional equipment, namely a
keyboard and monitor to demonstrate to the end-user in the live study what was
being recorded and showing them examples of the data that would ultimately be
retained. A universal thread of contention in the interviews was effectively com-
municating the data recording methodology to make people more comfortable
with the system and feel more in control.
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Fig. 2: Flow diagram of the decimation process to obtain high quality gait exam-
ples from the domestic environments. The stated mean refers to the mean per
participant.

4.2 Utility of the At-home Monitor

The gait monitor system was designed to satisfy a series of requirements derived
from the healthcare professional interviews, a summary of which is available in
Table 3 of the supplementary materials.

The data collection phase was carried out with the goal of ensuring the
collection of quality data with as little intrusion as possible into the lives and
comfort of the older adult participants.

Table 2: Mean f1-scores across models on the 5-fold gait assessment (Gait) and
person recognition (Person) tasks. Top performance in each column highlighted
in bold. Performance on the At-home dataset is comparable to those on the
synthetic gait anomaly datasets.

Model WeightGait Pathology Shoe At-home
(Gait) (Person) (Gait) (Person) (Gait) (Person) (Person)

K-means 0.34 0.21 0.07 0.18 0.1 0.14 0.09
Logistic Regression 0.53 0.75 0.44 0.89 0.11 0.96 0.63
ST-GCN 0.91 0.97 0.89 0.90 0.72 0.97 0.94
ST-JAGCN 0.83 0.96 0.89 0.94 0.72 0.96 0.93
ST-TAGCN 0.92 0.96 0.91 0.90 0.74 0.96 0.93

Across the homes of 10 participants, 2153 example walking instances were de-
tected and deemed of sufficient quality by the monitoring system over a recording
period of between 3-10 days (see Figure 2).

After the unusable video clip deletion process was completed, the image data
were converted into gait graphs of the format detailed in [Lochhead and Fisher,
2025]. These gait graphs were then normalized, scaled and outliers removed.
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Despite the large volume of low-quality or false positive data, a mean 32 instances
of regular gait were detected per person (minimum=13, maximum=69).

The right-hand column of Table 2 gives the results on the at-home data on
the person recognition task. Person recognition in this context is defined as clas-
sifying which person each gait graph instance belongs to. This was carried out
using a variety of both simple (K-means, Logistic Regression) and more com-
plex models used in gait recognition and assessment (namely ST-GCN based
neural networks). Each model was tested using the format of gait graph they
were originally designed for (e.g. ST-GCN uses a joint co-ordinate input stream,
ST-TAGCN uses a joint velocity stream). With an average f1 score of 0.93 using
a basic ST-GCN, there is a strong indication that different gaits in this dataset
fall within the range of discernability (0.90 - 0.97) compared to similar synthetic
gait datasets. This demonstrates that at-home data is sufficiently rich to dis-
tinguish distinct gait patterns, suggesting the potential for such technology to
be applicable to downstream gait assessment tasks. There was concern that the
model may prioritize learning the differences in walking pattern in the different
environments rather than gait to distinguish between people (e.g. walking di-
rection), however ablations on the 3 sets of 2 participants who live in the same
home demonstrated between 0.91-0.93 f1 on the binary person recognition task,
supporting the assertion that the model is distinguishing classes by gait patterns
rather than environmental patterns.

5 Discussion

This research introduced a prototype system for low-cost, effective and robust
at-home gait monitoring, supported by PPI with focus groups of older adults,
a co-design phase with a variety of healthcare professionals (n = 10) and a pi-
lot study for data collection conducted on healthy older adults inside their own
homes (n = 10). The results indicate that such a system can be acceptable to a
broad range of stakeholders, allowing them to integrate such a system into their
methods of care. It is also observed that the data collected within the constraints
of a single camera, a minimum of 3 days of recording time and limited computa-
tional power storage is capable of producing high quality gait graph data. This
data is verified as being of sufficient quality using the supervised person recog-
nition task across a total of four datasets, where a variety of models produce
comparable results both on controlled gait datasets and the at-home dataset
produced in this research. As more data per person (on average) was collected
than was used in [Lochhead and Fisher, 2025] for a specific gait profile (32 vs 10
instances per person) as well as achieving 0.94 mean f1 on the supervised gait
recognition task, the likelihood of this system being able to detect and quantify
changes in a person’s gait over time is high. The logical next step is to produce
a more longitudinal study featuring multiple 3 day recording sessions per person
over a period of months, using participants either recovering from injury or suf-
fering from age-related degenerative diseases like Parkinson’s to determine the
effectiveness of this system at supporting continuous gait assessment.
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There are some shortcomings in this research, the first of which is the limited
number of participants for both the co-design phase and live study. Conducting
multiple visits to each participant to build multiple gait profiles over time would
also further solidify the claim that the data is high enough quality to consis-
tently recognize a person’s gait. This could be compared with ground truths of
participants recorded in a neutral location to ascertain if the specificity of the
person’s home plays a part in the high accuracy of person-recognition as opposed
to simply their gait. This however is unlikely, given that all gait graphs are 3D
and as such should be largely viewpoint invariant.
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