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AbstractÐWe present a method for estimating the viewpoint from which a 3D

image has been taken using a central-projection range sensor. We assume we

have the 3D coordinates of the points, organized with a known topology, but

considerable noise is present in the data. At points in the scene where there are

surface discontinuities, we estimate step rays through a linear interpolation. The

viewpoint is found as the point of minimum distance to the set of step rays. To

cope with noise, we define an unbiased distance measure. The minimization of the

sum of distances provides the viewpoint. We present results of several

experiments carried out with 3D images of an old church.

Index TermsÐRange images, viewpoint.

æ

1 INTRODUCTION

WITH the introduction of long range, wide angle, laser-based range
sensors, three-dimensional images are becoming more and more
available to the scientific community and to the general public. On
the Internet, one can already find collections of three-dimensional
models made of polygons or raw three-dimensional images
consisting of a matrix of 3D points.

Three-dimensional images consist of a point cloud or can be
arranged as a matrix, but usually there is no information available
about the sensor: field of view, angular resolution, viewpoint, etc.

Furthermore, even if one has the range sensor, it is possible that
it does not provide all this information. The coordinate system
origin of the 3D points is not necessarily the sensor origin. Or, even
if the extrinsic parameters of the sensor are known (the exact
position and orientation of the tripod where the sensor is
mounted), the transformation from the extrinsic coordinate system
to the true sensor origin (viewpoint) is often unknown.

This latter information, the viewpoint, is probably the most
important one since, as we assume the 3D coordinates of the point
cloud and neighborhood relationships between points in the
3D image are known, knowing the viewpoint allows us to infer
other information, such as the aperture of the field of view, sensor
orientation, or angular resolution. It also allows deduction of
occlusion relationships, rejection of outliers, etc.

Three-dimensional images, like intensity images, are noisy [1].
For example, the 3D coordinates of the points may be computed by
reading in information from the line scanning device (which
deflects the laser beam horizontally by rotating a mirror) or from
the tilt head (which modifies the azimuth angle of the rotating
mirror). If the readings from the motor encoders are mistaken, it
may result in a big angular drift of the points being scanned. The
depth may be quite correct, but the point location in space is not.

Time-of-flight or phase-based range sensors also include depth
error along the line of sight of each scanned point, usually
categorized as Gaussian noise of zero mean and a certain standard

deviation. The deviation, of the order of cm for some sensors [2],
can be comparable to the scene structure at some areas.

Triangulation sensors have both range and direction errors
from sensor noise and imprecision in locating corresponding
features.

If we know the viewpoint, we can predict the pan (tilt) angle of
each column (row) and discard or correct outliers, that is, put
drifted points back in place.

In this work, we assume the 3D image has been taken with a
central-projection range sensor with geometry, as shown in Fig. 1.
As can be seen, in this geometry all rays start from the center of the
mirror. We also assume that enough structure (surface disconti-
nuities) exists in the scene to allow us to estimate view directions.
So, the method would not work if the scene is just a plane (a wall,
for example).

Made explicit, our assumptions are:

. Enough depth discontinuities exist and are in random
positions.

. The depth discontinuity lines of sight intersect at the
viewpoint.

The question we address is: Is it possible to deduce the

viewpoint given a 3D image ? We show that it is possible to do
this accurately. We know of no previous work addressing this
problem, hence, there are only a few references in this paper.

2 VIEWPOINT DETECTION

If we knew the line-of-sight ray (view ray) from the center of
scanning to some scanned points, then the viewpoint could be
easily computed from a number of rays. In theory, two rays are
enough to compute it since all rays intersect at the viewpoint, but if
we acquire more than two rays, the viewpoint can be computed by
minimization as the point of minimum distance to all these rays.

The problem is then to estimate the view rays at a number of
points in the 3D image by some geometric-based technique. Once
we acquire a set of estimated view rays, we have the problem of
fitting a model (the position of the viewpoint) to a set of noisy data
(the estimated view rays) in the presence of outliers. Several fitting
methodologies exist to address this problem [3], [4], [5], [6]. We
have applied (and discussed) one of them, the Random Sample
Consensus (RanSaC) [3]. Here, the model fit is the estimated
viewpoint and the set of consensual data are the rays that agree
with the model.

