1-D Parabolic Search Mutation

C. Robertson & R.B. Fisher

School of Informatics
University of Edinburgh
Edinburgh, EH1 2QL, UK
craigr@dai.ed.ac.uk

Summary. This document describes a new mutation operator for evolutionary al-
gorithms based on a 1-dimensional optimisation strategy. This provides a directed,
rather than random, mutation which can increase the speed of convergence when
approaching a minimum. We detail typical comparative results of unimodal and
polymodal optimisations with and without the operator.

1 Introduction

1.1 Canonical EA Definition

The general scheme for an EA optimisation consists of a number of operators
used in succession :

Initialization Sets of parameters (genes) encoded as strings (chromosomes)
are initialized, generally randomly, within their domain constraints.
Evaluation The strings are then assessed using the evaluation function to
give their fitness values. Often these fitness values are stored alongside the
chromosomes themselves in some data structure.

Selection Selection schemes determine which of the strings should be prop-
agated into the next generation. These schemes often generate a probabil-
ity of propagation for each string.

Reproduction A new set of candidate strings are generated from the old
ones. Some method is used to take two strings from the old population
(parents) to produce two new strings (offspring).

Mutation Elements of strings are changed randomly under some proba-
bilistic selection scheme.

Replacement Offspring replace their parents in the new population if they
have a better fitness value.

A canonical EA ! is a subset of reproductive population algorithms. These

are algorithms that keep a collection of candidate solutions that are iteratively

! Following and extending the definition given for canonical GA, given in [?].

2 C. Robertson & R.B. Fisher

improved over successive generations. The following characteristics are those
that represent a large subset of those found in the literature:

All candidate solution vectors are the same length.
The population of solutions is always the same size as the algorithm pro-
gresses.

¢ Reproduction between populations always uses two parent chromosomes,
chosen by some probabilistic selection strategy.
Reproduction is performed by crossover operations.
Mutation is possible, according to some predefined population-wide mu-
tation probability.

1.2 Canonical EA Operators

The main operator of EAs is the crossover, which carries useful information
forwards through population generations. There are many probabilistic ways
of selecting chromosomes to crossover. Most are based on some ranking of
chromosomes by their fitness value. One example of this is to generate a prob-
ability of selection by cumulative summing of the ascending sorted normalised
fitness values and using the values as a probability of selection.

Another method is to pick two sets of two chromosomes from the pop-
ulation at random and choose the best of each pair, known as tournament
selection.

Crossover itself is generally a matter of overwriting two chromosomes (par-
ents) with the two others (offspring). The offspring are formed by overwriting
a random number genes from one parent onto the chromosome of the other.
This is done symmetrically to form the two offspring, as shown in figure ?7.

parentlJy child1
A[BICID[E[F|G}) FlA[B[C[4]5]6]7]
1]2]314[5[6]7F -{1[2[3[D|E[FIG
parent 2 child 2

Fig. 1. Canonical 1-point EA Crossover

1.3 Building Block Hypothesis and the Problem of Premature
Convergence

The reason put forward by Holland (and reported in [?]) for convergence in
evolutionary algorithms is that they identify good building-blocks and even-
tually combine these into bigger building blocks. Premature convergence hap-
pens when all chromosomes throughout a population become the same. This

1-D Parabolic Search Mutation 3

means that all crossover operations will yield offspring identical to their par-
ents. If only crossover is used as an operator, it is clear that premature conver-
gence would result very quickly as the best building blocks reached the same
chromosome. In order to optimise it is necessary to generate new information.
To get to an optimum from this situation though, even using mutation, is
a very tedious process. It is also necessary to take timely action to ensure
population diversity is maintained as well.

The function of mutation is to add new material into populations and
thereby avoid just this premature convergence issue. It is possible to perform
a random walk over the whole solution space using only mutation. Some even
have argued that cross-over is not strictly necessary in EAs [?] since repeated
mutations allow a random walk through the solution space.

