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Abstract

In this paper we consider the problem of automatically
constructing geometric models of articulated objects from
example range data. The problem of automatic model con-
struction has been investigated in some depth for rigid ob-
jects but these do not extend easily to the articulated case.
The problem arises because of the need to register surface
measurements taken from different viewpoints into a com-
mon reference frame. Registration algorithms generally as-
sume that an object does not change shape from one view to
the next but when building a model of an articulated object
it is necessary for the modes of articulation to be present
in the example data. To avoid this problem we propose that
raw surface data of articulated objects is first segmented
into rigid subsets which correspond to rigid subcomponents
of the object. This allows a model of each subcomponent to
be constructed using the conventional approach and a final,
articulated model to be constructed by assembling each of
the subcomponent models.

1 Introduction

The ability to automatically acquire geometric models
from example objects is useful in a growing number of ap-
plication areas. In the field of computer graphics, the need
for improvements in realism requires more complex mod-
els, but manual model construction is time-consuming and
difficult. In industrial settings it is useful to capture the geo-
metry of existing parts either for the purpose of inspection
or to enable exact replicas to be manufactured automatic-
ally. For reasons which will be clarified shortly, current
techniques are generally limited to constructing models of
single rigid objects. In this paper we suggest how these
algorithms might be augmented to allow the automatic con-
struction of articulated objects, increasing the scope of this

technology. For clarity, articulated objects are those objects
consisting of a number of rigid parts which are connected
by non-rigid joints [1].

The established approach for automatic model construc-
tion begins by taking surface measurements from a number
of viewpoints so that all of the object’s surface is captured.
Typically this will be done with a range finder such as a laser
striper or binocular vision system. Either one of two differ-
ent approaches can then be taken. In the first approach sur-
face primitives are fitted to the raw data in each of the views
of the object, and then the different views areregisteredby
aligning similar primitives. The second approach registers
the raw data initially using local surface shape, see for ex-
ample [2] or [3], and then surface primitives are fitted dir-
ectly to the registered surface data [4]. The second approach
is favoured because it makes maximum use of the raw data
when surface fitting and avoids the problem of having to
piece together possibly fragmented surfaces from different
viewpoints which are not perfectly aligned.

Whichever approach is taken, the registration process as-
sumes that the shape of the object does not change as the
surface data is acquired. If, however, we wish to automatic-
ally capture the geometry and kinematics of an articulated
object then the object’s shape must change from example
to example. This means that current registration algorithms
cannot be used directly. Rather than developing new regis-
tration algorithms we propose here that the raw measure-
ment data is segmented intorigid subsetseach correspond-
ing to a rigid subcomponent of the object. This will en-
able models of each subcomponent to be constructed inde-
pendently using existing technology and a final, articulated
model to be formed by assembling each of the subcompon-
ents.

The algorithm we have developed processes a pair of
range images at a time and segments each of them intoN
subimages, whereN is the number of independently mov-
ing, rigid subcomponents which are present in the data. This



processing is carried out in two distinct stages. In the first
stage, theN rigid transformations that align each subcom-
ponent in the first image with the corresponding subcom-
ponent in the second are estimated. In the second stage,
the movement of each surface data point between the two
images is compared with theN estimated transformations
and grouped with any they agree with. This results in the
segmentation we require.

In the next section a detailed description of our rigid part
segmentation algorithm is presented. This is followed by a
demonstration of the algorithm applied to some real range
image data. Finally we summarise the contribution made by
this work and briefly discuss the aims of ongoing and future
work. The algorithms developed are also summarised in the
form of pseudo-code in appendices at the end of the paper.

