
Environment recovery by range scanning with anext-best-view algorithm �J.M. Sanchiz y, R.B. Fisher xyDepartament d'Inform�atica, Universitat Jaume I, E-12071 Castell�o, SpainxDivision of Informatics, Institute of Perception, Action and BehaviourUniversity of Edinburgh, 5 Forrest Hill, Edinburgh EH1 2QL, UKAbstractWe present an algorithm for determining the next best position of arange sensor in 3D space for incrementally recovering an indoor scene.The method works in �ve dimensions: the sensor navigates inside thescene and can be placed at any 3D position and oriented by a pan-tilthead. The method is based on a mixed exhaustive search and hill climbingoptimisation, and outputs the next position in usable time. Results areshown with a simulated mobile range sensor navigating in CAD modelsof environments (closed rooms).1 IntroductionEnvironment recovery by a sequence of range scans has had some research inrecent years [1] [2]. Its aims are to build a realistic computerised model of anindoor or outdoor scene including surface information and texture, so that auser can navigate inside the model. Such models can be placed on the internet,allowing remote access. Among the applications we can mention are virtual�Work supported by the European Union funded SMART II (ERB4061PL950841) andCAMERA (ERB FMRX-CT97-0127) research networks1



reality, remote scene inspection, maintenance, 3D tourist models, 3D buildingcatalogue, architecture, archaeology, etc.Range sensors used in environment recovery have a wide (panoramic in somecases) �eld of view, and the task of completely recovering an environment isperformed usually by placing the sensor on a tripod, taking some views bymoving the sensor manually, and merging the views together to build the model.Although general interesting environments, like heritage buildings, are notusually suitable for a mobile robot to navigate inside, in some cases it is feasibleto fully automate the process of scan acquisition by using a sensor mountedon such a robot. The robot is instructed to do the work in a more intelligentway by taking into account some considerations to �nd the next best positionto place the sensor. Such cases could include, for example, wide corridors orempty rooms with interesting features such as in a monastery, palace or castle;or a large interesting object to be fully mapped around.This paper describes a method for obtaining a complete and accurate three-dimensional recovery of an unknown indoor environment, placing the sensor atthe best position each time. Di�erent views are used to build up an incrementalenvironment model. So the problem is stated as �nding the next view thatwould best improve the current recovered model.We consider a mobile range sensor. In general 3D motion this is a problemwith six degrees of freedom, since the sensor can be placed anywhere in space,and can be oriented by three rotations: pan (rotated around the vertical axis),tilt (rotated around the horizontal axis), and roll (rotated around the opticalaxis). Sensor rolling can be useful because the horizontal and vertical aperturesof the sensor may be di�erent, so di�erent scene areas can be recovered byrolling the sensor. In this work, we assume that rolling is not allowed becauseconventional pan-tilt heads do not perform this motion. So we can think of amobile base which moves over a 
oor, with a vertical bar to lift or lower thesensor, which is mounted on a pan-tilt head at the end of the bar. This makesthe problem of �nding the next best view a �ve-dimensional one.Other research has addressed the next best view problem for object recon-2



struction where the outsides of objects are seen, but not for 3D environmentrecovery, where the inside of a scene is explored and the sensor can navigateinto the scene. Massios and Fisher [3] compute the next best position of a rangesensor for object acquisition with orthogonal projection. The sensor positionspace was two-dimensional: a sphere at a �xed radius enclosing the object withthe sensor always pointing to the centre. As in our approach they de�ned aquality criterion and used a voxel map for view reasoning. Garc��a et al. [4]also addressed a similar 2D sensor space, although discretised in a di�erentway. They used a voting scheme to compute the next view, maximising theobservation of occluded areas, and used a triangular mesh to model the object.Reed at al. [5] presented a method to recover object models including thecomputation of the next view to maximise occluded areas. They computedvisibility volumes from where occluded areas are fully visible, following themethod presented by Tarabanis et al. [6]. But that research did not solve forthe best position of the sensor inside the visibility volumes. In that work Reedet al. assumed a 2D sensor position space, an enclosing sphere, and computedits intersection with the viewing volumes. Pito [7] proposed a method for viewplanning in object modelling with 4 degrees of freedom. The sensor positionspace was a cylinder, and it could be oriented within a range of pan-tilt angles.He used a voting scheme to maximise the observation of occluded areas.In summary, the question that this paper addresses is: Is it possible tode�ne an e�ective and e�cient algorithm for scanning an environmentsuch that all surfaces are observed with high quality measurements?The results shown here answer the question positively, and we believe this isthe �rst implemented algorithm to do so.2 Scene representationOur objective is not to recover a surface model of the scene. Instead, we aim at�nding the set of sensor poses that best acquire the 3D points according to somecriteria (explained later). Our recovered scene model has to be accurate enough3