1.4 Extensions: Types of Mutation

In this paper, we do not concern ourselves with the multiplicity of crossover
operations although we acknowledge that some of them are likely to achieve
faster convergence in specific problem domains. We present below a list of
mutation operators, which is extensive but not exhaustive.

e Random This is the mutation operator as used in a canonical EA. In a
chromosome selected by some probabilistic scheme, a random gene is set
to a new value randomly assigned inside that gene’s domain limits. In
essence, this scheme adds new information into the gene pool, although at
random. It has a destructive effect on a generational EA because it moves
a solution a random amount in a single dimension.

e N mutations Essentially the same as one, performed N times. Adds N
times as much information but is N times as destructive to an individual
chromosome. Moves the solution chromosome in a random N dimensional
direction. Similar to an annealing process.

e C(Creep This operator, and those that follow are extensions to the random
mutation operator. In creep mutation, we move the selected chromosome
a known amount in a single dimension, either forward or backwards, sub-
ject to its domain constraints. It is more stable than random mutation
although, depending on creep size, likely to force a gene to its domain
limits.

e Directed Hill Climbing Mutation This mutation requires some memory of
previous mutations. If the last mutation of this chromosome produced a
better fitness function, them perform the same mutation until it becomes
worse, then back off.

o Domain Limit Mutation This operator randomly pushes the gene to one
or other of its domain limits. This is useful if the solution lies close to the
limits of its domain.

e Non-uniform mutation This mutation operator is essentially creep muta-
tion with a variable step size. It allows a space to be searched uniformly
at first then more locally as generations proceed.

4 C. Robertson & R.B. Fisher

One important consideration when designing mutation operators is atomic
versus complex mutation. A useful rule when designing mutations is that it is
better to have mutations that do one action rather than mutations that do
a combination of actions. The reason for this is that the complex mutations
can usually be built from a combination of the atomic ones.

2 Algorithm

2.1 New Mutation Operator: Parabolic Search Strategy

Parabolic mutation is a new form of mutation which is an approach to pro-
viding the best single step information for a single gene mutation.

1. Define a 1D search envelope of size 7.

2. A single gene is chosen at random from a given chromosome, with value
z1 and corresponding chromosome fitness y; .

3. Create two new chromosomes by copying the original and replacing the
selected gene with values of zg = (z1 — 7) and x5 = (z1 + 7).

4. Evaluate the new chromosomes and get their fitnesses, yo = f(xo) and

Y2 = f(z2)

5. Make a decision based on table I.

Table 1. Decision table for parabolic mutation

Fitness state 1-D Landscape

Yo <y1 < Y2
Yo <Y1 > Y2

Yo > Y1 > Y2
Yo > y1 < Y2

Minimizer Maximizer
choose xo choose z2
choose min(zo, z2) fit parabola

choose Zpest=max

choose x2 choose z¢
fit parabola choose max(zo, z2)
choose Zpest=min

with parabolic fitting [?] as seen in figure ?7?:

Let

(Y1 — %o)
M0 @y — o)
(y2 —y1)
S
b (m1 —myo)

1-D Parabolic Search Mutation 5

The maximum or minimum is then:
(w0 + 21 — 3°)
2
This will find either maximum or minimum values depending on the values

of (z;,y;), as shown in figure 2.
6. Replace the gene by the new value and return the chromosome to the

Tbest =

population.
Chromosome
a,/a, ad,;|ds|As|ag| Ad;| dg| Ag
Genes }‘wld static
Selected for mutation
Chromosomé Search envelope(+/- 1)
fitness =TTt T -

&y (X, %)

Koo]
Domdin limits ! Genevalue

i
Current value:
New value

Fig. 2. Parabolic Fit Mutation

Note that if the space around the original value of the gene, x;, is strictly
increasing or strictly decreasing we have essentially a directed creep mutation.
When our values straddle a local minimum, however, we can have very fast
convergence to that minimum, depending on the size of 7.

2.2 Test Context

We use a canonical EA, as shown in figure ??7. Each of the modules is self-
contained and is explained below.

6 C. Robertson & R.B. Fisher

o Initialization Each gene in each chromosome is randomly initialized within

its domain constraints.

FEvaluation Each chromosome is evaluated with a specified fitness function.