2 Rigid Part Segmentation

Given a pair of range images describing an articulated
object, we want to segment those images intoN subimages
which correspond to the objectsN rigid parts. We begin by
observing that corresponding surface points that lie on the
same subcomponent will be aligned by the same rigid trans-
formation, whilst corresponding surface points that lie on
different subcomponents will be aligned by different rigid
transformations. Consider the hypothetical data in Figure 1
for example. Corresponding points on partA are aligned by
the transformationTA, whilst corresponding points on partB are aligned byTB . This difference provides a mechan-
ism for distinguishing surface data from different subcom-
ponents and is the basis of our segmentation strategy.
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Figure 1. A hypothetical, articulated ob-
ject comprising two subcomponents connec-
ted by a revolute joint. Features on the
two subcomponents can be differentiated by
the transformation that aligns them between
frames.

To implement this strategy it is necessary to find corres-
ponding surface points in the two range images and to de-
termine the rigid transformation that aligns them. For non-
developable surfaces, this can be done using the magnitude
and directions of the local surface curvature at each range
data point. These measurements define the augmented Dar-
boux frame [5] and are depicted in Figure 2. On umbilic
surfaces the magnitude of the surface curvature is the same
in all directions so the directions of principal curvature are
not defined and the Darboux frame does not exist. To find
potential correspondences between surface points in the two
range images, the minimum and maximum curvature of the
surface at each point are compared. If the relative difference
between both of these curvatures is within a specified level
of tolerance then the surface points are considered to be a
potential match. If the maximum and minimum principal
curvatures at a point in the first range image are�1A and�2A respectively, and if the maximum and minimum prin-
cipal curvatures at a point in the second range image are�1B and�2B respectively, then the pair of points are accep-
ted as a potential correspondence if the following conditions
are met: j�1A � �1B j12 (�1A + �1B) < �1 (1)

and j�2A � �2B j12 (�2A + �2B) < �2 (2)

where the level of tolerance is defined by�1 and�2. The
transformation,ti, that aligns the Darboux frames at these
points is then treated as a hypothesis of the transforma-
tion that aligns one of the articulated objects subcompon-
ents. The set of all potential surface point correspondences
then provides a set of hypothetical transformations,ftig,
for aligning all of the rigid subcomponents present in the
range data.

The use of the Darboux frame for finding point cor-
respondences and for estimating the transformations which
align subcomponents has a number of disadvantages. First,
the measurement of surface curvature is sensitive to noisy
data and quantisation effects, so to ensure that correct point
correspondences are found it is necessary to allow a large
amount of tolerance when comparing curvature. This res-
ults in a large number of incorrect surface correspondences
being formed which complicates the segmentation process
later. Similarly, the orientation of the Darboux frame is also
sensitive to noisy data, resulting in a poor estimate of the
alignment transformation for correct surface point corres-
pondences. The requirement of non-developable surfaces,
on which the Darboux frame is uniquely defined, is also
a serious limitation, but we are currently investigating how
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Figure 2. If the relative difference between
both the maximum and minimum curvature
at the two surface points is small then they
are considered as a potential match. The
transformation that aligns the Darboux frame
defined at these points then provides a hy-
pothesis of the transformation that aligns the
surfaces.

this approach might be extended to planar and spherical sur-
faces.

2.1 Estimating the Alignment Transformations

We are now left with the problem of estimating theN
rigid transformations,fT̂jg, that align each of the subcom-
ponents present in the pair of range images from the set
of hypotheses,ftig. This is a relatively difficult estima-
tion problem because the number of rigid subcomponents is
unknown, the correct hypotheses are subject to a relatively
large error and because many of the hypotheses are mislead-
ing because of correspondence errors. Given the difficulty
of this problem we have employed an approach based on
the probabilistic Hough transform [7] which is known to be
a robust estimator.

