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Figure 1. Examples from the Bornholm data set.

Abstract

In this work we address the question of how to ex-
ploit typical architectural structures to improve accu-
racy for CAD modeling of built environments from 3D
data. In doing so we have examined the applicabil-
ity of theGENOCOPIII algorithm to the model fitting.
The algorithm uses explicit domain knowledge, specif-
ically geometric constraints in the form of parameter-
ized surface models and an Euclidean fitting of geo-
metric primitives that describe the parameterized vol-
umetric models. Beside some results fitting parame-
terized volumetric models to real 3D datasets, exam-
ple times for convergence and comparison with known
ground truth are given.

1 Introduction

In many areas of engineering, medical sciences or
art there is a strong demand to create an appropriate

computer representation of existing 3D objects from
huge sets of measured data points. While this topic
has been an important branch in computer vision, due
to the advances in laser scanning, now it has become a
realistic expectation in the geometric modelling com-
munity to generate accurate and topologically consis-
tent models, ready to be used in CAD/CAM.

Typical applications include reproducing and re-
designing objects or only parts, when no original draw-
ings or documentation are available. The modeling
of real world environments covers objects such as
buildings, industrial plants and historical buildings like
churches, castles, and towers where it is hard to get
data for the whole scene.

In areas where the design is of utmost importance
such as in the automobile industry or in making of
prostheses for human body parts a free-form modeling
is required. However, the shape of the objects we are
dealing with here is not arbitrary, rather it conforms
to architectural coventions expressed through geomet-
rical and topological relations between feature primi-



tives. Usually, man-made objects can be represented
by a set of relatively simple geometric shapes with
characteristic features. For example doorways have
a standard range of sizes and the vertical sides are
usually nearly parallel, windows are often included in
walls and arranged in a row, walls interact with specific
angles, pipes have specific (relative) orientations in in-
dustrial factories etc. These properties are formulated
from specific domain knowledge. But what is needed
to preserve these specific instances of the properties in
the reconstructed models?

This paper focuses on the use of constraints, rather
then the selection of constraints. We assume that the
appropriate constraints are chosen already (by hand
here). The main issues are how to incorporate these
constraints into the modeling process and what strat-
egy should be used for managing these constraints.

Constraints can be used as a-priori information
to reduce the search space between, for example,
the model features and the extracted features, e.g.
[2, 12, 13]. Constraint-based optimization algorithms
have been examined in numerous applications, e.g.
[4, 7, 17, 21]. A review of the main research in the
CAD community as well as in the vision commu-
nity revealed that the exploitation of geometric con-
straints has not been fully investigated [20]. Neverthe-
less, the application of classical constraint-based al-
gorithms requires a reasonable initialization to guar-
antee convergence and it is hard to formulate objec-
tive function and constraints especially when variable
models in an unknown environment are used. These
characteristics make classical methods not appropriate
and favour evolutionary algorithms. The popular ar-
gument of the time-consuming characteristic of evolu-
tionary algorithms takes only a secondary role in re-
verse engineering where real time is not required and
becomes less important due to rapidly increasing ma-
chine speed.

Fig. 1 shows three subsets from a real 3D data set1.
It is normally a hard problem to segment 3D data inter-
actively or semi-automatically because the segmenta-
tion boundaries can be influenced by sparse data, noise
from inter-reflections, data from large slants, mixed
data points from edges and small features compared
to the laser footprint. Additionally the geometry of

1 The range image was taken from a 12th century round church
on Bornholm Island (Danish, off the southern coast of Sweden).

extracted shapes tend to be distorted due to misregis-
tration errors early in the processing.

Considering the characteristics mentioned before
we assume that a conventional segmentation will not
work well enough to ensure a reliable space recovery.
In this paper we describe a new approach to exploit
constraints using parameterized surface models. We
use an evolutionary algorithm to extract a good repre-
sentation for typical architectural features in noisy 3D
data subset such as from the Bornholm data set.

2 Model fitting

Model fitting is a common subproblem in computer
vision and can be described as follows: Given a set of
3D data pointspi, i 2 [1; n℄, probably belonging to
the same object, find the model that approximates the
3D data best. The literature on fitting 3D data points
to parametric models is extensive and is only briefly
discussed. An early paper concerning model fitting
in 3D data [16] is focused on the extraction of edges
and regions to retrieve a set of models from an object-
model library that are similar to the objects in the 3D
data. The main concern in [11] was obstacle avoidance
for autonomous vehicle navigation, whereby a sim-
ple hierarchical model fitting was applied. In [3] an
approach to range image object recognition was pro-
posed that combines surfaces, edges, and points that
have been estimated independently.

