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Abstract. This paper deals with the reconstruction of 3D geometripshdased on observed
noisy 3D measurements and multiple coupled non-linearesbapstraints. Here a shape could
be a complete object, a portion of an object, a part of a mglditc. The paper suggests a
general incremental framework whereby constraints carddecand integrated in the model
reconstruction process, resulting in an optimal tradebeffiveen minimization of the shape
fitting error and the constraint tolerances. After definiegssof main constraints for objects
containing planar and quadric surfaces, the paper showsotlrascheme is well behaved
and the approach is valid through application on differesatl parts. This work is the first
to give such a large framework for the integration of nurmedrigeometric relationships in
object modelling from range data. The technique is expetddve a great impact in reverse
engineering applications and manufactured object madglithere the majority of parts are
designed with intended feature relationships.
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1. Introduction

The framework of this work is reverse engineering. In paremafacturing,
reverse engineering is typically concerned with measugimgxisting object
so that a surface or solid model can be deduced in order toadkantage
of CAD/CAM technologies. It is also often necessary to prmla copy of a
part when no original drawings or documentation are avhildh other cases
we may want to re-engineer an existing part, when analysisvadifications
are required to construct a new improved product. Even thaduig possible
to turn to a computer-aided design to fashion a new part,dnlg after the
real model is made and evaluated that we can see if the objedhédi real
world. For this reason designers rely on real 3D objectsl| @Geale wood,
clay models) as starting point. Such a procedure is paatituimportant to
areas involving aesthetic design e.g. the automaobile tngos generation of
custom fits to human surfaces such as helmets, space suitsstiigses. For
these reasons reverse engineering is a fundamental step nbtv-standard
production-perfection cycle of part (Figure.1). This pees starts with the
CAD stage. Next (step 2), the rapid prototyping stage caswbe CAD data
into a real prototype. Rapid prototyping is a techniqueveithy the direct
production of prototypes by a computer-controlled proc€xten, the shape
of the produced object undergoes some improvement caraedy hand
to adapt it to its real environment (step 3). The hand-impdowmodel is
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Figure 2. Many hand-worked optlmlzatlon (step 3) could be replacecesablishing new
constraints on the shape and incorporating them in the nuEggn process.

back again into the digital world of CAD through 3D optical aserement
techniques (step 4), for instance a 3D laser scanner.

In this process the notion of constraints is normally inealvin step
1 where geometric relationships between object featurgsther with 3D
measurement data contribute in the production of the optohgct model
shape.

The first motivation behind incorporating geometric coaistis is that
models needed by industry are generally designed with detergeometric
relationships between the object features so this aspecidhe exploited
rather than ignored. The consideration of these relatipssh actually neces-
sary because some attributes of the object would have ne deihe object
modelling scheme did not take into account these constraiitr example,
take the case when we want to estimate the distance betweepatallel
planes: if the plane fitting results gave two planes which rare parallel,
then the distance measured between them would have no cigié. Fur-
thermore exploiting the available known relationships idooe useful for
reducing the effects of registration errors and mis-catibn, thus improving
the accuracy of the estimated part features’ parameters@msequently the
quality of the modelling.

The second motivation is that once the part is produced @xepany
improvements are carried manually (step 3) to optimize e gnd make it
fit with the real world (e.qg fit with another part, adjust thetga fit a particu-
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lar customer). These improvements could be represente@wycanstraints
on the part’'s shape. By integrating these constraints imoGAD design
process step (Figure.2) the work piece optimization woeddunluced to the
minimum tasks and hence many cycles in the part productioogss would
be saved. In other cases, such improvements could not bevadhby hand
due to the complexity of the object or when we want to exteredibplication
of the process to complex environments such as buildingsduisirial plants.

Our problem is presented as follows: Given sets of 3D measeme
points representing surfaces belonging to a certain ghjecivant to estimate
the different parameters of the surfaces, taking into agcthe geometric
relationships between these surfaces and the specific slof@irfaces as
well.

A state vectorp is associated to the object, which includes all paramet-
ers related to the patches. The shape defined by the paraveeter p has
to best fit the data while satisfying the constraints. Caersiel p) to be an
objective function defining the relationship between theafelata and the
parameters an@y(p), k = 1..M the set of constraint functions defining the
geometric constraintsCy(p) is a vector function associated with constraint
k. The problem can be then stated as follows: Find the paramaetgor p
minimizing the functiorF (pP) subject to the constraints

Ck(P) <k, k=1.M (1)

Herety represents the tolerance related to the constintdeally the tol-
erances have zero values, but practically, for geometnisitaints they are
assigned certain values which reflect the allowed geomigiaiccuracies in
the relative locations and shapes of features. It is up tadésigner to set
the tolerances, however an appropriate definition of theraoices for a given
object can be set up by using the scheme developed by Reduigha

As a simple example consider the three surfaces of a tetranégig.3).
The surfaces have three orientation constraints refledtiegthree angles
9, 9¢ and 128 between the three surface normals. Consider vector
containing the parameters of the surfaggbas then to fit the data points as-
sociated with the surfaces, minimizing a least squares &metion and also
satisfying the three constraint functions associatedethiface orientations.

2. Reated work

A review of the main reverse engineering research in the CABraunity
[7, 18, 19, 22] revealed that the exploitation of geometdnstraints has not
been fully investigated. This lack was discussed in theesuwork of Varady
et al [20].
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Tetrahedron

Figure 3. The tetrahedron object with the extracted surfaces

Incorporating geometric relationships in object modefltmas to tackle
two problems. The first is how to represent the constrairtie. Second is how
to integrate these constraints into the shape fitting peodésese two aspects
are not entirely independent, the shape fitting techniqymses restrictions
on the constraint representation and vice versa.

A first step in the direction of incorporating constraints émsuring the
consistency of the reconstruction was done by Porrill [H. linearized a
set of nonlinear constraints and combined them with a Kalfizn applied
to wire frame model construction. Porrill's method takevatdage of the
recursive linear estimation of the Kalman filter, but guéeas satisfaction of
the constraints only to linearized first order. Addition®rations are needed
at each step if more accuracy is required. This last comdii@s been taken
into account in the work of De Geetet al [4] by defining a “Smoothly
Constrained Kalman Filter”. The key idea of their approatoireplace non-
linear constraints by a set of linear constraints appliechttvely and updated
by new measurements in order to reduce the linearizatian. ¢towever, the
characteristics of Kalman filtering makes these methodsngisdly adapted
for iteratively acquired data and many data samples. Maedkere was no
mechanism for determining how successfully the conssaivdre satisfied
and only lines and planes were considered in both of the alvovies.