This use of the probabilistic Hough transform is best de-
scribed by first considering a simple case in which the range
images only contain a single rigid object which has under-
gone a transformation,T1. If we have some estimate of
the error on each hypothesis we can estimate the probabil-
ity of measuring the set of hypothetical transformations for
any arbitrary transformationT. To make this calculation
tractable we make the assumption that each hypothesis is
independent. This probability can then be expressed as:P (t1; t2; : : : ; tnjT) =Yi P (tijT) (3)

where the probabilityP (tijT) describes the error on each
hypothesis and

Qi P (tijT) is called the likelihood func-
tion. Intuitively, a good estimate,̂T1, of the rigid trans-

formationT1, which accounts for the set of measured hy-
potheses, is obtained by finding the value ofT at which this
function is a maximum. This is themost likelyvalue forT1
given the set of hypotheses.T̂1 = Max

Yi P (tijT) (4)

In the probabilistic Hough transform algorithm, the like-
lihood function is maximised by quantising its allowable
domain and exhaustively evaluating it at every interval. In
practice the logarithm of the likelihood function is evaluated
for efficiency as this only requires addition operations. The
probabilistic Hough transform,H(T), is therefore defined
as: H(T) =Xi ln[P (tijT)] (5)

For estimating alignment transformations in this applic-
ation, the Hough transform represented a 6-dimensional
parameter space into which entries are accumulated for each
hypothesis,ti. The 6-dimensional parameter space is sep-
arated into a pair of 3-dimensional parameter spaces, rep-
resenting the rotation and translation components of the es-
timated transformations respectively.

So far little has been said about the hypothesis error func-
tion P (tijT) but the definition of this is crucial if the al-
gorithm is to be robust to incorrect hypotheses and if it
is to be able to determine multiple transformation estim-
ates. Consider a pointT in the parameter space that cor-
responds to the transformation that aligns one of the artic-
ulated objects subcomponents. If a particular hypothesis,ti, is a measurement of this particular transformation thenP (tijT) simply describes the measurement error. Ifti is
a measurement of one of the other alignment transforma-
tions or is incorrect because of a correspondence error thenT tells us nothing aboutti. Without further information the
best we can do is say thatP (tijT) is constant. To combine
this information into a single error function,P �(tijT), we
describe the error within three standard deviations using a
multivariate Gaussian with a uniform background probabil-
ity beyond this:P �(tijT) = ( 18�3j�tj 12 e��2i=2 �i � 3k Otherwise

(6)

where�t is the covariance matrix that describes the meas-
urement error and�2i is defined as:�2i = [ti �T]T��1t [ti �T] (7)

Having constructed the probabilistic Hough transform in
this manner, the number of significant peaks will corres-
pond to the number of subcomponents in the range data.



The position of each peak in the parameter space then
provides an estimate of the transformationT̂j that aligns
thejth subcomponent in the first range image to its corres-
ponding subcomponent in the second.

2.2 The Segmentation Strategy

The scheme outlined so far provides a robust method for
determining the number of rigid subcomponents present in
a pair of range images and for estimating the transforma-
tions which align each of them. This information is then
used to segment each of the range images into their rigid
subcomponents.

Having identified the rigid transformations that align
each of the object subcomponents present in the range data,
it is possible to verify each of the hypotheses,ti, gener-
ated earlier. For each hypothesis we calculate the probabil-
ity P (tijT̂j) for each of the estimated transformationsT̂j .
This is the probability that the hypothesisti would have
been measured if the surface points it was derived from un-
derwent a transformation̂Tj . If this probability is large
for any T̂j then it is probable that the surface points used
to generate the hypothesis lie on thejth subcomponent.
The probability of measuring a particular hypothesisti de-
pends upon both the measurement error on each hypothesis,P (tijT), used earlier and the error on the transformation es-
timate. Because the transformation estimate is derived from
numerous hypotheses the estimate error will be significantly
less than the hypothesis error and so the following approx-
imation can be made:P (tijT̂j) � P (tijT) (8)

We then define the distance,dij , between the hypothesis and
the estimate in standard deviations using the Mahalanobis
distance metric:d2ij = [ti � T̂j ]T��1j [ti � T̂j ] (9)

If we then want 99.9% of the surface points to be included
in our segmentation, the surface points used to generate the
hypothesisti should be assigned to subimagej if:dij � 3 (10)

3 Experiments

Preliminary results of the rigid part segmentation
strategy are presented here for two range data sets, the first
presented in Figure 3 and the second in Figure 5.