Focusing on fitting of 3D data to complex 3D mod-
els is of utmost importance because accurate 3D mod-
els for built environments are a key problem in com-
puter vision. Consequently, some requirements that a
model fitting algorithm should satisfy are:

1. The algorithm should produce accurate and re-
peatable results.

2. The results have to be robust with respect to out-
liers in the input data.

3. The algorithm must be able to deal with an un-
known number of models.

While in [6] a framework for the fitting of multiple
parametric models is presented, in [18] the possibility
to extract parametric models from poor quality 3D data
was examined.



But, because parameter estimation and data classi-
fication influence each other it is hard to meet all re-
quirements in one go. If the classification problem
is solved so that we know which data points support
which model, parameter estimation is easy. The other
way round, if a good parameter estimation is given,
the data can be classified straightforward. This means,
we need aclassify-while-fitalgorithm. Fortunately, the
model structure is a-priori known.

2.1 Parametrized surface models

One of the most useful building representations is
the parametrical model. They enable a fixed for-
mulation of building-specific geometrical and topo-
logical constraints. Different geometric instances of
the objects can be simply produced by variation of
the parameters. Parametric models are particularly
suitable for interactive systems with models selected
from a data base and parameters changed interactively.
Nonetheless, the use of parametric models is limited if
the number of possible specific models becomes large.
In this case generic modeling forms are to be preferred.

Parameterized surface models were employed by,
among others [5] and [19]. 3D objects with complex
topology can be modeled by connecting parameterized
3D primitives in a generic way. There, each primitive
is described by its own set of shapes as well as posi-
tion parameter. Here the parameterized surface model
is defined by three sets: the variable listV = fvk; k 2[1; l℄g, the surface setS = fSj ; j 2 [1;m℄g and the set
of local positionsT = fTj ; j 2 [1;m℄g.
2.1.1 Surface types

The surface types we investigated here are limited to
three primitives: rectangular, (straight circular) cylin-
drical and (straight circular) conical segments, because
the shape of most buildings and industrial factories is
not arbitrary and can be described by geometric prim-
itives.� Rectangular segment: A normalized rectangular

segment (Fig. 2) can be simply described by two
parameters: widthx and heighty. Both x andy can be defined by either a constant value or an
index into the variable listV.
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Figure 2. Normalized rectangular segment� Cylindrical segment: A normalized cylindrical
segment (Fig. 3) can be described by three param-
eters: widthx, heighty and depthz. All three pa-
rameters can be defined by either a constant value
or an index into the variable listV.
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Figure 3. Normalized cylindrical segment� Conical segment: A normalized cylindrical seg-
ment (Fig. 4) can be described by three parame-
ters: widthx, heighty and depthz. All three pa-
rameters can be defined by either a constant value
or an index into the variable listV.
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Figure 4. Normalized conical segment

2.1.2 Local position

The set of local positionsT = fTj ; j 2 [1;m℄g de-
scribes the geometrical and topological relations be-
tween the surfacesSj 2 S, j 2 [1;m℄. Because each



surface has six degrees of freedom the local position
of Tj is defined by rotation matrixRj � (rx; ry; rz)j
and translation vectortj � (tx; ty; tz)Tj .

While the parameters ofRj are defined a-priori by
constant values because we are not allowing arbitrary
assemblies, the parameters oftj can be defined by ei-
ther constant values or indices into the variable listV.
The parameters ofRj could be extended to allow a
limited use of variables, for example doors would be
able to swing and windows can be opened.

2.2 Genocop III

Once appropriate model descriptions are generated
the next step is to fit the 3D data to the models with the
objective to establish a correspondence between the
3D data and the model(s). This step is strictly model-
driven and follows the paradigm of hypothesize and
verify. It is performed in two steps: (1) a correspon-
dence is established between the two sets of descrip-
tions and (2) using the established correspondences, a
geometrical transformation, usually a rotation matrix
and a translation vector, is derived such that the model
may transformed to the orientation of the 3D data set.
Using a robust penalty-driven constraint approach an
accurate parameterization can be generated from de-
generated, complex and noisy data.