The constraints considered by Bokeal [2] in their approach to 3D
object position covered only the shape of the surfaces. Thege a specific
representation for the treated features: plane, cylinddrsphere.

Compared to Porrill's and De Geeter's work, our approachids/the
drawbacks of linearization, since the constraints are detely implemented.
Moreover, our approach covers a larger category of featapeas. Regard-
ing the work of Bolle [2], the type of constraints which canliegd by our
approach go beyond the restricted set of surface shapesozed also the
geometric relationships between object features. To oawlerge the work
appears to be the first to give such a large framework for ttegration of
geometric relationships for object reconstruction.
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3. Thegeometric constraints

The set of constraints associated with a given object canvided mainly
into two categories. The first one is the surface intrinsiest@ints covering
the geometric properties which arise from the specific shapéhe surfaces.
This category includes particular properties of the s@faach as symmetry
with respect to a point or a line. For quadric surfaces suatbass or cross-
section cylinders this property is the circular shape ofsghedace.

The second category named, the feature extrinsic constraefines the
geometric and topological relationships between the iffeobject features.
Table | summarizes these relationships. We notice herepthiats and lines
in this table may be either physical features of the objéa Bummits or
vertices and edges or implicit features like centres, aesymmetry. This
list is not exhaustive and this classification may not be ugidNevertheless
it covers a large number of constraints in manufacturedatbje

Table I. Relationships between features.

| point | line | plane | quadric surface
point coincident inclusion inclusion inclusion
separation separation separation separation
line - coincident inclusion inclusion
relative orientation| relative orientation| relative orientation
separation separation separation
plane - - coincident relative orientation
relative orientation separation
separation
quadric surface| - - - coincident
relative orientation
separation

3.1. COINCIDENCE CONSTRAINTS

Shapes commonly contain features which are associated gathe geomet-
ric entity (Figure.4.a) or which coincide at the same positjFigure.4.b). In

the first case these constraints are implicitly imposed mgicizring the same
parameters for each feature. In the second case the pararasseciated to
each feature are equated and the resulting equations havéothe satisfied.
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Figure4. (a): The two edgek; andE; belong to the same line. The two fad&sandP, are
associated to the same plane. (b) The centres of the c€@aleandCir, coincide at the same
pointC. The cylinder<Cyl; andCyl, have a common axis.

3.2. INCLUSION CONSTRAINTS

A particular feature point may be included in an object featig. line, plane
or quadric patch. Similarly a feature line may be includedhiplane or a
particular quadric surface (Fig.5) such as a cylinder andreec

3.3. RELATIVE ORIENTATION CONSTRAINT

There are many orientation relationships which can be dstlaad exploited
in a given part, such as the two common particular cases aflpism and
orthogonality (Fig.6.a). The presence of these two charistics is easily
detected in an object.

axecyl

N

Cyl cyl

: =
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Figure 5. (a): The axis of the cylinder pataByl is included in the plan®. (b) The line
associated to the edgeis included in the cylindeCyl.

revi sedpaper.tex; 6/04/2000; 15:35; p.7



Py

P1

P2

P2 P3
@) (b) ©

Figure 6. (a): Each pair of planefPy, P, P3) makes an angle of 90the axis of the cylinder
Cyl is orthogonal tdP;. (b): The planegPy, P,) are separated by distande(c): Each pair of
parallel planes of the hexagonal prism are separated byathe distance.

3.4. RELATIVE SEPARATION CONSTRAINT

The relative separation between features can be exploitexhwhe distance
between parallel features (Fig.6.b) is already known odede be imposed
or when the object has a symmetry aspect leading to someasigpadistance
relationships (Fig.6.c).

3.5. OrHER CONSTRAINTS

There are also other types of constraints like those impdgedtly on the
surface parameters as a consequence of the surface reptiesee.g. the
representation of a plane by the equatsnt by + cz+d = 0 where[a, b, c]

is normal vector to the plane amtis the distance of the plane to the origin
requires that the sum of the squared elements of the norniz tqual to
one. Such constraints are called the unit constraints.

4. Optimization of shape satisfying the constraints

Given sets of 3D measurement points representing surfagesding to a
certain object, we want to estimate the different surfaceupeters, tak-
ing into account the geometric relationships between tsesces and the
specific shapes of surfaces as well.

A state vectop is associated to the object, which includes all parameters
related to the different patches. The vecfbhas to best fit the data while
satisfying the constraints. Considefp) to be an objective function defin-
ing the relationship between the measured data points ag@arameters.
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This function is generally a minimization criterion (e.gns of least squares
residuals, maximum likelihood function, etc.).

ConsiderCy(p), k = 1..M, the set of constraint functions defining
the geometric constraints whe@(p) is a vector function associated with
constraintk. The problem can be then stated as follows:

minimize F(P)
subject to the constraints Cy(p) <1k, k=1..M 2

Thus the problem which we are dealing with is a constraindariga-
tion problem.

4.1. THE OBJECTIVE FUNCTION

Considers,, ., .Sy the set of surfaces amd, ., . py the set of parameter vectors
related to them. Each vect@ has to minimize a given surface fit error cri-
terionJ; associated with the surfa&such as the least squares error criterion.
The set of the parameter vectors has then to minimize thewoil object
function:

J=hh+b+.... N (3)

By considering a polynomial description of the surfaceshesurface§
can be represented by:

i p=0 (4)
whereh; is the measurement vector with each component of the fyfzY
for some(a, B,y). For instance a plane surface defined by the equatien
by+cz+d = 0, has the measurement vectohis- [x,y,z 1]T. For a sphere
defined bya(x® +y? + ) + 2ux+ 2wy +2wz+d = 0, itis h = D@ + y? +
Z,x.y,z 1]

This formulation has the advantage to lead to a compact guags
pression of the objective function because of its lineaniith respect to the
parameters. Indeed, givem measurements, the least squares criterion related
to the equation (4) is

m LT
J=35( p)’=p"Hp (5)
=1
where H; = z,";l(ﬁ}ﬁ}T) represents the sample covariance matrix of the surface
S. By concatenating all the vectops' into one vectop=[p1', 2" ,.,.,-.Pn ' ]"
equation (3) can be written as a function of the parameteov@and we get
the following objective function:

Hi (0) . (
F(p=3=pTatp o= (g ©

—_~

0)
0. .
0) . (0) Hy
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Such a function is convex if and only if the matt# is positive, which
is the case. Besides, under the above form, the objectivatiequcontains
separate terms for the data and the parameters. The datix Matan be
thus computed off-line before the optimization.