to compute these criteria. The surface model can later be recovered from the3D points.We use a voxel map representation. Voxels, volume elements, are smallcubes of a �xed size. The voxel map is a 3D rectangle whose size depends onthe available memory, size of the scene to be modelled, and resolution at whichwe work. The voxel map is implemented as a 3D circular bu�er, and it can beplaced anywhere in space, so that if new 3D points are sensed that do not �tin the voxel map, new space can be allocated for the new area without movingdata in memory.Thus, a voxel map can only represent a quantised scene model, made ofcubes. Nevertheless, it is possible to compute a realistic triangular-mesh scenemodel using the \Marching Cubes" algorithm [8] on the voxel map, from the3D points that fall inside the occupied voxels. Thus we could obtain a trian-gular mesh where the triangle size is of the order of the voxel size. This densetriangular mesh could later be simpli�ed by a mesh optimisation algorithm [9].Other works have computed realistic surface models from range data, for ex-ample Wolfart et al [10] found a triangular mesh from every range image and dida registration of the new mesh with the scene model (also a triangular mesh).They included texture information to make it more realistic.A voxel map representation allows ray tracing by the 3D Bresenham al-gorithm [11] using only integer operations. It also allows a straightforward regis-tration of the new sensed points with the recovered scene model [3] (voxel mapupdate) if we assume that the voxel size is bigger than the errors that may arisein the sensed point positions due to inaccurate sensor placement (navigationerrors).In our scene model a voxel consists of a label indicating its type, a surfacenormal, and a quality, indicating how accurately this voxel has been sensed sofar. The voxel labels include:� Unmarked. A voxel that has never been observed by the sensor.� Empty. A voxel that has been observed and found to be empty.4



� Occupied. A voxel in which 3D sensed points have fallen.� Occluded. A voxel so far occluded by an occupied voxel.� Occlusion Plane. A special kind of Occluded voxel adjacent to an Emptyvoxel through any of its six faces.A voxel's surface normal and quality are only de�ned for Occupied voxels.Normals are estimated at every point in a range image. The voxel surfacenormal is the average of the normals of all the range points that have updatedthis voxel. The sensed quality of an Occupied voxel is the cosine of the angleformed by the surface normal and the viewing ray. The voxel quality is the bestsensed quality of the voxel so far.3 Voxel map updateEvery time a new range image is taken the voxel map is updated, incrementingour knowledge of the scene.A range image is a matrix [duv ] (u 2 [0::N � 1], v 2 [0::M � 1]) of distancessensed in the direction R~y�R~z�~nuv from the optical centre ~c = (x0; y0; z0)0 (seeFig. 1). (�; �) are the pan-tilt angles the sensor is oriented, andRaxisangle representsa 3D rotation of angle about axis.x0, y0, z0, � and � are the 5 extrinsic parameters of the sensor, the 5 degreesof freedom of the problem of sensor placement. ~nuv are normalised vectorscomputed for a speci�c sensor geometry (spheric, tilted line scan, line striper)and for a value of the sensor intrinsic parameters. Details on the sensor modelused will be given later.The 3D co-ordinates of a sensed point, ~puv, are computed by adding to theoptical centre ~c the distance duv in the direction of the corresponding ray ~nuvrotated by the pan and tilt angles of the sensor:~puv = ~c+ duvR~y�R~z�~nuv (1)A voxel is identi�ed by its three indices in the voxel map (i; j; k)0. Thecentre voxel (0; 0; 0)0 is placed in space at world co-ordinates (xw ; yw; zw)0 and5