One method is to use some form of iterative sur-
face growing algorithm, e. g. [3, 10], but this depends
on accurate dense data. We use an evolutionary al-
gorithm to fit 3D data to parameterized surface mod-
els because we had very fragmentary, sparse and noisy
data, as well as unknown scale and data-to-model cor-
respondence. The GENOCOPIII algorithm, developed
by Michalewicz and Nazhiyath [15], was extended by
adding a complex evaluation function. Because the in-
ternal working of GENOCOPIII is beyond the scope of
this paper, it seems sufficient to say that it is an evo-
lutionary optimization algorithm that aims at finding
a global optimum (minimum or maximum) of a func-
tion. Additional constraints may be specified, as well
as domain constraints. For a detailed description of the
algorithm and the functionality we refer to [14, 15].

Because all linear and non-linear constraints avail-
able can be defined within GENOCOP III linked with
the used parametric models, only constraints on the
range of values for the parameters are defined and

we can apply the GENOCOPIII algorithm straightfor-
wardly2. Accordingly, we focused on the two aspects:

1. How should a chromosome be formulated?

2. How should the evaluation function be defined?

2.2.1 Chromosome

In standard genetic algorithms a binary encoding
forms the chromosomes, but in an evolutionary algo-
rithm a chromosome is set of real-valued concatenated
genes. Thus, the parameterized surface model is rep-
resented by the list of model parametersV = fvk; k 2[1; l℄g. Additionally the parameters of the global trans-
formation� (rotation by� � f'x; 'y; 'zg and trans-
lation by� � fÆx; Æy; Æzg) have to be estimated. The
chromosomeC consists finally of genes for� andV.'x 'y 'z Æx Æy Æz v1 v2 : : : vn

To perform the nonlinear optimization an initial
population is required that forms the basis for the ref-
erence and search points that are then mutated. De-
signing a chromosome that fulfils the domain and rela-
tional constraints as well as builds an appropriate rep-
resentation of the individual, concatenated genes can
be complicated especially if we have a complex so-
lution with complex constraints. Fortunately, when a
parametric representation is used, generating the initial
population becomes simple.

To narrow the search space for the genes and of
course to improve the pose invariance of the fittings
wenormalizethe 3D data in terms of general moments
to affine transformations. In particular, we normal-
ize by translating the data to the centroid, rotating the
principal axes of the data to align with the coordinate
axes, and applying anisotropic scaling to fit in the unit
cube. Thus the domain for the global translation and
the model parameters is defined:' 2 [��=2;+�=2℄,Æ 2 [�1;+1℄, andvk 2 [0;+1℄. Considering the do-
mains the initial population can be either a randomly
choosen population or a single point where all individ-
uals in the initial population are identical.

2 The original GENOCOPIII package was used that is available by
http://www.coe.uncc.edu/ ~zbyszek/gchome.html.
The evaluation function provided was completely re-defined
as well as the domain and constraint specifications were
re-adjusted.



2.2.2 Evaluation function

The evaluation functionE used in our application is
more complex than the original GENOCOP III algo-
rithm. It is based on the Euclidean distance of each
data pointpi to the closest surfacesj of the 3D model
instance that is defined by the chromosome. The ob-
jective is to minimizeE = f� (D) (1)

wheref� (D) is the squared sum of the distance of the�% of the points that are closest to eachsj 2 S. We
use a percentage (typically� = 0:95%) to provide
a robust measure against outliers, noise and incorrect
surface assignments. Letdij be the distanced(pi; sj)
of the pointpi, i 2 [1; n℄ to the surfaccesj, j 2 [1;m℄.
Let qi = argminjd(pi; sj) be the closest surface. Letdi = d(pi; sqi) be the closest distance. ThenD = f(di; qi); i 2 [1; n℄g (2)

is thebestdistance and surface match for each pointpi.
The estimation ofdi for rectangular segment is triv-

ial. The estimation ofdi for the other surface types
maybe complicated and often instead of the real Eu-
clidean distance an approximation is used. A closed
form expression exists for the Euclidean distance from
a pointpi to each of the surface types used here. For a
detailed description on how to estimate the Euclidean
distance between a pointpi and a surfacesj in closed
form we refer to [8]. If alldi’s corresponding to allsj ’s
are estimated the evaluation of the generated chromo-
somes becomes then relatively simple although com-
putationally slow. The pseudocode for the evaluation
algorithm follows:8 pi; i 2 [1; n℄

Find closest surface sj.
Estimate Euclidean distance di.8 sj 2 S; j 2 [1;m℄
Select �% smallest distances.