The objective function could be taken as the likelihood efridnge data
given the parameters (with a negative sign since we want tenmee). The
likelihood function has the advantage of accounting fordfagistical aspect
of the measurements. As a first step, we have chosen the tpases func-
tion. The integration of the data noise characteristich@liS function can be
done afterwards with no particular difficulty, leading t@tsame estimation
of the likelihood function in the case of the Gaussian distion.

4.2. CONSTRAINT FORMULATION

The different constraints are implemented under a matnimédation. The
matrix notation leads to a compact form and avoids exprassidath many
variables in particular for the second order derivatives thay be eventually
needed in the optmization algorithm. This allows a fastpangttic and easy
implementation of the constraints.

Some intrinsic constraints, for instance circularity ofagtic surfaces
could be imposed implicitly by choosing a suitable form & gurface equa-
tion. However, the implementation of the reduced form in dipdimization
algorithm may cause some complexity. Indeed, because aidhknearity
of these forms, it has not been possible to get an objectimetiin with
separated terms for the data and the parameters. Thus téhedas could not
be computed off-line. This may increase the computatioost dramatically.
Examples of how constraints can be implemented are founéditios 6.

4.3. THE OPTIMIZATION ALGORITHM

Optimization techniques fall into two broad branches ngm@peration
Research techniques and the recent evolutionary techlique
Evolutionary computation techniques [10, 11] have beeirigancreas-
ing attraction for their potential to solve complex probkern short they are
stochastic optimization methods. They are convenientisgmted using the
metaphor of natural evolution: they start from a randomliyegyated set of
points or solutions of the search space (population of iddais). Then this
set evolves following a process close the natural selegtiiple. At each
stage a new population is generated using simulated gevmi@ations such
as mutation or crossover. The probability of survival of tiesv solutions de-
pends on how well they fit a given evaluation function. The bes kept with
high probability and the worst are discarded. This procesgpeated until
the set of solutions converges to the one best fitting theuatiah function.
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The main advantages of the evolutionary techniques is tiegtdo not
have many mathematical requirements about the optimizatioblem. They
are O-order methods, in the sense that they operate only ewohfective
function and they can handle linear or nonlinear problenosistrained or
unconstrained.

The main drawback of these techniques is that they are hitimig
consuming. This is due to the fact that to ensure converggheenumber
of generated solutions has to be high, and at each iteraflitineasolutions
have to be evaluated. This increases the computation tiemaatically.

The second branch of the optimization techniques are ttssick op-
eration research techniques. They are more mature thanvtilatienary
techniques. They involve search techniques, numericdysinaand differ-
ential tools. Most of these techniques use an iterativersehé reasonable
initialisation causes significant speedup in convergeAcdetailed review
and analysis of these optimization techniques could bedfaui8, 9].

We believe that the evolutionary techniques are suitablmlgnéo the
optimization cases where objective functions and congBaire very com-
plex, presenting hard-handled aspects such nonlineadtydifferentiability,
or do have not explicit forms. Indeed the earlier mentioniearacteristics of
the evolutionary techniques allow them to by-pass thesklgmnus.

As our optimization problem does not have these problengspfiera-
tional research techniques are more appropriate. Thisreggtiis supported
by the time-consuming characteristic of the evolutiona&ghniques, where
the average scale of the processing time is on the order e§ hohis charac-
teristic makes these methods not appropriate for interacser environments
and impractical for a static verification and checking of tesults when
experiments have to be repeated many times. The other iarartason
for opting for search techniques is that we can obtain a redde initial
estimate of the model parameters. This initial solutionhis eéstimation of
the model parameters without considering the constraliis estimation is
not far away from the optimal one since it is obtained from ial object
prototype.

Theoretically a solution of the problem stated in (2) is gily finding
the set(P,A1,A2, .,.,Ax) minimizing the following equation:

M

E() = F(B)+ Y AC(P)

K=1
F(p) = p' AP (@)
Cu(P) = P AP+BxP+Ci

Under the Khun-Tucker conditions [8](Chapter 9), namelt time ob-

jective function and the constraint functions are contirsly differentiable
and the gradients of the constraint functions are lineartjependent, the
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optimal set(p,A1,A2, ., .,)\k) minimizing (7) is the solution of the system:
0C
—I— z )\k k (8)

In some particular cases it is pOSSIb|e to get a closed fotatiso for
(8) such as the generalized eigenvalues methods. This depenthe char-
acteristics of the constraint functions and whether it isgilde to combine
them efficiently with the objective function. When the coasits are linear
(having the formAp+ B = 0) the standard quadratic programming methods
could be applied to solve this system.

However the geometric constraints are mainly non-lineanesally it
is not trivial to develop an analytical solution for such lpiem. In this case
an algorithmic numerical approach could be of great helmtakto account
the increasing capabilities of computing.

Now if we look to the objective function and the constrainhdtions
in (7) we see that they are explicitly defined as a functionhef paramet-
ers, they are smooth, differentiable and they both have drgtia structure.
From (5) we can notice that each submatrdxof # in (6) is the sum of

cross-product termls' hI ThusH; as well as# are positive definite. Con-
sequently the objectlve function is convex. Such functimmdd be efficiently
minimized. Besides it has the important property that iteimum is global.
If the constraint functions are squared, thus enforced tal&e convex, the
optimization problem (7) would be a convex optimizationigemn forAg > 0.
For such problem an optimal solution exists, moreover thlat®n corres-
ponds to the solution of the system (8) defined by the Khurkdiuoonditions
[17](section 27,28).

The problem would be to determine the $gtA1,A2,.,.,Ax) minimiz-

ing:
M
E(P) =F(p)+ kz A(Ck(B)?), A >0 (9)
=1

To provide a numerical solution of this problem we have beeastigat-
ing an approach in the framework of sequential unconstdaimmimization.
The basic idea is to attach different penalty functions éoabjective function
F(P) in such a way that the optimal solutions of successive uninsd
problems approach the optimal solution of the problem (@Jekd the term
M M(Ck(P)?) could be seen as a penalty function controlling the con-
straints satisfaction. The scheme then increments thef dgtiteratively, at
each step minimize (9) by a standard non-constrained tgobnupdate the
solutionp, and repeat the process until the constraints are satisfeequal
values ofAg, Fiacco and McCormick [6] have shown that the solutions of
(9) converge towards the same solution of the problem (2ymNpdends to
infinity.

revi sedpaper.tex; 6/04/2000; 15:35; p.12



13

In more detail the proposed algorithm is: We start with a peater vec-
tor pl% that minimizes the least squares objective function areagit to find
a nearby vectopt that minimizes (9) for small valuek,. Then we iterat-
ively increase the set dfy slightly and solve for a new optimal parameter
pi"™t1 using the previoug!". At each iterationn, the algorithm increases
each)\ by a certain amount and a neg! is found such that the optimiz-
ation function is minimized by means of the standard Levegpdarquardt
algorithm (see Appendix). The parameter vedidt is then updated to the
new estimatep["tl which becomes the initial estimate at the next values
of Ax. The algorithm stops when the constraints are satisfiedealésired
degree or when the parameter vector remains stable for aiceamber of
iterations. A simplified version of the algorithm is illuated in Figure 7.a
in which a singleA is associated to the constraints. At each iterafiois
increased by multiplying it by a factor inversely proportad to the constraint
value decrease.