It is easy to estimate view rays at points where the scanned

surface has a depth discontinuity we call these rays step rays. Fig. 2

illustrates how a depth discontinuity can be detected. The distance d

between two adjacent scanned points is d � a
cos  , where a can be

approximated for small angular resolutions by the arc length at a

point between the two scanned points (Fig. 2 (left)). a � �r, where �
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Fig. 1. Pan-tilt range sensor geometry.
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is the angle between the lines of sight of the two scanned points and r

is the average distance to the viewpoint. Then, d � �r
cos  . A common

characteristic of range sensors is that they cannot observe surfaces

viewed with an angle between the line of sight and the surface

normal bigger that a limiting value (max). So, if the two scanned

points belong to the same surface, which is locally smooth in the area

between them, the maximum distance between these points will be

dmax � �maxrmax
cos max

. Fig. 2 (right) shows two scanned points belonging to

different surfaces; the distance between them is now expected to be

much bigger.
In order to set a threshold h to select step rays, we have to

compute dmax. This can be done by estimating the maximum

angular resolution of the sensor, �max, the maximum distance to

the surfaces in the scene, rmax, and the maximum view angle of the

sensor, max. For this task, knowledge of the sensor and of the

scene will help.
For example, assuming a maximum distance rmax of 20 meters,

a maximum viewing angle max of 45 degrees, and an angular

resolution �max of 20 steps per degree, we have

dmax � � �

180 20
rad��20 meters� 1

cos �45 deg� � 0:024 meters � 2:4 cm:

So, we can use a distance threshold of h � 24 cm (one order of

magnitude above dmax, for example).
Assume1 that a 3D image is a matrix �~prow;col� (row 2 �0::M ÿ 1�,

col 2 �0::N ÿ 1�), where ~pi;j � �xi;j; yi;j; zi;j�0. The method to detect

step rays is:

. Traverse the 3D image row by row and select a horizontal
step ray if the distance from ~pi;j to ~pi;j�1 is bigger than a
threshold h.

. Traverse the 3D image column by column and select a
vertical step ray if the distance from ~pi;j to ~pi�1;j is bigger
than a threshold h.

The direction of a step ray is computed by estimating the point

where the surface would have been scanned if a discontinuity had

not occurred. Fig. 3 illustrates how this point is computed by a

linear interpolation. As shown, a horizontal step ray ~hi;j�1 at point
~pi;j�1 is computed as:

~hi;j�1 � ~pi;j�1 � ��b~pi;j�1 ÿ~pi;j�1�; �1�
where � is the parameter that expands the ray, and b~pi;j�1 is the

interpolated point, computed as b~pi;j�1 � ~pi;j � �~pi;j ÿ~pi;jÿ1�.
Similarly, a vertical step ray ~vi�1;j at point ~pi�1;j is computed as:

~vi�1;j � ~pi�1;j � ��b~pi�1;j ÿ~pi�1;j�; �2�
where now b~pi�1;j � ~pi;j � �~pi;j ÿ~piÿ1;j�.

From the set of step rays (horizontal and vertical), the
viewpoint is computed as the point of minimum distance to a

subset S of rays such that the size of S is bigger than a threshold n
and the distance from each ray in S to the viewpoint is smaller
than a threshold t. These are the consensual rays.

For selecting the subset S, we use RanSaC [3], an algorithm for
general model fitting and consensus selection in noisy data.

Among the most established fitting and data association
methodologies, RanSaC is a robust and simple one. Its main
criticism may be that it is a classify-then-fit approach, while it has
been reported that a classify-while-fit approach [6] is more well-
suited for multiple-model problems. In this case, we only have one
model and the data has to be classified as belonging or not to the
model. The model is found by minimization using all the data that
has been previously classified by a minimum amount of randomly
selected sample data.

