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Abstract—Maulticlass One-versus-One (OvO) SVM, which is
constructed by assembling a group of binary classifiers, is usually
treated as a black-box. The usual Multiclass Feature Selection
(MFS) algorithm chooses an identical subset of features for every
OvO SVM. We question whether the standard process of applying
feature selection and then constructing the multiclass classifier is
best. We propose that Individual Feature Selection (IFS) can be
directly applied to each binary OvO SVM. More specifically, the
proposed method selects different subsets of features for each
OvO SVM inside the multiclass classifier so that each vote is
optimised to discriminate between the two specific classes. This
paper shows that this small change to the normal multiclass
SVM improves performance and can also reduce the computing
time of feature selection. The proposed IFS method is tested on
four different datasets for comparing the performance and time
cost. Experimental results demonstrate significant improvements
compared to the normal MFS method on all four datasets.

I. INTRODUCTION

Multiclass classifiers (that categorize objects into specific
classes) are important tools since they are widely applied to
machine vision and pattern recognition applications. Over the
last decade, SVM has shown impressive accuracy in resolving
both linear and nonlinear problems by maximizing the margin
between classes [1]. Although SVM was originally designed
for a binary task, additional mechanisms can create a multi-
class SVM by decomposing it into several binary problems
such as One-vs-Rest (OvR) and One-vs-One (OvO) [2].

Multiclass SVM is often treated as a black-box within more
complicated applications, such as object recognition ([3], [4])
and bio-informatics ([5], [6]) and text classification ([7], [8]),
which hides the process that the multiclass SVM generates
results by using a group of assembled binary classifiers. In
practice, feature selection is necessary for applications that
have an abundant number of features. It not only elimi-
nates redundant features to reduce computation and storage
requirements, but also chooses appropriate feature subsets that
improve the prediction accuracy. [9] categorizes the feature
selection methods into three types: filter, wrapper and embed-
ded. The filtering method evaluates the correlation of every
feature and ranks them by their coefficients, so the selection
algorithm chooses new features that have lower correlations
to the existing features. The wrapper method, which tests the
prediction power of single feature, investigates the independent
usefulness of features and the selecting strategy is according
to the order of power. The embedded method integrates both
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feature selection and training. It selects features while building
the model. Figure 1 illustrates a typical example of the feature
selection result of a multiclass application. Firstly, the classi-
fication performance increases as more features are selected,
because more features provide more discriminative ability in
the feature space. After the number of selected feature reaches
10, the accuracy score fluctuates near a specific level. Then the
score starts to drop due to redundancy and over-fitting when
more than 30 features are selected.

07t -

Accuracy

0 1b iﬂ 30 40 50 Gb 70
Number of features

Fig. 1: An example of the feature selection result in a
multiclass application. The accuracy score increases in the
beginning but it drops after 30 feature are selected. This
example indicates that feature selection reduces the size of
the feature space and also improves the accuracy by choosing
an appropriate feature subset, instead of using all features.

Normally, the Multiclass Feature Selection (MFS) proce-
dure is applied to the black box of multiclass SVM, and it
selects the same feature subset for every binary classifier to
maximize the average accuracy over all classes [10], [11],
[12]. Here we investigate the sequence of feature selection
and constructing a multi-class SVM. We propose that an
Individual Feature Selection (IFS) procedure can be directly
exploited to the binary OvO SVMs before assembling the full
multiclass SVM. Given samples from every pair of classes,
the selected subset of features maximizes the accuracy of
classifying these classes. After then, we use these optimised
OvO SVMs to construct a multi-class classifier. One can
hypothesise that the classification performance would be better
under the second scheme because each vote is now optimised
to discriminate between two specific classes. The experimental
result shows that this small change to the normal multiclass
SVM significantly improves performance with a decreased
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Fig. 2: Comparing the workflows of MFS and IFS. We choose an example that classifies three classes so the final prediction is
calculated by voting from three OvO SVMs. In the first row, the MFS method selects the same subset of features for all binary
OvO SVMs while the IFS method chooses an individual feature subset for each OvO classifier.

computing cost.

The main contribution of this paper is a novel practical
mechanism that applies individual feature selection to the
binary OvO SVM, called IFS-SVM. After forward sequential
feature selection and learning each SVM model, IFS-SVM
classifies each test sample by counting votes that are optimised
for every two specific classes. The proposed method is evalu-
ated on four different datasets for comparing the performance
and computing time. We note that other feature selection and
vote combination methods could be used. This paper only
addresses the issue of when to do the feature selection. The
rest of the paper is organized as follows: Section 2 introduces
the multiclass SVM with OvO strategy. Section 3 describes
individual feature selection for multiclass SVM. Section 4
shows experimental results of four datasets: two underwater
fish image datasets, the Oxford flower dataset and a skin lesion
image dataset.