A computational problem associated with this algorithm eyas when
Ak become too large. This problem arises in the Hessian mdttheaoptim-
ization function (9) involved in Levenberg-Marquardt aligom. This matrix
becomes ill-conditioned for high values &f. To overcome this problem we
have used the technique developed by Broyeeal [3] for updating the
parameter vectop at the level of the Levenberg-Marquardt algorithm.

initialise p and A

P=—— P

0
A= A,

é

Cp) = Zk Ck (p)

A =— A + DA

find p minimizing F(p) + A C(p)

update p

Figure 7. Optim: the constraint optimization algorithm.

revi sedpaper.tex; 6/04/2000; 15:35; p.13



14

The initialization of the parameter vector is crucial to gudee the con-
vergence of the algorithm to the desired solution. For thason the initial
vector was the one which best fitted the set of data in the absehcon-
straints. This vector can be obtained by estimating eadacelis parameter
vector separately and then concatenating the vectors isiogée one. Nat-
urally, the option of minimizing the objective functidn(p) alone has to be
avoided since it leads to the trivial null vector solutiom the other hand, the
initial valuesAy have to be large enough to avoid the above trivial solution
and to give the constraints a certain weight. A conveniehtevéor the initial
Ak is:

o F(EY)
M= Ck(plY) (10)

wherepl? is the initial parameter estimation obtained by concategahe
unconstrained estimates.

5. Implementation

First, the algorithm was developed and implemented undefF M8, mainly
to check the behaviour and the convergence of the algorithmed as the
validity of the results. This version rapidly turned out ®ibconvenient since
a new implementation is needed to be done for each part. Ttiestep was
then to develop a program which can hold any part and autoaiigticonvert
the information given by the user about the object (surfacebsconstraints)
into a structure (set of objective function and constraimtctions) ready to
be integrated into the optimization algorithm. A simple staint language
compiler was developed under C++ for this purpose. The ififuts a list
of statements in which the user declares the surfaces,idesitifications and
the files where the associated 3D measurement points aexlsfbinen the
constraints are declared with their associated values@eadhhces. Figure 8
shows the structure of the input file and the language stateme

The whole package (the compiler and the optimization aligarj has
been implemented on a 20z SUN Ultrasparc workstation. The computa-
tion time is in the range of 3-10 minutes for the differentt telgjects. This
range is suitable for CAD work.

6. A smpleexample

Consider a simple polyhedral object, for instance a pattimhhedron. Sup-
pose that the tetrahedron is composed from three surf&eS; and S3

(Fig.3).
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SURFACES
SURFACE TYPE

END_SURFACES

CONSTRAINTS
PARALLEL_PLANES
-Idoutiﬁm'l Identifier2
iT_Nr),T’AR ALLEL_PLANES
INTRINSIC_CONSTRAINTS

Tdentifier Constraint Type

Identifier

15

/* begin of surfaces declaration */
data file

/* end of surfaces declaration */

/*begin of constraints declaration */

Tolerance

END_INTRINSIC_CONSTRAINTS

ORIENTATION_PLANE_PLANE

Identifierl Identifier2

Angle

Tolerance

END_ORIENTATION_PLANE_PLANE

ORIENTATION_PLANE_QUADRIC

Identifierl Identifier2

Angle

Tolerance

END_ORIENTATION_PLANE_QUADRIC

END_CONSTRAINTS

/*end of constraints declaration */

Figure8. Structure of the input file for the constraint language cderpthe upper case words

are the key words of the language

Following the paradigm of Section 4.1, each surface is sspreed by

the equation:

hl] = [leayljazljal]-r;

Np=0; i=13
i Mi ) .-

pi = [nixa n;/a nizv di]T

The object is then represented by the parameter vector:

1141 2 2 2 3 13 13
p: [nxanyanZadlanxanyanZadZanxanyanZad3]
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The objective function is expressed by:

Hi (0)s (0)a
F(B)=J=p4Hp= [(0)4 Ha (0)4]
(0)2 (0)a Hs

where L o
Hi= 3 () ()T
]
The surfaces have three orientation constraints reflettimthree angles
9P, 9 and 126 between the three surface normals N> and ;. These
constraints are represented by the following equations

m'n, = —05
m'n = 0
5T
mn =0

from which the constraint functions are deduced:
Anglei(B) = (B'A1p+05)>=0
Angle;(B) = (B'A2p)> =0
Angles(B) = (B'Asp)*=0

where
A d A D) =AU =12 ifi=14t =5+t 0<t<2
17 Ali,j) =Au(j,i)=0  otherwise
A Rl D) =Ao(ji)=1/2 ifi=1+t =0+t 0<t<2
27 As(i,j) =As(j,i)=0 otherwise
A= As(i,j) =As(j,i)=1/2 ifi=5+t, j=9+t, 0<t<2
| As(i,j) =As(j,i) =0  otherwise

The surfaces normals are also constrained to be unit. Thidsleo the
following unit constraints:

Unity(p) = (BTU1p—1)*=0

Unity(B) = (B'U2p—1)*=0

Units(p) = (B'Usp—1)>=0

whereU;, U, andU; are diagonal matrices defined by

Uy — Up(i,i) =1 fori=1.3
170 Us(i,i) =0 otherwise
U, { Ui =1 fori=5.7
271 Ua(i,i) = 0 otherwise
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SURFACES

PLANE S1 “Sl.dat”
PLANE S2 “S2.dat”
PLANE S3 “S3.dat”

END_SURFACES

CONSTRAINTS

ORIENTATION_PLANE_PLANE

S1 S2 120 10e-4

S1 S3 90 10e-4

S2 S3 90 10e-4
END_ORIENTATION_PLANE_PLANE

END_CONSTRAINTS
Figure 9. Input file of the tetrahedron object.