Despite the years passed since RanSaC was reported, its
approach remains valid for many applications. Its simplicity is
also something to take into account. Other alternative methods
include the ones based on Robust Statistics [7], [4], [5]. Here, all the
data is used to find the model by minimization using a measure of
distance that tends to minimize the influence of outliers (i.e., data
that are at a relatively far distance from the model). As stated in [6],
all these methods trade robustness for accuracy and fail when the
number of outliers increases to more than 50 percent, which could
really be the case in our problem.

With RanSaC, the user can fix the minimum number of correct
data to produce a valid model, as well as the accuracy. We believe
this is an advantage in the present problem.

A short review of RanSaC is as follows: LetA be a set of data and
m be the minimum number of data needed to compute a model.

Repeat for a maximum number of times

Select m data at random from A

Compute an exact model from the m selected data

Put the elements in A whose distance to the model

is smaller than a threshold t into subset S

If cardinal�S� is bigger than a threshold n, exit

loop

End of Repeat

Compute the model from all the elements in S by

minimization

In our case, the minimum number of data to compute the model
(viewpoint) is two rays, m � 2. From two rays, the model is also
computed by minimization, as it is from any number of rays. Once
a viewpoint is estimated from two sample rays, to check if other
rays agree with the model, we compute the distance from each step
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Fig. 2. Two consecutive points P1, P2, scanned on the same surface (left) and on different surfaces (right).

1. It is not necessary to have a regular array to apply this method. All that
is required is knowing the topological or neighborhood relations between
points. A regular matrix is the most common topology. Fig. 3. A step ray computed by linear interpolation.
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Fig. 4. Full 3D image (8; 000� 1; 400 points) of a church seen from above with the consensual step rays after applying RanSaC converging on the viewpoint in the center

of the church.

Fig. 5. Detailed 3D subimage (1; 000� 700 points) and consensual step rays after applying RanSaC. The true viewpoint is to the right.

Fig. 6. (a) Estimated centers for 10 test images. (b) Statistical analysis of the view point estimation in 10 test images. Dots are the mean distance from the consensual

rays to the estimated viewpoint. Bars indicate one standard deviation of the distances, added to and subtracted from the mean.



ray to the viewpoint. The threshold for this distance, t, can be set to
a value of a few (three, for example) orders of magnitude smaller
than the scene dimensions. If the scene extends to several meters, t
can be set to a few mm.

The threshold n, which indicates how many data are considered

sufficient to give a final solution to the model, depends on the

number of outliers present in the image. It is convenient to express

it as a fraction of the data size (step rays). In our experiments, we

have obtained satisfactory results with a value of 60 percent of the

total number of step rays detected. This figure has been set after a

few initial tests. It should be bigger for images with few outliers

and smaller for more noisy images.

3 ERROR ANALYSIS

Although the viewpoint is found by minimization of a distance

measure from the set of step rays, we may be introducing some

errors in the way these step rays are estimated, which may bias the

further estimation of the viewpoint.

As can be seen in Fig. 3, if the surface is not perpendicular to the

view direction, the linear interpolation of b~pi;j�1 from points ~pi;jÿ1

and ~pi;j will fall in the next ray, ~hi;j�1, only if the viewpoint is at

infinity. Otherwise b~pi;j�1 will fall before or after the real ray (from

~pi;j�1 to the viewpoint), depending on the surface orientation,

resulting in step rays estimated with too much or too little

inclination. This error is unavoidable since we do not know the

position of the viewpoint a priori, but we can consider that the

errors tend to cancel if the scene contains a big number of surfaces

with random orientations.

Let ~ri �i 2 �1::N �� be a set of rays, ~ri �~ci � �i~ni �i 2 �1::N ��,
where~ci is the starting point, ~ni is the direction vector, and �i is the

parameter that expands the ray.