II. MULTICLASS SVM WITH OVO STRATEGY

Given a training set D from p classes, which is a set of n
sample points of the form:

D= {(x;,4) | xi ER™, y; € {1, ...,p}} 1, (1

1y; indicates the class label of m-dimensional feature vector x;.
Considering the two-class task (p = 2), the maximum margin
classifier, a Support Vector Machine (SVM) [13], is optimized
to find a hyperplane, called maximum-margin hyperplane,
which maximizes the margin between the two classes.

A multiclass task can be decomposed into a set of two-class
problems where the binary SVMs are applicable. One strategy
is to train p One-versus-Rest (OvR) classifiers and they are
used to classify one class from all the other classes. The final
classification is determined by the highest score (winner-takes-
all). The second strategy pairs each two of the classes and
trains an SVM classifier for each pair, named as One-versus-
One (OvO) strategy. Each binary classifier is trained on only
two classes, thus the method constructs p * (p — 1)/2 binary

OvO SVMs. These binary classifiers process the test sample,
and the winning class is added a vote. The class with the
most votes determines the final prediction. Both strategies are
widely used and have their own pros and cons. OVR uses fewer
binary classifiers and the training cost is linear with p but it
is criticized for no bound on the generalization error [2] and
resolving potentially asymmetric problems using a symmetric
approach [14]. OvO is easy to train because each classifier
only resolves a binary classification problem with two classes,
but the computation cost is bigger since the number of binary
classifiers grows as p* (p — 1)/2.

III. INDIVIDUAL FEATURE SELECTION FOR BINARY
OvO-SVMs

After constructing the multiclass SVM using the OvO strat-
egy, the Multiclass Feature Selection (MFS) method chooses
a subset of features by either filtering features according to
their correlation coefficients or wrapping them in proportion
to their usefulness to a given SVM predictor [9]. In contrast
to the MFS criteria that treats the multi-class SVM as a black-
box and selects features such that all binary classifiers use
the same subset of features, our proposed work investigates
applying feature selection to each binary classifier individually
so that each OvO vote is optimized. An example of comparing
the different workflows of MFS and IFS is shown in Figure
2. Both methods use the same forward sequential feature
selection algorithm. The complete proposed training procedure
is described as follows:

(1) For every two classes ¢, 7 (1,7 € {1,...,p} and i # j), start
with an empty feature set F;; = [| and m features {f;} = F.
The evaluation function is named as F.

(2) Repeat until all features are evaluated, step s € {1,...,m} :

e selectevery {f;} € F and evaluate e, ; = E([F};, f4])

e choose the maximum of all evaluations é; =
arg max; € 4, record €.



e  add the corresponding feature f to the feature set F; j

as the selected feature of step s: F;; = E([Fyj, fs])-

e remove the feature fs from the feature pool F: F' =

F - [fs]

(3) Choose the feature subset F;; = | fiy e fg] that produce the
highest evaluation score for each i, j, where § = arg max; €.
Note: other stopping criteria could be used.

After feature selection, these binary SVMs are trained
using their corresponding feature subsets F}; of the training
samples. In the evaluation step, binary SVMs also extract
the F;; features of the test samples, and they vote for the
final prediction. It is reasonable to assume that each vote is
optimized so the prediction is more accurate.

One concern is the computational complexity. But given
the assumption that the computing time of classification
only depends on the number of features, we can show that
our proposed method (IFS-SVM) has no more computing
time in feature selection than the common MFS method
(both discussed by the forward sequential feature selection
algorithm):

Assumption 1: The computation time of a binary classifier
only depends on the number of input features, i.e. f(Dn) =
f(m,n) where function f is the computation time, D, is
the input features, m is the number of samples, n is the number
of features.

This assumption eliminates nonessential details so we can
focus on comparing the time cost itself. The computation time
of feature selection using MFS is:

N
Tyrs =Y [(N=n+1)*(To(c)+ > f(Mi+Mj,n))]
n=1 i£j&i,j<c o

where M, is the number of samples from class ¢, i €
{1,2,...,c}, c is the number of classes, N is the number of
input feature F' and N is the number of features to select,
T, is the computing time of voting. The computation time of
feature selection of our proposed IFS method is:

N
Trrs = Z Z[(N_”‘Fl)*f(Mi‘Fijnﬂ
i#i&ij<c  n=1

N
=Y ((N=n+1)x > f(M+M;n)]<Tyrs

i#jleij<c
3)

Although the IFS-SVM method conducts p? times individ-
ual feature selections, the size of samples in each individual
one is decreased to 2/p (two out of p classes). Thus the
computing complexity is still O(p?). On the other hand,
equations 2 and 3 describe that the IFS-SVM method saves the
voting procedure when selecting features. We have conducted
experiments on four datasets to compare the consumed time
of both methods, as shown in the last column of Figure 5.
This experiment changes the number of classes p and records
the computing time of feature selection as describe in Section

II. Both curves fluctuate since the number of selected features
may vary in different number of classes. The general trend
indicates that the proposed method (IFS-SVM) spends less
time in training than the MFS method. See experimental
section for more details.