U, { Us(ii)=1 fori=0.11
37\ Us(i,i) =0 otherwise

The expression of the optimization function is then

3 3
BT H P+ I;A'umtu nit, (B) + I;Agng.eAngla (P)

The input file related to this object is shown in Figure 9.

7. Experiments

The experiments were carried out on real parts having planduiquadric sur-
faces (cylinder, cone, sphere). The process of extradtieglifferent surfaces
of a given part (Fig.10) starts by scanning the part by a 3Brlagngulation

range sensor. With this device a cloud of 3D points reprasgnhe shape
of the object are obtained. The next step is to segment thespito sets
associated to the different surfaces of the object. Thislgezed using the
rangeseg program [12]. To be fully measured, most of the objects havaet

scanned at different views. Therefore the measuremenpdatts obtained in
each view have to be registered to the same reference framseoeration is
carried out manually by visualising the data points assedito the different
views and manipulating the set of points by hand. Since tke nadies only

on his eye to judge the quality of the registration the daiatpdocations are
expected to be additionally corrupted by systematic ervbcsually we have

intentionally performed the registration by hand to chelo& $ensitivity of

the algorithm with respect to the registration errors.
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Data capture
Preprocessing

{ Segmentation and surface fitting }

|

{CAD model creation-improvement }

Figure 10. Steps of the object modelling process

This section will present two experiments carried out on twolti-
guadric objects. These experiments check the behaviouthermbnvergence
of the algorithm as well as the impact of constraint satigfacon the quality
of object shape reconstruction.

In order to save some space, the expressions of the diffeogmstraints
and the way how they were set up will not be developed. Theersachn
could find more details in [21].

7.1. RECONSTRUCTION EXPERIMENTL

The object (Fig.11) tested in this experiment comprises lateral planes
S and S, a back planess, a bottom planes, a cylindrical surfacess and
a conic surface&s. The cylinder surface and the back plane surface contain
more than twenty thousands points each. The number of plintsach of
the other surfaces range from four to nine thousand. Thedwytial patch is
less than a half cylinder (40% arc), the conic patch occupissiall area of
the whole cone (less than 30%)

The surfaces of the object have the following constraints:

1. S makes an angle of 120with S, (we consider the angle between
normals).

. § and$ are perpendicular t8s.

. § andS; make an angle of 120with ;.

. §3is perpendicular t&;.

. The axis of the cylindrical patc8; is parallel toSs’s normal.
. The axis of the cone pat& is parallel to&'s normal.

. The cylindrical patch is circular.

0o N o o B~ W DN

. The cone patch is circular.
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lateral plane
cone patch . s2

D '

cylinder patchS5

lateral planée¥
S1

(b)

back plane

S3
v
2
Mo

bottom plane
sS4

,‘f‘l“n-

©) ()

Figure 11. four views of the multi-quadric object

Constraints 5 and 6 are imposed by associating the normats &md S,
respectively to the orientation vectors of the cylindersaand the cone axis
and thus could be combined with the angle constraints (sHefg2 explicit
development).

The complete optimisation function is then given by the egpion:

E(B) = B"H P+ A1Cunit (B) + A2Cang(P) + AsCeircyy (B) + AaCeirceane (F)

Since the surfaces cannot be recovered from a single vienwyfews (Fig.11)
have been registered by hand. 100 estimations were caigfdrostatistical
comparison. At each trial 50% of the surface’s points arecet randomly.
The results shown in this section are the average of thegaatgins. The
results regarding the algorithm convergence are showngargil2. The be-
haviour of the different constraints during the optimipathave been mapped
as a function of the associatég as well as the least squares residual and
the sum of the constraint functions. The figures show a ndimdyar logar-
ithmic decrease of the constraints. It is also noticed thahe end of the
optimization all the constraints are highly satisfied. Thast squares error
converges to a stable value and the constraint functiorskasiat the end of
the optimization. Thus, the final part shape satisfies thpesbanstraints at
a slight increase in the least squares fitting error. The déigalso show that
it is possible to continue the optimization further until igher tolerance is
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reached, however this is limited practically by the numedraccuracy of the

machine.

angle constraint
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?'09100\]2)
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Figure 12. a,b,c,d : Decrease of the different constraint errors astfom of the related. e,f
: Variation of the least squares error and the total congtexior.
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The angles between the different fitted planes are presemfiable I1.
It should be noticed that all the angles converge to the bethaes. Table IlI
and Table 1V contain the estimated values of some attriboftéise cylinder
and the cone. The values show that each of the axis consta@tperfectly
satisfied, the estimated radius and the cone half amgtaprove when the
constraints are introduced.

Table Il. The surface’s relative angle estimation with anthaut constraints.

| angle | &2 |G| 6% | (©%) ]| (&%) | (SS) |
|Withoutconstraints| 119.76 | 92.08 | 121.01| 87.45 | 119.20| 90.39 |

| with constraints | 12000+ 1 | 90.00* | 12000* | 90.00* | 12000* | 90.00* |

| actual values | 120 | 90 | 120 | 90 | 120 | 90 |

We notice the good shape improvement, relative to the umi@ined
least squares method, given by a reduction of bias of abaut2ahd ¥ re-
spectively in the radius and the half angle estimation. Taedard deviations
of the estimations have been reduced as well.

The radius estimation is within the hoped tolerances, agayatic error
of about 05mmis quite nice. However the cone half angle estimation ireslv
a larger systematic error (about8%). Two factors may contribute to this.
The registration error may be too large since the registnatias done by
hand and the limited area of the cone patch which covers hess 30 %
of the whole cone. It is known that when a quadric patch do¢smatain
enough information concerning the curvature, the estonais very biased,
even when robust technigues are applied, because it is ssibjp@to predict
the variation of the surface curvature.

Table Ill. The cylinder characteristic estimates with arithaut constraints.

| cylinder parameters angle(axisSg's normal) | radius | standard deviation of radiuf

| without constraints| 2.34 | 37.81| 0.63 |
| with constraints | 0.00¢ | 59.65 | 0.08 |
| actual values | 0 | 60 | 0 |

1 * means that the estimated value is constrained to be eqtfat tmue value.
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Table IV. The cone characteristic estimates with and witltonstraints.

| cone attributes | angle(axisSysnormal) | a | standard deviation a |

| without constraints| 6.08 | 26.01| 0.30 |
| with constraints | 0.00° | 31.83| 0.13 |
| actual values | 0 | 30 | 0 |

7.2. RECONSTRUCTION EXPERIMENT2

The object (Fig.13) contains six plane surfac®s$,$3,$,S5,Ss, a cyl-
indrical surfaceS; and a spherical surfacg. The surfaces$, S, %3, S, S
form a square prism, the surfaBgis a square plane surface. The cylindrical
patch is a whole cylinder and the spherical patch occupiedfaphere.

