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1 Abstract

The elderly population is increasing at a rapid rate and the need for effectively supporting inde-
pendent living has become crucial. Wearable sensors can be helpful, but these are intrusive as
they require adherence by the elderly. Thus, a semi-anonymous (no image records) vision-based
non-intrusive monitoring system might potentially be the answer. As everyone has to eat, we in-
troduce a first investigation into how eating behavior might be used as an indicator of performance
changes. This study aims to provide a comprehensive model of the eating behavior of individuals.
This includes creating a visual representation of the different actions involved in the eating process,
in the form of a state diagram, as well as measuring the level of performance or decay over time
during eating. Also, in studies that involve humans, getting a generalized model across numerous
human subjects is challenging, as indicative features that parametrize decay/performance changes
vary significantly from person to person. We present a two-step approach to get a generalized model
using distinctive micro-movements, i.e., (1) get the best features across all subjects (all features are
extracted from 3D poses of subjects) and (2) use an uncertainty-aware regression model to tackle
the problem. Moreover, we also present an extended version of EatSense, a dataset that explores
eating behavior and quality of motion assessment while eating.

2 Introduction

On a global scale, the proportion of people aged 60 or over was just 8% in 1950 but this is projected
to rise to 20% by 2050 [5]. The number of people growing older is increasing, whereas the increase
in the number of caregivers is not proportionate. In a study carried out by Redwood et al. [41],
it was reported that, in 2010, the caregivers ratio was more than 7 caregivers (including informal
carers, such as family members) for every person in the high-risk age i.e., 80-plus. By 2050 the
ratio of caregivers to seniors (i.e., seniors living in the community) will decrease to less than 3 to 1.
With this growing burden, healthcare systems are under pressure and the situation of care homes
is depressing as they have inadequate facilities [14], [38]. However, smart senior homes can be a
potential solution that will not only help seniors to live independently more safely but also monitor
their health status.

Seniors require constant monitoring and evaluation of their health and motor movements [24].
Unfortunately, periodic checkups and irregular motion analyses do not monitor the health status of
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an individual well enough. Reliable health profiling can only be done by constant monitoring with
sufficient situational diversity. To bridge this gap, a variety of passive and active sensors have been
proposed [24]. In this paper, we present a vision-based system that monitors a person while they
eat and can assist in the early diagnosis of motor deterioration.

Why eating? Eating is one of the main, regular, and most important actions of one’s daily life, so
this is an opportunity for regular monitoring. We believe that monitoring the sub-actions of eating
can provide evidence of major anomalies such as the presence or start of a neurological disorder or
deterioration/decay of movement over time.

In this paper, we explore several research questions: What actions do people perform while
they eat? Can we observe and distinguish gradual decay in motion over time while relying only
on the camera as a sensor? Can we develop generalized models over all age groups for decay
classification/regression as there might not be any consistent pattern to exploit across all subjects?

To answer these questions, firstly, we demonstrate through trunk stability and speed of movement
tests that decay in performance is observable when weights of different levels are attached to the
wrists of the subjects (Section 6). Secondly, we present a generalized model with strictly explainable
features across various subjects in all age groups (Section 7).

For the results presented here, we propose an extension of EatSense [40], which is a human-
centric, upper-body-focused dataset that supports the modeling of eating behavior as well as the
investigation of changes in motion/motor decline (i.e., quality of motion assessment). Four levels
of weights are put on the volunteers’ wrists while they eat to simulate a change in mobility. The
weights are not intended to be a model for aging, but only to demonstrate that minor changes in
motion are detectable.
The contributions of this paper are:

• The first computer vision-based quality of motion assessment quantitative approach solely
based on the eating behavior of individual subjects.

• A state model for eating micro-movements1 that represents the most common eating behavior
among subjects of all ages (see section 5).

• Address the most common problem of lack of generalizability when it comes to modeling human
behavior (limited to the performance of eating assessment in our case). (see section 7).

• Demonstrate that 4 weight classes simulate decay in the upper-body movements.

• Present the extension of the quality of motion assessment capability beyond EatSense by
introducing a new abstraction level to the labels for each video (see section 4)

3 Literature Review

A brief review of past clinical and sensor-based techniques for decay assessment and behavior analysis
is presented. Some publicly available benchmark datasets for motion quality assessment are also
discussed.