IV. EXPERIMENTS

We test both feature selection mechanisms on four datasets
using cross validation. The binary OvO SVM classifier is
implemented by LIBSVM [15]. We use the same forward
sequential feature selection for all tests so the results are
comparable. All experiments are programming in Matlab. The
code is compiled and deployed on a cluster of machines. The
performance is evaluated by Average Recall (AR), Average
Precision (AP) and Accuracy over Count (AC). AR and AP
describe the recall/precision that are averaged over all classes
so the minority classes have equal importance to the major
ones. AC is the accuracy over all samples, and it is defined as
the proportion of correct classified samples among all samples.
These scores illustrate a comprehensive analysis of the exper-
imental results regardless of whether the dataset is balanced
or not. In each experiment, we compare AR/AP/AC scores
of three methods: multiclass SVM without feature selection
(M-SVM), multiclass feature selection for SVM (MFS-SVM),
individual feature selection for multiclass SVM (IFS-SVM).

A. Underwater fish image dataset

The fish images are acquired from underwater cameras
placed in the Taiwan sea with 24150 fish images (Fish24K
dataset) of the top 15 most common species [16]. We use the
same method of feature extraction as in [17]. These features
are combinations of 69 types (2626 dimensions) including
color, shape and texture properties in different parts of the fish
such as tail/head/top/bottom, as well as the whole fish. All
features are normalized by subtracting the mean and dividing
by the standard deviation (z-score normalized after 5% outlier
removal). Figure 3 shows this fish dataset, with the number of
images in each species.

The classification results after feature selection with 5
fold cross-validation are shown in Table I. This dataset is
very imbalanced, thus the averaged recall and precision are
lower than the accuracy over all samples. The first row shows
the result of multiclass SVM using all features, where the
averaged recall (AR) is increased after the feature selection
with the cost of reduced AP and AC (the second row). In the
third row, individual feature selection (IFS-SVM) improves the
classification performance in all three measures.

method Aver. Recall (%) Aver. Precision (%) Accuracy by count (%)
M-SVM 76.9 £+ 4.0 88.5 £+ 3.6 957 £ 0.5
MES-SVM 79.0 £ 3.6 86.4 £ 53 953 £03
IFS-SVM 81.6 + 4.7 90.9 + 5.0 96.4 £+ 0.5%

TABLE I: Experiment results on the whole fish image dataset,
all results are averaged by 5-fold cross-validation. * means
significant improvement with 95% confidence.

The Fish24K dataset is so imbalanced that the image
number of the most major species is 500 times larger than the
number of the least species. We conduct another experiment
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Fig. 3: Fish data: 15 species, 24150 fish detections. The
images shown here are ideal images as many of the others
in the database are a bit blurry, and have fish at different
distances, and orientations or are against coral or ocean floor
backgrounds.

on a similar dataset of 6874 fish images (Fish7K dataset) to
evaluate the performance when dataset is less imbalanced.
The result is shown in Table II. The MFS method reduces
the feature dimensions with the cost of slightly decreasing
the performance, while the proposed IFS method significantly
improves the performance.
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Fig. 4: Flower dataset of 13 common categories in the UK.
This task is difficult because the images have large scale, pose
and light variations. Some classes are quite similar to others
and they both have enormous variations.

result focuses on the variations introduced by different feature
selection methods.

method Aver. Recall (%) Aver. Precision (%) Accuracy by count (%)
M-SVM 76.6 £ 3.7 78.0 £ 3.5 777 £ 3.6
MFES-SVM 81.4 £122 835+ 129 833+ 19
IFSSVM 82.8 + 14 855 + 0.2 83.8 + 1.6

method Aver. Recall (%) Aver. Precision (%) Accuracy by count (%)
M-SVM 72.6 £ 6.1 7777 £33 932 £ 09
MFS-SVM 723 £ 8.8 715 £ 74 929 + 1.1
IFS-SVM 80.2 + 3.0 89.8 + 5.4* 949 + 1.3*

TABLE II: Experiment results on more balanced fish dataset
of 6874 images, all results are averaged by 5-fold cross-
validation. * means significant improvement with 95% con-
fidence.