About 10, 000 and 3000 points were measured from the cyliader
sphere respectively. 1500 points in average were meastoeddach of the
surface planes except for the plane surf&com which less than 300 points
were measured.

The surfaces of the object have the following relationships

1. S,Ss are parallel.

2. $,% are parallel.

3. S, are parallel.

4. S, S are orthogonal t&, S;.

5. S, are orthogonal t&;, 3 and$,, S.

6. S, andS,, S, are separated by the same distance.

7. The cylinder axis is parallel 18, S, S3 and$, and orthogonal t&s, .

8. The cylinder axis is located midway betweSnand S and midway
betweers, andS.

9. The cylindrical patch is circular.
10. The sphere centre lies on the cylinder axis.
11. The radius of the cylinder is equal to the radius of sphere

12. The length diagonal of surfa& is equal to the cylinder diameter.
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Constraints 12 and 3 allow a single normal to be associated with each pair of
planes(S,Ss), (S,%) and(S5,Ss). Constraint 7 is imposed by associating
S’s normal to the axis of the cylinder and thus combined wita #ngle
constraints. The other constraints are explicitly defined.

The optimization function is expressed by:

E( ﬁ) - ﬁT H ﬁ-l— A1Cunit ( p) + )\ZCangI (ﬁ) + A3Cist ( ﬁ) + }\4Caxe_pos( p)
+AsCeirc(B) + A6Copheenter (B) + A7Cequragius (F) + A8Credian(P)

The surfaces of the objects were recovered from 4 views shovirigure

plane S1

plane S5 plane S6

plane S2 cylinder patch S7

plane S4 sphere patch S8

plane S3

Figure 13. Four views of the multi-quadric object.

13. Similarly to the previous object 100 trials were perfedn At each of
them 50% of the surfaces’s points are selected randomlyrigad a differ-
ent initialisation each trial. In all the trials, the decgeaof all the constraint
errors and the high level of satisfaction of the constraaitthe end of the
optimization for a slight increase of the least squaresreare essentially
similar to that observed in the previous experiments andmsites graphs are
not shown here.

7.3. ALGORITHM EVALUATION EXPERIMENTS

Other experiments trials were carried out in order to givevars to the
following questions:

1. How stable is the convergence of the algorithm ?

2. How close is the estimation to the actual optimal value ?

3. What are the effects of leaving some features unconsttein

4. What is the effect of constraint invalidity ?

5. What is the effect of constraint inconsistency ?

6. Does the global shape improve with local constraints ?
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7.3.1. Sability of the convergence

The different estimations resulting from the 100 trials vexamined stat-
istically. Figure 14.a shows the maximum and the minimunuegscaled by
the absolute value of the mean) for each parameter. Thendes@f each pair
of extrema is well noticed. This aspect is further confirmgdhe standard
deviations of the parameters illustrated in Figure 14.te @listribution of the

least squares errors of the different estimations is shawiigure 15. The
related relative variance is 1.94%. Thus we can concludetiieaalgorithm

is stable.

1.05 2
+ + o+
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c
+ s
8
1ot ;;;Mm 6o bob o Loboesssd é 1r
°
o ©
ke}
g
$0.57
0.95 . . °,0 . GTTT TTTnm&a mT 8.81.1%%a.007
) 10 15 20 25 30 0 5 10 15 20 25 30
parameters parameters
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Figure 14. (a): maximum (+) and minimum (o) value for each parameteteschy the
absolute value of the mean. (b): relative standard deviaifdhe parameters.

15
10¢ — — 1
5, 4
(1 []
9.5 8 8.5
LS error distribution <18

Figure 15. Distribution of the least squares errors.
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7.3.2. Closeness to the actual optimal solution

By “actual optimal solution” we mean the estimation obtdifrem a process
where the constraints are defined, incorporated and sdtisii@in the least
squares error formulation. The solution provided in thisscaompletely sat-
isfies the constraints. So one may ask how close is the estioigdined by
our approach to this optimal solution. As we have mentiorredipusly, such
an ideal and elegant formulation is difficult or impossildeathieve for many
objects due to the complexity and to the non-linearity ofgleemetric con-
straints. In fact one purpose and motivation of our apprdadb overcome
this problem. Nevertheless it is possible for some simpléiqdar cases to
combine the constraints with the least squares error.

So, in order to make a comparison with the optimal solutionkaart of
the multi-quadric object shown in Figure 13 was consideleid. composed
of the two parallel plane§; andS;. The objective is to estimate the planes
orientation taking into account the parallel constrairdr e first case, the
parallel constraint is implicitly considered by associgtobne normal to both
planes. The optimization function is then:

ATHA+A(1—A'A)

whereH is the appropriate data matrix. The second term of the fanas the
unit constraint. A closed form solution is provided by thgezivalue method.

In the second case each plane was assigned a different neectal.
The equality of the two normals has to be satisfied througlogtienization
process. According to our approach the objective functon i

ﬁlTHlﬁl + ﬁ'gTHgﬁ'g—l-)\l(lf ﬁlT ﬁl)z —l—)\z(lf ﬁgTﬁg)z +)\3(lf ﬁlTﬁg)z

100 tests were applied for each of the two cases. The aveffathe o
results are summarized in Table V. The estimations are ainml the two

Table V. Mean estimates of S1 and S3 normal and LS error intbéypes of solutions.

| | i | m | s | angle,ns) (degree)| LS error |
0.5316
Closed form | 0.6733 - - - 9.07
0.5139

0.5316 | 05316
Optimization - 0.6733 | 0.6733 0.00 9.06
0.5139 | 05139

cases. This shows that both solutions converge to the salne arad almost
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equally minimize the least squares error. The LS of the stamiution is
slightly lower than the optimal solution one. This is be@usthe optimal
case the constraint is perfectly satisfied so the least sg@sror has to absorb
all the error. The same convergence of the two solutionsrtedu confirmed
from the distribution of the difference between the two apghes (angle
(A,Nc) wheren. is the mean ofi; andn3) and the difference between the
related LS residuals from the 100 trials (Fig.16). Thus weocbade that our
optimization process leads us to solutions that are versedo the optimal.

14t

12

10

14

12 M

10

] 2F
n ol 1 1 :

-48 -4, -44  -42 -4 -3.8 -5 -4.5 -4 -35
log, (angle(n_,n)) log, /(LS - LS/mean(LS)))

(a) (b)
Figure 16. (a): Distribution of the estimation difference. (b): Dibuition of the LS residuals
difference.