Compute f� (D).
3 Example: Doorway

In the previous section we described a) how to de-
sign an appropriate representation for the model and

b) how to apply the nonlinear optimization algorithm
GENOCOPIII. In this section we summarize empirical
testing of the proposed model fitting in terms of effi-
ciency, correctness and robustness for both simulated
and real data.

3.1 Parameterized surface doorway model

The two different parameterized surface models
used to fit simulated 3D data are sketched in Fig. 5.
They can be defined in terms of� shape variablesV = fvk; k 2 [1; l℄g,� surfacesS = fsj ; j 2 [1;m℄g and� transformationsT = fTj ; j 2 [1;m℄g
as follows:
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Figure 5. Parameterized surface doorway
models.

Model (1) consists of the rectangular surfacessj,j 2 [1; 3℄ and can be modeled by the variablesvk,k 2 [1; 3℄ assuming thats1 and s3 are parallel and
both are perpendicular tos2.s1 � � v2v3 �; s2 � � v1v3 �; s3 � � v2v3 �R1 = 24 1 0 00 1 00 0 1 35 ; t1 = 0� 000 1AR2 = 24 0 �1 0�1 0 00 0 1 35 ; t2 = 0� 0v20 1A



R3 = 24 �1 0 00 1 00 0 �1 35 ; t3 = 0� v10v3 1A
Model (2) consists of the rectangular surfacessj, j 2f1; 3g and the cylindrical surfaces2. It can be mod-
eled by the variablesvk, k 2 [1; 4℄ assuming thats1
and s3 are parallel and the orientation vector ofs2
is perpendicular to both orientation vectors of thesj ,j = f1; 3g.s1 � � v2v3 �; s2 �0� v1v4 � v2v3 1A; s3 � � v2v3 �Rx = 24 1 0 00 1 00 0 1 35 ; tx = 0� 000 1ARy = 24 0 �1 0�1 0 00 0 1 35 ; ty = 0� v1v40 1ARz = 24 �1 0 00 1 00 0 �1 35 ; tz =0� 2v10v3 1A
3.2 Chromosome representation

We use a real-valued chromosome representationC = f�;Vg = f(�;�);Vg because each element
of � � C corresponds to a transformation parameter
and each element ofV � C corresponds to a variable.
Thus,C consists of a part with fixed gene number (6)
and a part with variable gene number (card(V)).

The chromosome representation for the two used
parameterized surface models follows:

Model (1)'x 'y 'z Æx Æy Æz v1 v2 v3
Model (2)'x 'y 'z Æx Æy Æz v1 v2 v3 v4

3.3 Model fitting results

This section details some of our experiences fitting
parameterized surface models to both simulated and

real 3D data sets. We summarize empirical testing of
the proposed fitting method in terms of correctness and
robustness as well as convergence.

3.3.1 Simulated data

In the case of simulated data we have generated 3D
data sets that describe both models. The 3D data
consists of up to5000 3D data points generated by
adding isotropic Gaussian noiseN�;� with � = 0,� = f0:1; 1; 2; 5; 10g. In Fig. 6 examples for both
model structures with added isotropic Gaussian noiseN0;2 are visualized.

Figure 6. Simulated data with added isotropic
Gaussian noise N0;2 for both models.

It is obvious that the result of the model fitting
should describe the 3D data set by the correct parame-
ter model. That means that it should neither fit a false
model structure nor a wrong parameter setf�;Vg to
the data. To test the reliability of the fitting result we
repeated the experiment100 times. The result of fit-
ting model (1) is summarized in Fig. 7. As expected
the result shows the success of the GENOCOPIII algo-
rithm for model fitting. The estimated variable valuesvk 2 V, k 2 [1; 3℄ are a) very stable and b) very close
to the true values (v1 = 101, v2 = 201:5, v3 = 46:5).
While the distribution ofv1 and v2 can be approxi-
mated by a normal distribution, the distribution ofv3



can be better characterized by an exponential distribu-
tion. The reason for this is simply thatv1 and partiallyv2 can be estimated directly, butv3 can be estimated
only indirectly when the estimates forv1 andv2 are
back-projected onto the 3D data. If more complicated
parameterized surface models are used thenv3 can be
estimated just asv1 andv2.