the voxel array is aligned with the world co-ordinate axes. A voxel is a cube ofside scale, so a point in 3D space (x; y; z)0 falls inside voxel(RoundScale(x� xw); RoundScale(y� yw); RoundScale(z � zw))0,where RoundScale(x) = Round(x+ sgn(x) scale2scale ) (2)The voxel map is updated with the following method:� Compute the camera position in the voxel map cvoxel = RoundScale(c).� For every range image point puv compute its voxel co-ordinates pvoxeluv =RoundScale(puv) using (1{2).{ Compute the intersection lvoxeluv of the ray ~c + �R~y�R~z�~nuv with thelimits of the voxel map in voxel co-ordinates.{ Do ray tracing from cvoxel to pvoxeluv marking as Empty the voxels thatare not Occupied. Due to the digital nature of the approach (voxelmap and Bresenham ray tracing), it is possible that a ray crossesalready Occupied voxels, which are not modi�ed.{ Do ray tracing from pvoxeluv to lvoxeluv marking as Occluded the voxelsthat are still Unmarked.{ Mark voxel pvoxeluv as Occupied.� Traverse the voxel map marking as Occlusion Plane the voxels that are oftype Occluded and have a face touching an Empty voxel.4 Fitness functionIn order to compute the best next position we have set some criteria for thegoodness of a sensor pose, which are formulated as a mathematical function tomaximise. The criteria are de�ned on the scene area that a test position covers,and are:
6



� Providing su�cient overlap with previously acquired data for �ne regis-tration of the data (as wheel slip on the vehicle is likely to introducedead-reckoning registration errors)� Eliminating occlusion plane areas� Observing new unseen areasLet aov be the proportion of voxels intersected by the sensor rays that arealready occupied (i.e. the proportion of the new view that overlaps previouslyacquired data), aop be the proportion of voxels marked occlusion plane, andaus be the proportion of voxels marked unseen area. aov; aop; aus 2 [0::1] andaov+aop+aus = 1. The data for computing these values comes from projectingthe current scene model, when viewed from a viewpoint and direction, onto aninternal image plane. The function to be maximised has been designed withthese characteristics:� A unique maximum at a certain value of aov (we have �xed 40% for thisvalue) and for aop = aus (thus favouring at the same time the equal sensingof occlusion plane and unseen areas).� Zero at aov = 0, forcing always some overlap.� A �xed value greater than zero at aov = 1, to make possible views withno occlusion planes or unseen areas. This can occur at late stages of thescene recovery, when all parts have been observed and new views aim atincreasing the quality of the sensed data.A simple (polynomial) function that satis�es the above criteria isfarea = �5a3ov � 10:5a2ov + 6aov��1� 12 jaop � ausj� (3)This function has a maximum of 1.04 at aov = 0:4 and aop = aus, a localminimum of 0.5 at aov = 1, value 0 at aov = 0, and decreases as aop di�ersfrom aus. In the space de�ned by axes (aov; aop; aus), the domain of fareais the triangle de�ned by the plane aov + aop + aus = 1 and the conditionsaov; aop; aus 2 [0::1]. Fig. 2 shows the domain triangle and the shape of farea.7



The area-based evaluation has the advantage that small occluded areas willtend to be examined more closely, since the overlapping area attempts to beabout 40%. This forces the sensor to approach unobserved areas until theyoccupy about 60% of the image. On the other hand, and for the same reason,big occluded areas, like those hidden by a salient corner, will tend to be imagedfrom a further distance, and if new detail appears (in the form of occlusionplanes), it will be examined closer in further views.We have quali�ed as basic the above area-based criteria. Other criteria canbe represented by factors fi 2 [0::1] which multiply by farea, thus increasing thetotal evaluation, f = fareaQi(1 + fi). These secondary criteria may include:� Quality improvement, fquality .� Structure of the overlapping area, fstructure. The purpose of this factor isto favour the sensing of areas where the surface has non-degenerate shape,thus easing the registration.� Navigation cost, fnavigation, modelling the cost of reaching a new positionand orientation from the current position of the sensor.From these proposed criteria we have only implemented and tested fquality ,leaving the other two to further work. fstructure could be computed from thevariance of the surface normals at the new sensed points. fnavigation should relyon robot path planning, reasoning about the known obstacles in the scene, thedistance to travel, and trajectory of the robot. We have implicitly introduced asimple navigation factor in the de�nition of the feasible space when optimisingthe �tness function, but a reliable navigation factor should be computed by anavigation module.For fquality we use the ratio of Occupied voxels that would improve qualityfrom this view to the total number ofOccupied voxels updated, multiplied by themean quality improvement. Clearly fquality 2 [0::1]. The total �tness functionbecomes then f = farea(1 + fquality) (4)8