7.3.3. Leaving some features unconstrained

Another series of tests has been performed without consgiéne diagonal

constraint (constraint 12). This is in order to check if tmdl affect the pos-

ition of the four plane surfaces with respect to the cylinales and therefore
the estimation of the edge of the square surf8&eResults are shown in
Table VI with the previous results for comparison. It is getl that the radius
estimation is not affected but the incorporation of the &ddal constraints
slightly reduces the diagonal length error.

7.3.4. Invalidity of the congtraints

Suppose that one or more constraints do not reflect the actiailonships
between features and therefore are invalid. What would bééhaviour of
the algorithm? Will these “false constraints” be satisfigdf?at could be the
resulting estimated model ?

To answer these questions, some angle constraints weie aefrcor-
rect values. Three tests were carried out, in the first théegimg, n>) was set
to 1/3, in the second the angl@,nNs) was set tar/3 and in the third test
both anglegni,ns) and (M, Ns) were set tat/3 (note that the correct angles
areTt/2 for both angles).
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Table VI. comparison of the estimation without median caists with previous results.

| distance$;, S3) | distance®, &) | diagonal ofS | cylinder radius|

|

| without constraints | - | - | - | 14.64 |
| with all constraints | 2117 | 2117 | 2994 | 1497 |
| without median constraint 2115 | 2115 | 2991 | 1497 |
| actual values | 21.28 | 2128 | 3002 | 1501 |

In all these tests the behaviour and the convergence of fueithim
were qualitatively similar to those of the previous expamts. The algorithm
converges, the least squares error stabilizes and all tistraints are satisfied
at the end of the process although the least squares errogdteg than the
valid constraints case (Figure 17). Table VIl summarizesetstimated model
characteristics in each of the three tests.

Table VII. The object characteristic estimates for invalihstraints and true constraints (last row).

| | om | m | M | Ry | Rpn | axey | Centergy |
-0.61 -0.58 0.72 0.72 86.30
(N, M) =T17/3 -0.47 0.52 -0.02 | 14.97| 1497 | -0.02 -87.38
-0.62 -0.62 -0.69 -0.69 17.44
-0.08 -0.46 0.72 0.72 86.31
(A, M5) = T1/3 -0.60 0.72 -0.02 | 14.97| 1497| -0.02 -87.41
-0.78 -0.50 -0.69 -0.69 17.44
(1) = T7/3 -0.02 0.05 0.72 0.72 86.31
(M) —m3 | 068 | 072 | -002 |1497|1497| 002 | -87.42
2:15) = -0.72 -0.68 -0.69 -0.69 17.44
_ -0.52 -0.45 0.72 0.72 86.30
true constraints -0.67 0.73 -0.02 14.97 | 14.97 -0.02 -87.38
-0.51 -0.50 -0.69 -0.69 17.44

An examination of Table VII leads to the following obsereais:
1. In all of the three tests the cylinder and the sphere cleniatics are not
affected by the invalid constraints.
2. The normalfn; which is involved in each of the invalid constraints is
affected in three tests.
3. The normah is changed in the first and third test where it is involved in
the invalid constraints whereas it is unchanged in the stoest where it is
not involved.
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Figure 17. (a):Constraint error function and least squares errortiancfunction for valid

constraints. (b):Constraint error and least squares éurution for invalid constraints (8
test).)

4. The normahs is kept unchanged in all the tests even in those where it is
involved in the invalid constraints.

From these observations we can deduce that invalid contgraffect
the object feature’s locations by shifting the involvedtéeas toward posi-
tions where these constraints are satisfied. Consequénigywill increase
the least squares error. The locations and the charaateristthe surfaces
which are not involved in the invalid constraints are noeeféd (the sphere
and the cylinder). However the norm@ seems not to satisfy this rule since
its orientation stays unchanged for all the cases whereinvisved in an
invalid constraint. This is explained by the fact that cantrto n; andn,
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Ns is also involved in other constraints, in particular it imetrained to have
the same orientation as the cylinder axis. The satisfaaifahis constraint
keeps it collinear to the cylinder axis and prevents itsraggon from being
affected. Thus the algorithm satisfies the invalid constsain whichns is
involved by acting on the other normals involved in thesest@ints.

7.3.5. Inconsistency of the constraints

In this test we investigated what the behaviour of the affgoriwould be

when some constraints are inconsistent and have a coriosdioetween
them. For this purpose we introduced two additional incstesit angle con-
straints (imposing the anglgsi,M2) and (N1,Ns) to be 11/3) that conflict

with the two original consistent constraints (defining epahr of (N, N>) and

(M, ns) as orthogonal vectors). The trial carried out with thesemsistent
constraints revealed that the algorithm converges noynggligure 18) with

both the least squares and the constraint functions sgiliat the end of
the algorithm. From Figure 18.a we notice that the angle tcaimés are not
satisfied. This is obvious because it is not possible tofgat@nflicting con-

straints simultaneously. The converging values of the ttaim$ function (the
sum of all the constraints) in Figure 18.b and the angle caims$ error are
practically equal at the end of the optimization processs Thows that the
other consistent constraints are satisfied. This resultiie gqiseful, it means
that the set of constraints affected by the inconsistenaybeadetected by
observing the convergence of each constraint error funatioher than its
reduction to zero. More analysis is heeded to detect thelsshaubset of
constraints causing the inconsistency however.

angle constraint function sum of the constraint functions least squares function

o
o 2
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w
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Figure 18. (a): The sum of the angle constraints’ errors. (b): the gaigtfunction. (c) the
least squares error
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7.3.6. Global shape improvement

The different tables shown in this section compare the gé@neharac-
teristics of the object for an optimization with and withawgnstraints and
show the improvement of the object characteristic estimateen constraints
are applied. The results presented in the tables are thegevaf the 100
estimations. The angles between each pair of surfé8e$), (S1,S) and
($,S5) were set as constraints and the constraints were nearlgqpigrsat-
isfied. From Table VIII we notice the satisfaction of the sguproperty of
the prism, illustrated by the equality of the two distancegasating(S;, S3)
and ($,S;). Their values are close to the actual length of the edge of the
square plané&s and closeness of the estimated value of the diagong] taf
the actual value when the constraints are considered. Btendes between
these last surfaces for an optimization without constsamnot mentioned in
this table since the estimated surfaces are not parallel.

Table VIII. Improvement of the prism characteristic estiega

| distance;, Sg) | distance®, Sy) | diagonal ofSs |

|

| with constraints | 21.17 | 21.17 | 29.95 |
| standard deviation/meah 0.03% | 0.03% | 0.03% |
| actual values | 21.28 | 21.28 | 30.02 |

The improvement of the quadric surface estimation is comirragain
for this object ( Table IX and Table X). The radius estimat&mor is less
than 004mm for both the cylinder and the sphere. The standard devisitbdn
the cylinder and the sphere radius have been significardiyoed as well.