1Micro-movements, or sub-actions, refer to the individual and basic actions that are combined to form a single
action. For instance, eating can be seen as a single action that involves several sub-actions, such as bringing the hand
to the mouth.
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3.1 Decay Assessment Tests

There have been many studies that list a set of tests in a clinical setting to observe decay in the
functional motor movements [15], [13]. Alonso et. al. [1] summarizes clinical tests, such as ‘timed
up and go’ and ‘Functional Reach Test’, and computerized methods, such as ‘Equitest’ and ‘Force
Platforms’ for assessing one’s balance.

In a non-clinical setting, there also has been research that explores inertial measurement unit
(IMU) or magnetometer-based motion tracking and assessment techniques. Filippeschi et. al. [10]
presented a survey where they compare IMU-based human motion tracking techniques with a focus
on upper-body limbs which is potentially useful for motion assessment. Carnevale et. al. [8] focussed
on shoulder kinematics assessment via wearable sensors after neurological trauma or musculoskeletal
injuries. Recently, Meng et. al. [27] presented an IMU-based upper limb motion assessment model
and achieved good results.

Also in a non-clinical setting, there have been many vision-based healthcare results on (1) motion
tracking, (2) fall detection [2], (3) anomaly in gait detection [51], [54], (4) exercises that help in the
rehabilitation of people recovering from any disease that directly impacts their activity levels [4],
[18], [42].

Nalci et. al. [29] proposed a computer vision-based alternative test for functional balance that was
compared with a BTrackS Balance Assessment Board (used in clinical assessments) to demonstrate
the effectiveness of their proposed approach. Yang et. al. [53] proposed a cost-effective and portable
decision support system that used a single camera to track joint markers of upper-body limbs,
perform data analytics for rehabilitation parameters calculation, and provide a robust classification
suitable for home healthcare. In [25], [22] and [30] the authors proposed a real-time risk assessment
rapid upper-body limb assessment tool using cameras (depth or RGB) to detect anomalous postures
in real-time and offline analysis.

Recently, Barlett et al. [3] proposed a vision-based balance assessment test while sitting. How-
ever, to the best of our knowledge, no vision-based study exists that explores decay/deterioration
strictly based on the movement of upper-body limbs with the human pose.

3.2 Behavior Analysis

Human behavior analysis is a broad term that deals with gesture recognition, facial expression
analysis, and activity recognition. Onofri [33] suggests that activity recognition-based behavior
analysis algorithms require knowledge that can be divided into two categories: contextual knowledge
and prior knowledge. Contextual knowledge pertains to the context in which the action is taking
place, such as the objects involved or the time and place. Prior knowledge is that the recognition
system is aware of the past, such as event C frequently happens after event B, and the probability
of event C happening after A is very low.

Many studies have investigated human motion in sports games [7], [35], [49] and other appli-
cations [26], [37], [23]. Combining human body characteristics such as position, distance, speed,
acceleration, motion type, and time is often used to quantify and evaluate behaviors. Oshita et
al. [35] extracted the spatial, rotational, and temporal characteristics of the major poses of tennis
trainees and compared their exercise patterns with experts.

In [55], to monitor a person’s daily kitchen activities, Yordanova et. al. presented a method for
recognizing human behavior called Computational Causal Behavior Models (CCBM). This combined
a symbolic representation of a person’s behavior with probabilistic inference to analyze the person’s
actions, the type of meal they are preparing, and its potential health effects. Kyritsis et. al. [21]
introduced an algorithm that can automatically detect food intake cycles that occur during a meal
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using inertial signals from a smartwatch. They use five specific wrist micro-movements to model the
chain of actions involved in the eating process ‘pick food’, ‘upward’, ‘downward’, ‘mouth’ and ‘other
movements’.

Previous research such as [56] and [32] that utilize eating actions are mostly done for the sake of
individual action understanding, i.e., to classify eating/drinking actions. On the other hand, in [48]
Tufano et. al. presents a systematic comparative analysis of 13 frameworks including deep learning
and optical flow-based frameworks. The study focuses on detecting three specific eating behaviors,
such as bites, chews, and swallows.

However, we are not aware of any previous studies analyzing eating behaviors and assessing the
quality of motion based on those characteristics.

3.3 Public Datasets for Healthcare

Numerous openly accessible datasets explore certain aspects of healthcare. A few of them are
discussed below.