5 OptimisationThe feasible space is related to the physical characteristics of the sensor. If thesensor is mounted on a mobile base that moves on the 
oor, the mobile basecannot even move safely unless areas of the 
oor have been scanned and anobstacle-free path is found. Nevertheless, a navigation reasoning module is nottaken into account in the present work, so we de�ne the feasible space by thesesimple constraints:1. The sensor must lie inside an Empty voxel.2. The nearest Occupied voxel is not closer than K � scale (K times thevoxel size) so the sensor does not collide with obstacles (K = 4 has beenused).The search strategy to optimise the �tness function could be one of thefollowing:� Exhaustive search. This will �nd a global maximum but it would beextremely costly due to the �ve degrees of freedom of the problem.� Hill climbing methods. They will end up in a local maximum close to thestarting position of the search.� Statistical methods: simulated annealing. These would need lots of �tnessfunction computations, and are not guaranteed to end up in a globalmaximum.� Evolutionary methods: genetic algorithms. It would require an extremelylarge number of function computations to maintain a population of testpositions.To choose the search method one has to consider that our goal is to providean answer, the next best position, in a reasonable amount of time. Severaldozens of views will be necessary to recover a normal-sized room, so responsetimes of the order of a minute, at most, are desirable. The �tness functionis based on ray tracing on a subsampled range image used for view prediction,9



while the full range image is later used for modelling. Sensor sizes may be about50-250 thousand points, and after subsampling for view prediction the numberof points may be still of about two thousand (64� 32 for example).We use a mixed method: exhaustive search in the 2D space formed by thepan-tilt angles, and a hill climbing method in the 3D space of sensor positions.To perform an exhaustive (coarse) search in the pan-tilt space, we choose thecentres of the 20 faces of an icosahedron as the values to test. These orientationsare evenly distributed around a sphere, and in case there is spare time, a facecan be subdivided as shown in Fig. 3 providing four new faces, which can befurther subdivided to the desired resolution. So, provided the next best positionand orientation of the sensor is worked out at this resolution, the orientationcan be re�ned as desired.For the hill climbing optimisation we use the N -dimensional simplex method[12]. The method starts from the current position of the sensor, and �nds anearby local maximum. A simplex in 3D space is a tetrahedron (Fig. 3). Thevertices of the initial simplex are set as follows: the �rst vertex is set as the cur-rent sensor position, the other three are set randomly choosing an icosahedronface [1::20] and a ray within this face. These directions are projected a randomdistance (within a range).A simplex evolves in 3D space changing its shape, size and position, aimingat high values of the �tness function. This is done by performing re
ectionsof the worst point through the opposite face, expansions of a point along thedirection of the opposite face, 1D contractions of the worst point toward theopposite face, and 3D contractions of all but the best point toward this point.A deeper explanation of the simplex optimisation algorithm can be found in [12].The simplex optimisation is stopped when the range of change of the �tnessfunction among the four vertices of the simplex is below a threshold. Thiswill always be reached eventually since the simplex gets smaller as it contractstoward vertices where the �tness function is better, and at a certain iterationthe whole simplex will be contained inside a unique voxel, so the �tness of itsfour vertices will be the same, and the range will be zero.10



The combination of the exhaustive search in the pan-tilt space and the sim-plex method in position space is done by computing the �tness of all 20 direc-tions (faces of the icosahedron) at every position tested (a simplex vertex), andkeeping the best evaluation as the �tness for that position.The termination criterion is aimed at ensuring that the whole scene is re-covered, and it can be:1. No more unseen area is covered.2. No more unseen area is covered and the quality of every pixel is above athreshold.3. No more unseen area is covered and no more quality improvements areachieved.We used criterion 2.The covered area and the occlusion plane area can be roughly computed asthe number of voxel faces that touch an empty voxel, times the area of a voxelface.6 ResultsAlthough the proposed approach does not guarantee the selected best view isglobally the best, which could be computed by exhaustive search in �ve dimen-sions, it provides a feasible solution which:� is locally a maximum of the �tness function,� is near to the previous sensor position,� improves quality of the covered area, and covers occlusion planes and newunseen areas.To show the goodness of the method, experiments have been carried outusing a simulated range sensor and mobile base. The base is able to moveforward/backwards, left/right, and lift the sensor up/down. It can rotate, thus11