B. Oxford flower dataset

The Oxford flower dataset [18] consists of 13 categories
(753 segmented flower images) of common flowers in the UK
(Figure 4). We exploit the segmentation results and use the
same features as described in the previous section. The whole
dataset is split into three parts for cross-validation. Half of
the images are used for training while validation and test set
divide the remaining images equally.

As shown in Table III, feature selection improves the
classification accuracy, while the proposed method (IFS-SVM)
achieves the highest performance. In this experiment, AR, AP
and AC scores are close since this dataset is more balanced.
Other features and machine learning methods might achieve
better results. However, we only introduced the improvement
of using forward sequential method with a linear SVM, so the

TABLE III: Experiment results on flower dataset, all results
are averaged by 3-fold cross-validation.

C. Medical image dataset

The third dataset is composed by 1300 medical images of
skin lesions, belonging to 10 classes [19]. 17079 dimensions
of color and texture features are extracted and normalized to
zero mean and unit variance. PCA is used for feature reduction
which preserves the top 98% energy of components’ coeffi-
cients. It reduces the dimension of features to 197 but loses
about 9% accuracy (from 76% to 67%). The result in Table IV
demonstrates improvements for both feature selection methods
(MFS and IFS). The proposed IFS method is significantly
better than the other two methods for all three evaluation
criteria with 5-fold cross-validation.

method Aver. Recall (%) Aver. Precision (%) Accuracy by count (%)
M-SVM 588 £ 2.5 66.2 £ 3.3 66.9 £ 2.9
MEFS-SVM 61.8 £ 4.0 644 £+ 5.1 702 £ 2.9
IFS-SVM 73.0 £+ 5.0% 76.3 + 4.0* 77.0 £+ 3.2%

TABLE IV: Experiment results on skin image dataset. All
results are averaged by 5-fold cross-validation. * means sig-
nificant improvement with 95% confidence.

D. Experiment overview

In Figure 5, we give an overview of the performance of the
three methods when the number of classes changes. The first
row shows the results of the Fish24K dataset. AR, AP and AC
(first three columns) are all decreasing as the number of classes



increases. The MFS method (red line) is sometimes worse than
the baseline M-SVM method (black line) due to over-fitting.
It achieves significant improvement in the validation set, but
the performance drops when it is generalized to the test set.
The same trend is also observed in the following experiments:
the Fish7K dataset, the Oxford flower dataset, the skin lesions
dataset. Our proposed IFS method (blue line) outperforms the
other two methods and achieves higher performance in all
experiments. The last column shows the computing time of
feature selection, which illustrates that the IFS method reduces
the time cost while keeping the superiority in accuracy.

E. Optimization in computing time

LIBSVM provides its own implementation of multi-class
SVM that also uses the OvO strategy. In our experiment here,
we use the multiclass LIBSVM, instead of using its binary
SVM utility and wrapping to a multiclass SVM in Matlab
(MFS-SVM), to process the same forward sequential feature
selection method on the datasets. The results are listed in Table
V, comparing to the computing time of MFS and IFS methods.

method Fish24K Fish7K Flower Skin
MFS-SVM 14.34 2.48 0.19 0.92
LIBSVM 5.57 0.24 2.73e-3 | 0.18
IFS-SVM 3.90 0.48 0.01 0.39

TABLE V: Computing time comparison. The experiment used
the datasets described above. The LIBSVM method uses the
same OvO strategy as MFS-SVM but is optimized. Thus
it provides an estimate of the potential optimization of our
proposed method.

IFS-SVM is faster in the Fish24K dataset because it only
selects features for two classes so the size of the feature
subset is smaller, while the other two methods have to choose
more features to balance the accuracy over all classes. This
factor becomes more significant when the dataset is large.
The LIBSVM method spends less computing time than IFS-
SVM in other three experiments. The LIBSVM uses the
same procedure as MFS-SVM, but it is more efficient since
it implements the multiclass SVM in C++. This experiment
also provides an estimate of the potential optimization (2-50x
improvement) of the IFS method.

V. CONCLUSION

In this paper, we propose that individual feature selection
in each one-versus-one classifier improves the performance
of multiclass SVM. This method could be adapted into any
multiclass classifier that is constructed by assembling binary
classifiers. We test the proposed method on four different
datasets, comparing to the multiclass SVM with forward
sequential feature selection. The results demonstrate a sig-
nificant improvement on all experiments. We also compare
the computing time and show the proposed method is more
efficient than the normal feature selection mechanism.
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Fig. 5: Performance overview of comparing three methods as the number of classes increases. From left to right: Averaged
Recall, Averaged Precision, Accuracy by Count, Computing time. From top to bottom: the Fish24K dataset (24150 images), the
Fish7K dataset (6874 images), the Oxford flower dataset (753 images), and the skin lesions dataset (1300 images).