Objectively Recognizing Eating Behavior and Associated Intake (OREBA) [45], is a dataset to
offer extensive data collected from sensors during communal meals for researchers interested in the
detection of intake gestures. OREBA includes various types of sensors, such as a 360-degree camera
mounted at the front to capture video, as well as a sensor box that contains a gyroscope, an IMU,
and an accelerometer attached to both hands. Other studies such as, [28], [46] and [21] also present
small-scale datasets mainly focused on intake gestures, chews and swallow behavioral characteristics.

Mobiserv-AIIA [17] was created to assess the intake of meals to prevent undernourishment or
malnutrition. The collection includes recorded films that were made in a controlled laboratory
setting using many cameras positioned at different angles. It entails employing a variety of tools
while engaging in activities like eating and drinking for several meals (breakfast, lunch, and fast
food) with using different tools to pick or scoop the food (spoon, fork or glass of water, etc.). The
MSR-DailyActivity dataset [50], was created to simulate the day-to-day activities of a person sitting
on a couch. It includes 320 examples of 16 daily activities such as ‘play guitar’ and ‘eat’. RGB and
a depth sensor were used to collect the MSR-DailyActivity dataset.

Sphere [36] was designed for motion quality assessment via gait analysis. Six participants were
observed in this dataset while they ascended a set of stairs. Init Gait DB [34] is a benchmark
dataset for gait impairment research. The movement of limbs and body posture were changed to
simulate eight various walking types. Several view angles were captured utilizing RGB cameras.
The gait analysis-based walking dataset [31], replicates nine different walking gait patterns. This
was recreated by attaching weights to the ankle or making one shoe with a thicker sole. This was
captured using Microsoft Kinect where the participants walked on a treadmill with two flat mirrors
behind them.

To the best of our knowledge, none of the existing datasets besides EatSense (discussed in the
next section) provide the capability to assess the motion quality of humans with an emphasis on
eating behaviors and a focus solely on the upper body joints.

4 EatSense

Aging has adverse effects on the musculoskeletal strength levels of all living beings, i.e., the older
one gets, the motions of limbs slow down, postural control lessens and hand-eye coordination gets
tough. However, eating is an essential activity that everyone has to do regularly even in bad times.
We presented EatSense, a novel dataset [40] that explores two areas in particular i.e., sub-action
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Figure 1: Left) the eight upper-body joints (1) nose (n), (2) chest, (3) right-shoulder, (4) right-elbow,
(5) right-wrist, (6) left-shoulder, (7) left-elbow and (8) left-wrist. Middle) subject is performing ‘eat
it’ action without weights. Right) subject is performing ‘eat it’ action with weights

recognition and quality of motion assessment. EatSense tries to address a few major research gaps,
(1) sub-action recognition: the dataset has three levels of label abstraction and labels sub-actions
with 16 classes where some of them only occur for less than a second, (2) sub-action temporal local-
ization in videos that contains over a hundred subactions (on average) per video, (3) human-centered
(hand gestures/posture based) eating behavior understanding, (4) decay in motor movement, i.e.,
small changes in upper-body movements, caused by attaching weights to the wrists of the subjects.
However, previously, data was limited to only the binary classes ‘weight’ and ‘no weight’ (Y/N) at
that time.

In this research, we present an extended version of EatSense2 that simulates this decay in move-
ment on a finer scale. Thus we expand our decay assessment classes by adding four different sizes of
weights to the wrist, i.e., 0, 1kg, 1.8kg and 2.4kg. We also demonstrate the effectiveness of weights
to simulate decay in section 7.3.

4.1 EatSense Collection and Labelling

An RGB-Depth camera, Intel RealSense D415 was mounted on a wall at an oblique view angle in a
dining/kitchen environment. The subjects were allowed to eat however they preferred without any
external input from the recording team. The field of view had only one person at the dining table.
EatSense contains 135 videos (53 for 0kg, 25 for 1kg, 33 for 1.8kg and 24 for 2.4kg) with dense labels
(all frames labeled without any stride). These videos are recorded at 15 frames per second (fps) with
640x480 resolution. Altogether, there are 705,919 labeled frames. Fig. 1 shows the setting of the
camera system in one of the dining room environments. It also shows one sample from the dataset
both with and without wrist weights.