panning the sensor, besides the sensor can tilt from 0 to 180 degrees. Thesimulated sensor navigates in a scene model built with a CAD tool, acceptingcommands through a UNIX socket to perform the motion and to take rangeimages, which are also piped through the socket.The sensor simulator provides a 2 12D range image, implementing a tilted linescan geometry. Its intrinsic parameters are: N = 64,M = 30 (observing 64�30points), horizontal angular aperture � = 60 deg, and vertical angular aperture� = tan�1(MN tan�). The sensor rays, Fig. 4, are computed as:8>>>>>><>>>>>>: �u = �( 12 � uN�1 )�v = �( 12 � vM�1 )~a = R~x�v~z~nuv = R~a�uR~x�v~y (5)Where again Raxisangle represents a 3D rotation of angle about axis.The test environments used consisted of closed rooms, Fig. 5, a room of5� 3� 3 metres with some boxes inside, and a room of 6� 4:5� 3m with threecolumns. The voxel size was scale = 10 cm and the voxel map was of 64�48�32voxels. We carried out two experiments with each environment, one with thequality factor switched o� (fquality = 0), and another taking this factor intoaccount. The experiments were run till the 5D space to optimise the �tnessfunction was almost 
at (60 views with the quality factor o� and 300 viewswith the factor on). The main di�erence was that in the second experiment thesensor reexamined previously scanned walls that had low quality scores, by newalmost-vertical views.Fig. 6 shows the sensed points in a sample range image, and the positionstested by the optimisation method as the simplex evolved in the 3D space. Thelines start at the position of the vertices (dots) and have the direction of thebest evaluation, with length proportional to the �tness function.Figs. 7 and 8 show several plots giving information of how the method works,they include: Fitness function, which shows that the optimisation method �ndsgood poses for the sensor, but declines as more of the scene is recovered. Number12



of iterations of the optimisation method: the number of function evaluations isthis number multiplied by twenty (number of faces of an icosahedron). Meanquality of Occupied voxels: in the second experiment quality improves monoton-ically after the scene is initially completely observed, and it reaches a fairly bigvalue. Occupied area in m2: this �gure stabilises after about 35 and 60 viewsrespectively, when the whole environment has been observed at least once.Fig. 9 shows the recovered environments after 15 views, showing only theOccupied voxels and the sensor positions. There is no important di�erencebetween the acquired models at this stage.The test results show that the scene scanning is virtually complete after areasonable number of views with or without the quality measure. A drawbackof the approach is that when almost the whole scene is recovered and just fewisolated occlusion planes remain, the space is almost 
at regarding the �tnessfunction, and the local hill-climbing method cannot �nd a good direction to\climb". In this case the simplex evolves randomly until a timeout is signaled.A few additional scans are needed to obtain the remaining isolated unobservedvoxel faces, or to improve the quality. We envisage two approaches to cope withthis problem:� Direct a �nal \tiding-up" phase by a deterministic approach (detectingholes in the scene by morphology analysis and computing unoccludedviewpoints for them)� Apply a morphological operator to �ll up the small one voxel-wide holesand take no additional viewsTest environment \boxes" has a total inside viewing surface of 89m2, andenvironment \columns" has 134m2. A rough estimate of the minimum numberof views to cover these areas, assuming a 40% overlap, and that the sensorstays at 2m from the surfaces, covering an area of 2(2 tan �2 )(2 tan �2 ) = 2:5m2(� = 60 deg, tan� = MN tan�, M = 30, N = 64), would be about 892:5�0:6 '60 and 1342:5�0:6 ' 90 views respectively. On the other hand, the maximumnumber of views is given by visiting all the voxels inside the room, that is13