In order to find the point of minimum distance to the set,

~v � �x; y; z�0, the standard procedure is to minimize the distance

from a point ~v to a line with respect to x, y and z.
The distance from a point to a line is expressed as:

di � k~ni � �~vÿ ~ci�kk~nik : �3�

The addition of the squared distances to all rays is:

D2 �
XN
i�1

d2
i : �4�

The point of minimum distance is that for which

@D2=@x � @D2=@y � @D2=@z � 0: �5�
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Fig. 7. RanSaC results on the 10 test images. (a) Number of iterations until the number of consensual rays exceeds the threshold (fixed at 60 percent of the total number

of step rays). (b) Consensus as a percentage of the total number of step rays. The threshold is pointed out as a dotted line.

Fig. 8. Estimation error as a function of the amount of data used to compute the viewpoint; the horizontal axis is the sector angle of the image. (a) Mean distance and

standard deviation (added and subtracted) from the consensual rays to the estimated viewpoint. (b) Distance from the estimated viewpoint to the ground truth.



If we assume that the 3D image points used to estimate the step

rays include Gaussian noise of zero mean and variance �2
0 on each

component, then~ci is a random Gaussian vector of a certain mean

and covariance �2
0I (I being a 3� 3 identity matrix). ~ni is a random

Gaussian vector of a certain mean and covariance �2
1I (�2

1 � 6�2
0)

since, from (1) and (2), ~ni � ÿ~pi;j�1 � 2~pi;j ÿ~pi;jÿ1 for horizontal

step rays or ~ni � ÿ~pi�1;j � 2~pi;j ÿ~piÿ1;j for vertical step rays.
To see if the expression in (3) is biased, we find its expectation,

resulting in:

E�d2
i � �

k~�ni � �~vÿ ~�ci�k2 � 2�2
0k~�nik2 � 6�2

0�
2
1 � 2�2

1k~vÿ ~�cik2

k~�nik2 � 3�2
1

; �6�

where the mean values ~�ci; ~�ni can be estimated by the measured

values, ~ci; ~ni (Maximum-Likelihood or Least-Squares criterion [8]).
So, instead of using (3), we minimize the unbiased distance

measure:

d2
unbiassed; i �

k~ni � �~vÿ ~ci�k2 ÿ 2�2
0k~nik2 ÿ 6�2

0�
2
1 ÿ 2�2

1k~vÿ ~cik2

k~nik2 ÿ 3�2
1

:

�7�
Taking the partial derivatives (5) of (7), we obtain a linear

system A~v � ~b, where

A �

PN

i�1
�n2

iy�n2
izÿ2�2

1� ÿPN

i�1
�nixniy� ÿPN

i�1
�nixniz�

ÿPN

i�1
�nixniy�

PN

i�1
�n2

ix�n2
izÿ2�2

1� ÿPN

i�1
�niyniz�

ÿPN

i�1
�nixniz� ÿPN

i�1
�niyniz�

PN

i�1
�n2

ix�n2
iyÿ2�2

1�

0BBBB@
1CCCCA �8�

and

~b �

PN

i�1
cix�n2

iy�n2
izÿ2�2

1�ÿ
PN

i�1
�ciynixniy�ÿ

PN

i�1
�ciznixniz�

ÿPN

i�1
�cixnixniy��

PN

i�1
ciy�n2

ix�n2
izÿ2�2

1�ÿ
PN

i�1
�cizniyniz�

ÿPN

i�1
�cixnixniz�ÿ

PN

i�1
�ciyniyniz��

PN

i�1
ciz�n2

ix�n2
iyÿ2�2

1�

0BBBB@
1CCCCA: �9�

Solving the system, we obtain the point ~v � �x; y; z�0 of

minimum distance to the set of rays.

4 RESULTS

We have checked the approach with 10 3D panoramic images

taken with a range scanner (LARA 12600, Zoller & Frohlich) [9]

inside an old church in Bornholm, Denmark. Each image is of
8; 000� 1; 400 points, the ground-truth viewpoint is known,
�0; 0; 0�0, and the extent of these images is of several meters.

Although we only have 10 images, the volume of data they
contain is considerable. The number of points used in the
experiments has been of 1:12� 108 and, by subsampling and
extracting subimages of smaller angular extent, we have used more
than 600 images in the tests.