EatSense contains several labels for various levels of abstractions, i.e., (1) both 2D (extracted
with HigherHRNet) and 3D (2D poses projected into 3D space using depth maps) for 8 upper body
joint positions, (2) manually labeled 16 sub-actions for all frames in the videos, (3) binary labels
based on if the subject is wearing a weight or not i.e. ’Y’/’N’. The extension introduces a new level
of abstraction, i.e., labels based on the weight a subject is wearing on their wrists, i.e. 0kg, 1kg,
1.8kg, 2.4kg.

Initially, we store both depth maps and RGB images. We employ Deep Privacy [16] to disguise
the real face of the subjects in RGB videos to obscure their identity. The processed RGB, depth
maps, and 3D skeletons are available to the general public for research.

2https://groups.inf.ed.ac.uk/vision/DATASETS/EATSENSE/
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4.2 EatSense Properties

EatSense has many interesting properties that make it distinguishable from other existing datasets.
Dense Labels: There are no unlabelled temporal patches in any of these videos, in contrast to the
majority of large-scale datasets currently available. Additionally, a two-stage label quality control
process enhances label consistency and reduces label errors.
Human Centric Actions: EatSense contains very consistent backgrounds and human posture-
centric action examples, in contrast to other available datasets where background/environment can
play a key role in differentiating between distinct actions.
Healthcare Analytics: EatSense has a wide range of data that may be utilized to analyze human
health. For instance, it has a layer of labels that can simulate (by the increase of weights) the
gradual loss in a person’s motor function over time. Continuously keeping an eye on the person’s
eating behavior and searching for signs of motor function decline may help save lives and identify
the need for assistance before the situation gets worse.

4.3 EatSense Feature Extraction

For the purpose of exploration in the domain of health care, we propose and compute explainable
hand-crafted features for EatSense and also compare them with deep features.

4.3.1 Hand-Crafted Features

The purpose of exploring hand-crafted feature-based techniques is to have an in-depth understanding
of the individual subject’s health. Deep features are convoluted and do not effectively help health
professionals to understand the root cause of health problems faced by individuals. The proposed
features are extracted over all individual frames.

These include instantaneous spatial features such as (1) relative distances of all joint locations
concerning the chest, (2) relative joint locations in polar coordinates, (3) angles between shoulders
and elbows, (4) product of all joints, (5) distance from the table of all joints. Also, temporal features
such as (1) velocity, (2) acceleration and (3) lags (past instantaneous joint position, i.e., if the current
frame is captured at time t and we denote the joint position at t as xt, then the joint position in
the previous frame taken at time t− n denoted as xt−n is the nth lag), (4) weighted sum of the last
three lags. The mathematical formulation of each of these features is similar to that in [40].

4.3.2 Deep Features

For deep feature extraction for the videos in EatSense, a Spatial-Temporal Graph Convolutional
Network (ST-GCN) [52] was used. In this approach, similar to the hand-crafted features, we ex-
clusively utilize the 3D poses of the subjects. As previously discussed, HigherHRNet was used to
estimate 2D poses from RGB data which were then projected into the 3D space with the help of
depth maps, to estimate 3D joint location.

However, unlike the manual feature extraction, which operates on a frame-by-frame basis, we
consider an entire action that extends across several frames to leverage both spatial and temporal
characteristics to construct a graph. High-level feature maps are estimated by applying graph
convolutions on the constructed graph.

6



eat it

other

move hand away from mouth

move hand towards mouth

put one tool back

food in hand at table

pick food from a dish with both hands

pick up tool(s) with hand(s)

put the cup/glass back

pick food from a dish with one hand no action

pick food from a dish with tools in both hands

pick up a cup/glass

chewing

drink

pick food from a dish with tool in one hand

Figure 2: State diagram of common eating behavior with 16 action classes
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Figure 3: Balance Assessment Test. +1 (blue) represents subjects with positive slopes, -1 (orange)
represents subjects with negative slopes, and 0 (green), which indicates a change in their trunk
positions, i.e., the subjects started with an upright posture but over time as the weight is increased,
their chest position changed. See the text for more discussion.