volume(environment)volume(voxel) , giving 45000 and 81000 views respectively. As we can seethe number of views taken by the present approach is quite reasonable, as it takesonly about 60 views before most of the scenes are fully scanned. 60 is less thanthe estimated minimum number of views for the second scene; however the lowerbound estimates used very approximate values for the overlap percentage andscan distance. The key point to note is that the algorithm is clearly producingan e�cient scanning sequence.The time to deduce the next observation position depends on the complexityof the recovered environment, but the experiments reported here took approx-imately 4421 sec for \boxes" and 4926 sec for \columns" (300 views, qualityfactor on) on a Pentium processor at 166 MHz. This is less than 16.5 sec perview on average. The storage requirements for the voxel representation wereabout 3/4 of a M-byte, which is also low enough for practical use.7 ConclusionsWe have presented an approach to full 3D environment recovery by a rangesensor mounted on a mobile platform. The recovered model is represented by avoxel map at just enough resolution for computing the criteria to �nd the nextbest view. This allows an easy update of the model with the new views (voxelmap update), while a realistic surface representation based on a triangular meshcan be computed o�-line from the voxel map. During the environment recovery,one could also acquire higher resolution surface and texture data. This datawould not be needed for the best next view planning process, but could be usedfor scene modelling.The next best view is recovered by mixed exhaustive search and hill climb-ing optimisation, and the �tness function is based on area proportions of thenew image to be sensed. This means that detailed areas are examined closer.We have envisaged other criteria that can modify the basic one, aimed at im-proving the quality of the sensed data, or at favouring the recovery of highlystructured parts to ease the registration, if a realistic recovery of the scene is to14



be performed by another task.We have presented results that show the feasibility of the method. Theexperiments have been carried out on a simulated sensor and mobile platformnavigating in CAD scenes, with and without the aim of quality improvement ofthe data. Recovering our sample scene with a mean quality of 0.9, for example,takes 4 times the number of views required for recovering it with any dataquality. We expect to perform real-scene experiments in the future.References[1] D. Leevers, P. Gil, F.M. Lopes, J. Pereira, J. Castro, J. Gomes-Mota,M.I. Ribeiro, J.G.M. Gon�calves, V. Sequeira, E. Wolfart, V. Dupourque,V. Santos, S. Butter�eld, D. Hogg, and K. Ng. An autonomous sensor for3d reconstruction. In Proc of the 3rd European Conference on MultimediaApplications, Services and Techniques (ECMAST'98), pages 26{28, 1998.[2] V. Sequeira, K. Ng, S. Butter�eld, J.G.M. Gon�calves, and D. Hogg. 3Dtextured models of indoor scenes from composite range and video images,Proceedings of SPIE 3313, pages 46{58. SPIE{The International Societyfor Optical Engineering, 1998.[3] N.A. Massios and R.B. Fisher. A best next view selection algorithm in-corporating a quality criterion. In Proc of the 6th British Machine VisionConference, pages 780{789, 1998.[4] M.A. Garc��a, S. Vel�azquez, and A.D. Sappa. A two-stage algorithm forplanning the next view from range images. In Proc of the 6th BritishMachine Vision Conference, pages 720{729, 1998.[5] M.K. Reed, P.K. Allen, and I. Stamos. Automated model acquisition fromrange images with view planning. In Proc of the Int Conf on ComputerVision and Pattern Recognition, CVPR'97, pages 72{77, 1997.
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Figure 6: Left : sensed points (dots) on environment \boxes". Right : positionstested by the simplex during one optimisation cycle: black lines indicate thebest direction with length proportional to their �tness
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Figure 7: Recovery process for environment \boxes". Plots are versus viewnumber. Left column: with the quality factor o�. Right column: with thequality factor on. From top to bottom: number of iterations to locate the nextbest view. Optimised �tness function at the next best view. Mean quality ofOccupied voxels. Area of Occupied voxels21



0

10

20

30

40

50

60

70

0 10 20 30 40 50 60

Iterations

0

10

20

30

40

50

60

70

0 50 100 150 200 250 300

Iterations

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 10 20 30 40 50 60

Mean quality [0..1]

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0 50 100 150 200 250 300

Mean quality [0..1]

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60

Fitness

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200 250 300

Fitness

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

Occupied Area (m2)

0

20

40

60

80

100

120

140

0 50 100 150 200 250 300

Occupied Area (m2)

Figure 8: Recovery process for environment \columns". Plots are versus viewnumber. Left column: with the quality factor o�. Right column: with thequality factor on. From top to bottom: number of iterations to locate the nextbest view. Optimised �tness function at the next best view. Mean quality ofOccupied voxels. Area of Occupied voxels22



Figure 9: Two views of the recovered environments after 15 scans: \boxes" (left)and \columns" (right). Top: with quality factor o�. Bottom: with quality factoron. Only Occupied voxels are shown. The path followed by the sensor is pointedout by dashed lines, sensor positions and orientations by solid lines
23