Table IX. Improvement of the cylinder characteristic esties.

| cylinder parameters | angle(axis's normal)| radius (mm)|

| without constraints | 1.55 | 1464 |
| a/mean without constraints - | 012% |
| with constraints | 0.00° | 1497 |
| o/mean with constraints | - | 0.03% |
| actual values | 0 | 1501 |
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Table X. Improvement of the sphere characteristic estimate

sphere parameters | distance(centre, cylinder axig) radius (mm)|

|

| without constraints | 1.36 | 16.02 |
| o/mean without constraint$ - | 0.11% |
| with constraints | 0.00* | 14.97 |
| o/mean with constraints | - | 0.03% |
| actual values | 0 | 1501 |

8. Conclusion

This work presents a method for the reconstruction of shaperporating
geometric constraints. It can hold a large number of varmustraint types
and incorporates them integrally without the need for lirezdion.

The experiments carried out on the different objects contiien con-
vergence of the algorithm. The parameter optimizationcedoes produce
shape fitting that satisfies almost perfectly the conssaifihey show in par-
ticular that the least squares error grows slightly as thstaints are applied
and the weighting values increased, but it stabilizes alpevin values of
the A while the constraint errors are still decreasing. Thus passible to
satisfy the constraints up to the desired tolerance witketibusly affecting
the quality of the data fitting. This allows the user to cohti@ degree of
satisfaction of the constraints and to set the tolerancésghsas necessary.
The processing time for the different objects is typicallfear minutes and
is is expected to be further reduced with more optimized iwass of the
implementation.

The above observations suggest that the proposed appribaeh fiex-
ibility in the incorporation of the constraints, as well as their satisfaction.
Indeed the low computing time of the algorithm allows an riattive user
environment. This is not possible with techniques reqgirseveral hours
computing time such as techniques based on genetic algarith

Regarding the slight increases of the LS error, we have toibeaind
that the increase of the least squares residuals value ntawflect a bad
estimation in the case when measurement errors are sygtemal mis-
calibration and registration error. This last type of efiroexpected in our data
since the registration process is performed by hand. We\sethat the slight
increase of the least squares error as a consequence ofrbieadats satis-
faction is a result of the object being located more acclyratéowever we
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intend to investigate a more robust form for the objectivection involving
the data noise statistics.

The different trials applied on the multi-quadric objectsfirm the sta-
bility of the convergence of the algorithm. The low valueshe parameters’
variances illustrates the stability of the solution praddoy the optimization
search process. The tests have shown as well that the ptbapgeach leads
to an estimate which is close to the optimal solution in thgecahere the
constraints could be combined with the least squares drhar.experiments
also show that applying the constraints to only some featdoes not ser-
iously affect the estimation of the unconstrained surfatée estimation is
still improved compared to the case of unconstrained optition.

The examination of some constraint invalidity cases hagatibe con-
straints are always satisfied whether they are valid or ndbtlae behaviour of
the algorithm is typically the same. The satisfaction of mralid constraint
leads to the relocation of the involved and less constrafeatlires (having
more degrees of freedom) toward positions where the instersly is re-
moved. However, this will result in a false object model. Tihal performed
with constraint inconsistency revealed the same behavémarding the con-
vergence of the algorithm but the inconsistent constraintsnot satisfied at
the end of the optimization. This suggests that constrailitity and con-
sistency checking have to be done before starting the agdiion process,
or at least examination of the constraint error results termieine if a set of
inconsistent constraints have been supplied.

Regarding the shape estimation accuracy, the comparistiveaibject
dimension estimates with those from unconstrained fittiogfieoms that the
proposed approach improves the quality of the shape recatish to a high
degree. For the second quadric object the radius of thedsiiand the sphere
have an estimation error in the range dd4inm, the edge of the square prism
has an estimation error around.m. The radius of the cylinder patch estim-
ated from the registered half cylinder has an estimatiooremround 001mm.
For a single view it is less than%mm. The same range of error is obtained
for the radius of the cylinder patch of the first multi-quadobject.

Results for the cone patch are less satisfactory for thenfivdti-quadric
object. This is mainly due to the relatively small area of dmmic patch.
Actually, we intentionally chose to work with small patcHescause uncon-
strained fitting surface techniques fail to give reasonabtanates in this case
(see the radius estimation in Table I11) even with robusbatgms due to the
“poorness” of the information embodied in the patch.

Although the experiments presented in this work were peréat on
single objects, the proposed approach can hold for mulapjects. Indeed,
generally industrial parts are designed to fit to each owgeometric rela-
tionships between the parts may be considered and theingsatinstraints
can be incorporated as well in the optimization process.
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Another area we are starting to investigate is how one migturaatic-
ally identify inter-surface relationships that can haveoastraint applied. In
manufacturing objects, simple angular and spatial relatipps are given by
design. So, it should be straightforward to define simpléstizal tests that
hypothesize standard feature relationships, subjectetdeidture’s statistical
position distribution. With this analysis, a computer parg could propose a
variety of constraints that a human could either acceptjecteafter which
shape reconstruction could occur.

The proposed technique restricts its scope to applicatidrese a reas-
onable initial solution is available. Also the approach bafd only geometric
constraints that can be represented by continuous andatiffable functions.
More complex objects with higher order surfaces can use &wgiproach as
far as this condition is fulfilled.

Finally, although this work is mainly intended for object dedling it
may be extended to any constrained built environment aqudic, for ex-
ample modelling of different parts of an industrial planipgs, reservoirs,
etc) needs the consideration of the geometric relatiosshgtween these
different parts in order that the whole model will be coresigt The same
is true as well for modelling different compartments of Hings. Cities are
probably too under-constrained.
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Appendix: Levenberg-Marquadt algorithm

Here are the main steps of the Levenberg-Marquardt algorapplied to a
simple optimization function:

E(P) = F(P) +C(p)

o =0y % initialization
Edecrease = big value

while Egecrease > € % a threshold
Do Ge=Grad€(P)) = 55(E(P))

Loop: He=HessianE(p)) = 55(E(P))
He = He + a(diag(Hg))
solveHgdp = :GE
ﬁupdated = ﬁ+5p
Edecrease = E(ﬁupdated) - E(ﬁ)

if Egecrease > 0
increasen
go to Loop

else
p= ﬁupdated
decrease

. end if
end while
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