Figure 4: Speed of Motion Test. 0 (blue) represents subjects with positive slopes and 1 (orange)
represents subjects with negative slopes, which indicates a decrease in hand speed as the weight is
increased. See the text for more discussion.
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5 Eating Behavioral Model

The EatSense dataset’s sequences are densely labeled with 16 sub-actions of variable lengths to
represent the eating behavior of individuals. Fig. 2 presents a general state diagram showing the
sequential relationships between the 16 sub-actions.

Upon examination, it becomes evident that the diagram allows much situational diversity, in-
cluding a single hand eating with or without a tool, two hands eating with or without a tool, and if
the subject switches between either of these.

The eating behavior model illustrates that the actions ‘eat it’ and ‘drink’ consistently occur after
the action ‘move hand towards mouth’ and are subsequently followed by the action ‘move hand
away from mouth’. Since the video recordings were acquired in an uncontrolled environment, the
subjects were permitted to engage in conversations and use mobile phones, just as they would in
their routine. Consequently, the state diagram demonstrates that nearly all actions can be followed
by the activity labeled as ‘other’.

6 Decay Simulation

This section demonstrates the effectiveness of simulating decay in performance by adding different
weights to the wrists of the subjects. For this purpose, experimentally proven tests such as the
balance assessment and speed of motion tests are used. These tests are slightly modified according
to the need of exploring decay in an eating scenario. These subtle changes along with the plots are
explained in the sub-sections below.

6.1 Balance Assessment Test

The Balance Assessment Test [3], [20] also known as trunk stability or postural sway [6] test is
defined as how well the subject maintains the center of mass of their body within its base support.
In clinical trials, this is carried out while standing up, however, here the test is performed while
the person is seated for about 6-10 minutes for a full meal. Each of the subjects is recorded while
wearing weights ranging from 0 to 2.4kg in each individual video.

At every frame, using the 3D pose of the subject, we estimate the feature ‘the distance of the
chest with respect to the table’ (discussed in sub-section 4.3) to detect sway in the subject’s posture.
As videos are recorded with participants wearing weights, we temporally stack the videos one after
another in the increasing order of the weights. Two of the subjects were left-handed which were
flipped around the y-axis for consistency.

Linear regression fits a line through the temporal data (videos stacked in the order of increasing
weights). This is shown in fig. 5 for demonstration purposes. The predicted line (shown in red)
depicts a negative sloped line. The decrease in distance from the table while increasing weights is
indicated by a negative slope. Hence, the negative slope in the experiment indicates the decay in
performance as the weights are increased.

A negative slope indicates decay in the core/trunk position over time, and a positive slope
should mean that the posture got better over time. A plot depicting the relationship between slope
coefficients and intercepts is shown in (fig. 3) where +1 (blue) represents positive slopes, -1 (orange)
represents negative slopes and 0 (green) represents no visible change in their trunk position. Here,
visible change is measured and marked as either blue or orange if the coefficients are greater or
less than ±0.03 × 10−5. The plot reveals that the majority of the subjects, specifically 15 out of
27, exhibit negative slopes. This indicates a weakened core as they were unable to maintain an
upright position. On the other hand, a few subjects demonstrate a positive trend, which leads us
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Figure 5: Shown for demonstration of negative slopes only. This chart indicates 20% frames sampled
randomly from each of the 4 weight cases of subject no. 4. These frames are then subsequently
arranged in ascending order of their respective weights.

to hypothesize that this occurs when they attempt to compensate for the weights by adjusting their
balance.

6.2 Speed of Motion Test

The speed of motion test is based on how fast a subject performs a task at hand in their normal
routine to monitor muscle degradation due to aging. The age-based decay in muscle functionality is
known as sarcopenia [44], [43]. In this research, different levels of weights are used to simulate this
decay in muscle strength over time and quantify it by monitoring the speeds of the motion of the
upper body limbs.

Firstly, as the dataset contains multiple sub-actions, many of which include unpredictable orders
of motion, only the ‘move hand towards mouth’ sub-action is analyzed, as it is the main micro-
movement that involves motion against gravity. For this purpose, we estimate (by inter-frame
position differences) the velocity of the dominant hand using the distance of wrist joint position
relative to the chest (discussed in sub-section 4.3). Two of the subjects were left-handed which were
flipped around the y-axis for consistency. Similar to the postural sway test, the wrist velocities are
estimated in the increasing order of the weights. A line is fit through the speed vs weight curves for
each subject using linear regression.