Fig. 4 shows an overhead view of one of the test images with
the consensual step rays after applying RanSaC. The image covers
quite a big area and it is difficult to appreciate details in it. As can
be seen, the rays point at the viewpoint, in the center of the church.
Similar results can be seen in Fig. 5, but for a more detailed partial
view of the church containing some chairs. In fact, the method can
be used not only with panoramic images, but with whatever the
aperture of the field of view.

Fig. 6a shows the estimated view points for the test images. The
mean distances from these centers to the ground truth �0; 0; 0�0 is
1.26 mm and the standard deviation is 1.43 mm. Fig. 6b shows
plots with the mean distance from all of the consensual rays to the
estimated view point and the standard deviation of these
distances. Both figures are of the order of few mm.

Fig. 7 shows the number of iterations of the RanSaC algorithm
until the number of consensual rays exceeds the threshold
(60 percent of the total number of step rays) and the percentage
of consensual data found. The threshold value of 60 percent was
chosen running RanSaC first with a threshold of 100 percent (all
data should fit the model), and observing the different percentages
of consensual data obtained at each iteration.

To check the dependence of the approach with the amount of
data used, we ran two more experiments focused on using only
part of the data. In the first experiment, we used different sized
horizontal sectors of panoramic images, but with the same image
resolution. Fig. 8 shows the mean distance from the consensual
rays to the estimated centroid and their standard deviation, taking
different sector sizes from the panoramic image in Fig. 4. It also
shows the distance from the estimated viewpoint to the ground-
truth viewpoint. The method works well until the sector width
becomes quite small (about 20 degrees).

In the second experiment, we subsampled the test images using
one of every number of rows and one of every number of columns.
Since the step rays estimation (1) and (2) is based on assuming that
points ~pi;j and ~pi;jÿ1, or ~pi;j and ~piÿ1;j, belong to the same surface,
the method will start to fail when the subsampling rate is so big
that this assumption does not hold any more. The experiment used
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Fig. 9. Estimation error as a function of the amount of data used to compute the viewpoint; the horizontal axis is the subsampling rate (number of rows and columns

skipped). (a) Mean distance and standard deviation (added and subtracted) from the consensual rays to the estimated viewpoint. (b) Percentage of consensual data

found for every subsampling rate. As expected, the method finds less consensual data as the subsampling rate increases.



the same thresholds as the previous experiments, but we ran
RanSaC 1,000 to determine, for every subsampling rate, the biggest
number of consensual rays that we could use. Fig. 9 corresponds to
the subsampling of the panoramic image in Fig. 4. It shows how
the mean and standard deviation of the distances from the
consensual rays to the estimated viewpoint gradually increase
with the subsampling rate. Fig. 9 also shows how the number of
consensual rays decreases with the subsampling rate since, the
more we subsample, the less accurate the step ray estimation is.
This is probably the most indicative graph because, for problems
where we only have one model to fit (the viewpoint), we would
like to acquire the highest amount of useful data to compute the
model.

5 CONCLUSIONS

In this paper, we have applied a paradigm for model fitting in the
presence of outliers (RanSaC) to the problem of estimating the
viewpoint from where a 3D image has been taken, assuming a
central-projection range sensor.

We have used an approach to step ray detection based on first-
order interpolation. Step rays are the data used for model fitting
(viewpoint estimation). We have presented clues for setting the
parameters involved.

We have used an unbiased distance estimator that takes into
account the data noise, modeling it as Gaussian with zero mean
and a known (or estimated) standard deviation.

The experiments give an estimate of the viewpoint with an
accuracy of three orders of magnitude smaller than the scene's
extent.

Two experiments focused on estimating the viewpoint from a
reduced volume of data: taking only sectors of a panoramic image
and image subsampling. Accuracy is largely independent of sector
width provided at least 20 degrees of sampling is obtained. On the
other hand, image subsampling reduces the confidence of the step
ray estimates, resulting in fewer consensual data being found, but
only slowly degrades the accuracy of the estimated viewpoint.

From our results, we can conclude that the method presented is
a valid approach for viewpoint estimation from noisy images.
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