3.1 Experiment 1

Although the motivation for developing a rigid part seg-
mentation strategy has been to isolate the rigid subcompon-
ents of articulated objects, the technique is also suited to
isolating single rigid objects which have undergone some
relative motion. This is a slightly simpler problem to solve
because it avoids the complication of subcomponents oc-
cluding each other, but provides a good way of testing the
principle of the algorithm. In this first example, range im-
ages containing a pair of objects which have undergone a
different transformation between frames have been used.
See Figure 3.

Both the rotation and translation Hough transform ar-
rays used in this experiment contained1003 bins, occupy-
ing 8Mb of memory each. The total time to run the ex-
periment was approximately 6 hours and 20 minutes on a
50Mhz Sparc 10. Details of the five largest peaks in the
probabilistic Hough transform constructed for the rotation
parameters are presented in Table 1. The two largest peaks
correspond to the two objects present in the range data and
the rotation parameters associated with these peaks agree
with the relative movement of the objects. It is difficult to
make a quantitative analysis of this result because the ob-
jects have been placed by hand so the actual transforma-
tion of each object is not accurately known. An important
observation concerns the relative magnitudes of the peaks
representing the two objects and the peaks which occur by
chance. The height of each peak relative to the biggest is
presented in the second column of Table 1. In this example
the first two peaks are well separated from the rest so that
thresholding the Hough space is relatively straightforward.

Peak Height Peak Height % �z �y �x
98077.6 100.0 -41.4 1.8 1.8
62013.4 63.2 12.6 1.8 1.8
13600.3 13.9 84.6 -34.2 171.0
13313.4 13.5 109.7 -30.6 171.0
10944.4 11.2 -48.6 37.8 -27.0

Table 1. Details of the five largest peaks in the
rotation Hough transform constructed for the
range data in Figure 3.

Figure 4 presents the segmentation of the range image
in Figure 3 (a) into separate rigid objects. Overall the al-
gorithm has performed very well and the majority of sur-
face data points have been segmented correctly. Most of
the erroneous points tend to lie close to the edge of the ob-
jects where the estimation of surface curvature is less stable.
It should be possible to improve the result further by post-
processing the segmented data using morphological operat-



(a)

(b)

Figure 3. Each of the objects in these range
images has rotated between frames. The
difference in the respective transformations
provides the necessary information for seg-
menting the range data into its rigid parts

ors.

(b)

(a)

Figure 4. These images present the segment-
ation of the range image in Figure 3 (a).

3.2 Experiment 2

In this experiment a mock-up of a simple articulated joint
is used to provide a more comprehensive test of the seg-
mentation algorithm. The joint is formed by placing a con-
ical object on a cylindrical surface and articulated motion
is simulated by moving the cone over the surface. Figure 5
presents this joint with the cone at two different inclinations.
In this example the segmentation is more complicated be-
cause the rotation is no longer in the image plane and parts
of the subcomponents are occluded.
The same Hough transform array sizes were used in this
example, but, because of the smaller number of surface
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(a)

Figure 5. The conical subcomponent has ro-
tated between frames. The difference in the
respective transformations provides the ne-
cessary information for segmenting the range
data into its rigid parts.

points, the execution time was slightly less at 5 hours and 10
minutes. Details of the five largest peaks in the probabilistic
Hough transform constructed for the rotation parameters are
presented in Table 2. The two largest peaks correspond to
the two subcomponents present in the range data and the
rotation parameters associated with these peaks agree with
their relative movement.

Peak Height Peak Height % �z �y �x
56234.1 100.0 1.8 1.8 55.2
33403.1 59.4 1.8 3.4 1.8
17770.0 31.6 24.5 12.4 64.2
9897.2 17.6 -98.1 17.9 17.5
4048.9 7.2 -45.3 103.5 -34.1

Table 2. Details of the five largest peaks in the
rotation Hough transform constructed for the
range data in Figure 5.