New Population Generation The new population is formed in four steps:

— FElitist. This is a common method of ensuring that the best chromosome
from the last population is preserved intact. It is simply copied as the
first member of the new population.

— Crossover. We use tournament selection to produce the next tranche
of population.

— Mutation. We switch between parabolic search mutation and random
mutation every iteration.

— Re-initialization. Some of the new population is entirely re-randomized
each iteration. This is normally a very low percentage of the chromo-
somes in the population.

Initialize population

Generate new
population

Elitist step: copy best chromosome
directly to new population

Tournament selection: generate
new chromosomes by 1 point

crossover

1

Mutate: generate new chromosomes
by search mutation or random mutation

1

gonerat new ‘

by re—initializing failing ones

%1

Check for
convergence

Fig. 3. Algorithm Context

3 Example Applications

3.1 Setup

In order to test speed of convergence, the new operator was employed to
optimise some well known functions (outlined in Yao [?]). Example times for
convergence in iterations and seconds are given, together with some discussion

1-D Parabolic Search Mutation 7

where relevant. The evolutionary strategy he used (i, \) = (30, 200)-ES is not
directly mappable to our scheme, instead, we use a population of 200 (except
where stated) with replacement as outlined in section I.

Note that for unimodal functions, the issues of speed of convergence as
well as quality of solution are important for our applications. For polymodal
solutions, any equally important solution is useful. We do not claim that we
are able to find either all solutions or the global optimum. For a discussion of
how we can find all optima, see section ?7?.

In all cases, we give the average results over ten runs for clear convergence
to an optimum, in iterations (i.e no further improvement). Note that we do
not give timings as all experiments took less than 5 seconds on a 1GHz Athlon
PC system running the Linux/GNU operating system.

We also give graphs showing averaged fitness function values of the best
chromosome in the Appendix. Note that the fitness function numbering is as
in Yao [?].

3.2 Single Minimum Function Optimization

The following functions were all optimised trivially (in one population itera-
tion) using the new operator in the context specified:

e Sphere model:
30

file) =) af 1)

i=1
with —100 < z; < 100, min(f;) = f1(0,...,0) =0
e Schwefel’s Problem No.1:

30 30
f2(z) = Z |zi| + H || (2)

with —10 < z; < 10, min(f2) = f2(0,...,0) =0
e Schwefel’s Problem No.2:

2

30 i
fa(@) =3 | D_(@i) 3)

with —100 < z; < 100, min(f3) = f3(0,...,0) =0

3.3 Function Optimization with Many Local Minima

The following functions, which have an increasing number of optima of varying
importance, were optimised.

8 C. Robertson & R.B. Fisher

Sine Product Function
f(x) = sin(xo) x sin(x) (4)
where z; € [—2m, 2]
This function has two maxima and two minima of equal importance in the

given range.

Fitness landscape for f(X) = sin(x0) x sin(x1)

Fitness

Fig. 4. Sin x sin Function

Product Function

f(X) =g X IT; X ...T10 (5)
where z; € [-5, 5]

This function has 2 maxima and two minima of equal importance in the given
range.

Himmelblau Function
Himmelblau is a set of quartic form functions, generally the following is used:
fx) = (zg + 21— 11)> + (zo + 27 — 7)? (6)
with z; € [-5, 5]

For which there is a set of known local optima of approximately the same
importance:

f(3,2)=0
f(=3.78,-3.28) = 0.0054
f(—2.81,3.13) = 0.0085
f(3.58,—1.85) = 0.0011

1-D Parabolic Search Mutation 9

Himmelblau function with local minima shown

Fig. 5. Himmelblau Function

Six Hump Camel Function, fig

This is a relatively simple function with six omptima inside the given domain.
1
fie(x) = 422 — 2127 + gmf + z110 — 422 + 42 (7

with —5.0 < z; < 5.0, min(fi6) = f16(+0.08983, F0.7126) = —1.0316285

Generalized Rosenbrock’s Function, f5

29

fs(@) = Y [100(zip1 — F)° + (@; — 1)° (8)

=1

with —30 < z; < 30, min(fs) = f5(1,1,..,1) =0

Quartic Function with Noise, f~

fr(z) = Zi$4 + random|0, 1) 9)

i=1

with —1.28 < z; < 1.28, min(f7) = £7(0, ...,0) = 0

Generalized Rastrigin’s Function, fy

30
fo(z) = _[27 — 10cos(2m;) + 10)] (10)

i=1
with —5.12 < &; < 5.12, min(fs) = fo(0,...,0) = 0

In this case we used a population of 50 chromosomes.