Beside correct fitting results that can be expressed
by repeatable results, the result should be robust. Es-
pecially, the algorithm must degrade gracefully with
increasing noise in the 3D data, with a decrease in the
available relevant data, or with an increase in the irrel-
evant data.

In Fig. 8 the convergence behaviour of the algo-
rithm fitting model (1) with added Gaussian noiseN�;� with � = 0, � = f0:1; 1; 2; 5; 10g is sketched.
As expected, even with an increased noise level the al-
gorithm converges but slower.

The third demand is that a good fitting algorithm
has to be as efficient as possible in terms of run time
and formal complexity. While the problem of compu-
tational cost here is no longer a really hard problem
because of the rapidly increasing machine speed, we
should guarantee the fitting has acceptable computa-
tional cost. Assuming the complexity of the GENO-
COPIII algorithm is as low as possible, the only part in
the algorithm we have actively influenced is the eval-
uation function. As described in [9] the complexity of
the implemented algorithm to estimate the Euclidean
distance is low as possible. In Fig. 8 the convergence
behaviour of the algorithm fitting model (1) as well as
model (2) is sketched. As we can see the algorithm
converges very quickly. After maximal800 genera-
tions the fitting result seems stable enough in our ex-
periments that the algorithm can be terminated.

All algorithms have been implemented in C and the
computation was performed on a 360 MHz SUN work-
station. The average computational costs for the model
fitting was about280 seconds per1000 3D data points
per103 generations with70 populations.

3.3.2 Real data

To evaluate the algorithm and the proposed parame-
terized surface models we used real 3D data from the
Bornholm data set [1]. The 3D data set, sketched in
Fig. 9, has originally� 180k 3D data points and was

Figure 7. Distribution of variables v1, v2 andv3 fitting model (1). The used histogram con-
tains 100 equally spaced containers, but it
was cutted at a frequency of 20. The num-
ber of trials was 100.
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Figure 8. Example times for convergence fit-
ting model (1) respectively model (2) with
added isotropic Gaussian noise N�;� with� = 0, � = f0:1; 1; 2; 5; 10g.

subsampled by factor100. Because we are interested
in doorway fitting we segmented the 3D data set inter-
actively. The final 3D data set used in our experiment
consists of� 7k 3D data points and is sketched in
Fig. 10. As we can see, we have to deal with different
problems: the (rectangular) segments are rough (stan-
dard deviations � �5), for the top as well as the left
(rectangular) segment 3D data points are only partially
available. Additionally the left segment is described
by sparse data. We used model (1) for the parameteri-
zation of the 3D data.

Figure 9. Real 3D data taken form the Born-
holm data set. The subset includes parts of
two walls, stairs, a doorway and a (closed)
door.

As final result we have after104 generation the
chromosomeC = f0:036; 0:506; �0:989; 0:023;�0:058; 0:966; 0:057; 0:305; 0:808g. The RMS er-
ror of this fit is � = 0:512. After re-normalizating
the chromosome (see 2.2.1) the parameterization is:v1 = 147:715 [mm] (depth),v2 = 1651:17 (height)
andv3 = 948:267 [mm] (width). However, because
the ground truth for the example is unknown, we can
evaluate the fitting result only subjectively. There-
fore, the resulting representation for the doorway was
back-projected onto the 3D data in Fig. 11. The esti-
mated variable values seems reliable compared to the
3D data.

4 Conclusions

First and foremost, this paper shows that a param-
eterized surface model can be successfully invoked in
an evolutionary algorithm to approximate 3D data by



Figure 10. Used 3D data set describing only
the doorway in Fig. 9.

3D models. All of the experiments in the last section
show that architectural conventions given by geomet-
rical and topological relations between feature primi-
tives can be incorporated into the modeling process to
improve model accuracy.

The presented algorithm has the advantage of avoid-
ing the problem of constraint formulation for complex
3D models. It also yields in some instances (especially
where we have sparse data sets) superior estimations
for the transformation parameters and the variables.
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