Figure 6 presents the segmentation of the range image
in Figure 5 (a) into its rigid subcomponents. Again the al-
gorithm has performed well although in each of the segmen-
ted subimages a distinct region of the surface data which we
would expect to be present is actually missing. The reason
for this phenomenon is that the missing surface points are
not present in both of the range images so it is impossible to
determine which subcomponent they belong to. This effect
has both an advantage and a disadvantage. The disadvant-
age is that to obtain a complete description of the surface of
an articulated object more example views are required. The
advantage is that registration of this surface data is likely to
be more reliable because registration algorithm [3] works
best when the data sets to be registered contain the same
surface points.

4 Organising Multiple Range Images

The algorithms presented in this paper enable the rela-
tionship between the subcomponents of an articulated ob-
ject to be determined from a pair of range images. Fig-
ure 7 demonstrates how this information can be organised
for multiple range images to allow reasoning about the relat-
ive motion of the different subcomponents in general. Fig-
ure 7(a) presents a connected graph which represents each
of the captured range images. A node is constructed for
each range image and pairs of images with overlapping data
are connected by an arc. Each subcomponent is then repres-
ented by a sparse graph as in Figures 7(a) and (b). A node
is constructed for each range image which contains a par-
ticular subcomponent and a pair of images containing the
same subcomponent are connected by an arc. These arcs,



(a)
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Figure 6. These images present the segment-
ation of the range image in Figure 5 (a).

however, are directed and are labelled with the transforma-
tion which aligns the subcomponent from one image to the
next. It is then straightforward to determine how each sub-
component moves relative to the others and begin to deduce
how they are connected.
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Figure 7. Organisation of multiple range im-
ages to enable reasoning about the relative
motion of different subcomponents

5 Conclusions and Future Work

Central to the problem of automatic model construction
is the registration of different views of an object into a single
coordinate frame. Although this registration process is rel-



atively straightforward for isolated, rigid objects, extending
it to deformable objects has proved to be more difficult.

To avoid this registration problem we have proposed that
views of articulated objects are first segmented into their
rigid subcomponents. This then allows views of each rigid
subcomponent to be registered in isolation using existing
algorithms and the final, articulated model constructed by
assembling each of the modelled parts.

An algorithm suitable for segmenting articulated objects
with non-developable surfaces into their rigid subcompon-
ents has been developed. This algorithm has been demon-
strated on real range data and appears to work adequately.

So that the algorithm may be applied more generally, we
are currently investigating ways for extending it to planar
and spherical surfaces. We are also looking at the use of
morphological operators for post-processing the segmen-
ted data to obtain better results. One possible criticism of
the technique is the large amount of storage and computa-
tional effort need for building and searching the probabil-
istic Hough transform, although this segmentation process
is only performed once when creating new models. We in-
tend to address this particular problem by employing a hier-
archical strategy [6].

A second problem with the Hough transform is the se-
lection of a suitable thresholding parameter which distin-
guishes significant peaks from peaks which arise by chance.
In the future we intend to investigate this problem further.
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A. Estimating the Alignment Transformations

The following pseudo-code describes the algorithm used
to determine the transformations that align the object sub-
components between a pair of range images.

for each range point ai in image A
construct Darboux frame Fai
for each range point bj in image B
construct Darboux Frame Fbj
if curvatures at ai and bj are similar
determine taibj where Fbj = taibjFai
vote for taibj in parameter space

for each cell in parameter space H(T)
if H(T) > � and is a peak
propose T as an alignment transformation

B. The Segmentation Strategy

The following pseudo-code describes the algorithm used
to segment each of the range imagesA andB into rigid
subparts according to the proposed rigid transformations.

for each proposed transformation Tk
for each hypothesis taibjd = jjtaibj �Tijj
if d < 3:0
assign ai to subimage SAk
assign bj to subimage SBk
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