10 C. Robertson & R.B. Fisher

4 Results

Graphs of convergence are shown in the Appendix (figures 6 to 12). It can be
seen that in general the mutation search method works as well or better, that
is faster, than regular mutation. In certain circumstances, for example the first
three fitness functions, convergence is achieved in a single iteration, indicating
that for this kind of (essentially gradient descent) problem search mutation is
extremely fast. In other unimodal problems it is generally much faster than
regular mutation. It should be noted that because we used regular mutation
every few iterations as well, also we benefited from a form of annealing.

e Sphere model, Schwefel’s Problem No.1, Schwefel’s Problem No.2. These
were all optimised in a single population iteration using the the new mu-
tation operator. There is no graph shown in the appendix.

o Sine Product Function. One optimum for this function was found after
a single iteration in both the case of maximization and minimization. A
graph of convergence is shown in figure 6 in the appendix. This graph is of
interest because the relative time for convergence using the regular oper-
ator is much slower and it does not reach the optimum, only approaching
it in 5000 iterations.

e Product Function. Given the same set of starting chromosomes, the new
operator performs as expected and convergences relatively quickly. Shown
in figure 7.

e Himmelblau Function. Another instance of single iteration convergence
with the new operator. It should be mentioned that finding the global
minimum in this experiment is luck, rather than a product of the method-
ology. Shown in figure 8.

o Six Hump Camel Function, fig.

This result shows that this fitness function is particularly complex and
varies very rapidly inside its domain limits. This kind of function is not
well suited to the operator but it performed as well as the regular one.
Both converged very quickly. Shown in figure 9.

o (eneralized Rosenbrock’s Function, fs.

Both operators performed similarly but the space is very complex with
rapid gradient changes. Various sizes of search window would probably
have brought even greater benefits in this example. Shown in figure 10.

e Quartic Function with Noise, f7.

Fast convergence was achieved with both operators. Notice that the noise
causes even the same chromosome to have different evaluations with each
iteration. Shown in figure 11.

o (eneralized Rastrigin’s Function, fg.

The error converged relatively quickly and to a lower value than the canon-
ical EA. Shown in figure 12.

1-D Parabolic Search Mutation 11

5 Conclusions and Further Work

We have found that a search mutation is as good or better than regular random
mutation in every case we have tested. It has been particularly noticeable that
in some contexts it can be used to solve optimisations in a single iteration.
This is because the quality of the building blocks is good. Rather than being
random they give the best possible information at the time.

In other cases, where the function is not particularly amenable to parabolic
fitting, the operator acts as creep mutation until approaching a minimum,
where the parabola fitting ensures fast convergence onto the local optimum.

Extension to Multi-Objective Optimisations

If it is necessary to find multiple optima or search for a global optimum there
are two methods available to do this, non-random initialization and enforced
diversity. If a good estimate of the solution is available, it makes no sense to
randomly initialise a population, seeding around this solution is a much better
practice. In large and complicated but regular spaces (i.e. locally continuous),
one or two passes can be made to heuristically search for good areas in which
to perform the optimisation. An example would be to place chromosomes
on a regular grid, assess their fitness and then assign a number of search
chromosomes to each area based on relative fitness.

One method of ensuring a good spread of chromosomes throughout the
space is to test the diversity of the population and reject similar chromo-
somes. This method is not widely adopted since good measures of diversity
are difficult to formulate. This is a problem on which further work is now
being done.

Acknowledgements

The work presented in this paper was funded by UK EPSRC grant GR/M97138.

References

1. Robertson C., Fisher R. B., Werghi N., Ashbrook A. P. “An Evolution-
ary Approach to Fitting Constrained Degenerate Second Order Surfaces”.
in Evolutionary Image Analysis, Signal Processing and Telecommunications,
Proc. First European workshop on evolutionary computation in image analy-
sis and signal processing (EvoIASP99). Goteborg, Sweden, pp 1-16, Springer
LNCS 1596, May (1999).

2. Robertson C., Fisher R. B.; Werghi N., Ashbrook A. P., “An Improved Algo-
rithm to Extract Surfaces from Complete Range Descriptions”, Proc. World
Manuf. Conf, WMC’99 (ISMT’99) - Sept. , pp 592-598, ICSC Academic
Press, Durham (1999)

12 C. Robertson & R.B. Fisher

3. Robertson C., Fisher R. B., Werghi N.; Ashbrook A. P., “Object recon-
struction by incorporating geometric constraints in reverse engineering”,
Computer-Aided Design, Vol 31(6), pp 363-399, (1999).

4. Eggert D, Fitzgibbon A., Fisher R. B., “Simultaneous Registration of Mul-
tiple Range Views For Use In Reverse Engineering of CAD Models”, Com-
puter Vision and Image Understanding, Vol 69, No 3, pp 253-272, March
(1998).

5. Rawlins G. J. E. (ed), Foundations of Genetic Algorithms, Morgan Kauf-
mann Inc., San Mateo, CA, (1991), pp3.

6. Michalewicz Z., Genetic Algorithms + Data Structures = Ewvolution Pro-
grams, Third Edition, Springer, (1996).

7. Fogel D. B., “An Introduction to Simulated Evoutionary Optimization”,
in IEEE Transactions on Neural Networks, Vol.5, No.1, January, pp3-14.,
(1994)

8. Chen K. , Parmee I. C., Gane C. R., “Dual Mutation Strategies for Mixed-
integer Optimisation in Power Station Design.”, Proceedings of IEEE In-
ternational Conference on Evolutionary Computation, Indiana University,
April , pp. 385-390., (1997)

9. Roy R., Parmee I. C., “An Overview of Evolutionary Computing for Multi-
modal Function Optimisation”, Proceedings of WSC2. June (1997).

10. Press W.H., Teukolsky S.A., Vetterling W.T. | and Flannery B.P.. Numerical
Recipes in Fortran. Cambridge University Press, (1992).

11. Yao X. and Liu Y., “Fast evolution strategies,” Control and Cybernetics.
26(3):467-496, (1997).

12. Benson K., “Evolving Automatic Target Detection Algorithms theat Logi-
cally Combine Decision Spaces”, Proc. British Machine Vision Conference,
M. Mirmehdi and B. Thomas (eds), BMVA Press, pp 685., (2000).

Appendix - Graphs of Convergence

-2e+00 [{
-aevoo ||
-6ev00 | |

sevoo | |

“1ev1o0 [

Iterations

o s 10 15 20 25 30 35 40 45 50 o 200 400 600 800 1000

Figure 6: Convergence for Sine Figure 7: Convergence for
x sine Function Product Function with 10 Genes

0.05
“averaged_ordinary” using 1:2
Fitness “averaged. search” using 1:2 —————
0.045 [4
004 | 4
0.035 [4

o 50 100 150 200

1-D Parabolic Search Mutation 13

e o ora T2
“averabed_ordinan using
Fitness everaged searcht using 13 ————
06 f]
07 |]
0.8 H E
00]

11

Figure 8: Himmelblau Function

Convergence

50

“averaged_ordinary” uging 1:2
Fitness “averaged_search” using 1:2 -

as 4

a0 4

ES 4

25 4

20 4

Evaluations

Figure 10: Generalized
Rosenbrock’s Function
Convergence

o8

0.6

0.4

0z

Iterations

o 50 100 150 200

Figure 9: Six Hump Camel
Function Convergence

“averdged_ordinary” using 1:2
itness “averaged_search” using 1:2 -
Evaipatiops._|
o 5 10 15 20

Figure 11: Noisy Quartic
Function Convergence

Fitness

° L L L

“averaged_ordinary” using 1:2
“averaged_search” using 1:2 -

valuaions

o s 10 15

20 25 30 35 40 45 50

Figure 12: Generalized Rastrigin’s Function Convergence