The slopes are expected to be negative to demonstrate that there is a decay in the upward
movement speed. In Fig. 4, a scatter plot illustrating the relationship between slope coefficients and
intercepts indicates that 17 out of 27 subjects exhibit a decline in their motion speeds across various
weight classes. Conversely, the subjects who show either positive or neutral trends in the data are
predominantly those who report having an active lifestyle.

7 Generalized Regression

EatSense simulates decay by adding weights (i.e., 0 kg, 1 kg, 1.8 kg and 2.4 kg) to the wrists of
the subjects. These subjects belong to various ethnicities, genders, and age groups. Ideally, there
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Figure 6: The complete pipeline of the proposed regression approach.

would exist motion model with a common set of parameters to predict performance as weights are
increased. However, it seems that people react to the weight increase differently; for example, some
slouch more and some make a distinctly visible posture difference (dropped shoulders, etc.). Hence,
finding a set of features and a model that parametrizes the performance change process without
over-fitting on a subset of subjects is a problem. To model how performance changes with weight
level, we divide our experiments into two sub-experiments, i.e., deep features-based and hand-crafted
features-based regression.

7.1 Hand-Crafted Features-Based Regression

Both spatial and temporal features were extracted from joint locations. These were briefly discussed
in Section 4.3 and their detailed mathematical formulation is given in [40]. The primary aim of
delving into hand-crafted feature-based techniques is to gain a comprehensive understanding of
an individual subject’s health. By utilizing these techniques, researchers and health professionals
can obtain detailed insights into various aspects of a person’s well-being. On the other hand,
deep features, although powerful in their ability to represent intricate patterns and relationships in
data, have thus far not proven to be as conducive to providing interpretable explanations. Health
professionals often seek clear and understandable insights into the factors influencing a subject’s
health, and in this regard, the complexity of deep features might present a challenge in meeting that
need.

7.1.1 Feature Selection

To select a common subset of features across all subjects, a forward sequential feature selector
(FSFS) was used [39] with LightGBM [19] as the classifier of the four classes of different weights
in subsets of the dataset. Assume D represents the data comprising the subjects’ joint locations
relative to the chest and the rest of the features. A set fi of the topmost contributing 12 features
for each subject i, was selected based on maximum macro-accuracy.

Afterwards, a union of fi was taken to create a collection of 30 features. Finally, the forward
sequential feature selector (FSFS) method was employed, using GMR as a regressor and mean
squared error as the loss function, to identify the top 8 most significant features (F ) from this set of
30 (which were all used in the LightGBM, GMR, and MLP regression experiments in section 7.3).

The process for feature selection across all subjects is shown in eq. 1 and 2, where di ⊂ D is
the subset that contains data for the ith subject only (i = 1, ...., 27). The subscript C and R under
FSFS show that the first FSFS used a classifier and the second used a regressor to shortlist the best
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Figure 7: T-SNE plot for the best performing 8 features mapped to 2D plane.

set of features.
fi = FSFSC(di)

27
i=1 (1)

F = FSFSR(∪27
i=1fi) (2)

The shortlisted 8 features in the order of their contribution are: (1) distance of the left-wrist
from the table, (2) position at time t of the x-component of the left-wrist, (3) position at time t− 1
of the y-component of the right-shoulder, (4) distance of table to the right-elbow, (5) position at
time t of the y-component of the left-wrist, (6) distance of table to the left-shoulder, (7) velocity of
x-component of the left-shoulder computed with window-size of ±2, and (8) distance of table to the
left-elbow.

The selected features contain both spatial (instantaneous distance from the table, position at
time t, etc.) and temporal properties (position at time t− 1, velocity, etc.). One noticeable trend is
that most of the selected features are related to the left-arm. This highlights that the non-dominant
arm plays a significant role for discriminating between different weights. This potentially indicates
that with weights of different magnitudes, the movement of non-dominant arm appears to suffer from
a more noticeable change then the right arm. This may be attributed to the fact that individuals
typically employ their dominant arm for eating, as it is more accustomed to precise motor tasks and
possesses greater strength.

7.1.2 Feature Visualization

To illustrate how the data looks like with 8 most contributing features, we project the 8-dimensional
data to 2 dimensions using T-SNE. The data is visualized in Fig. 7. Although there are not four
clearly separable groups for the four weights, there is somewhat of a clustering (especially for the
red/no weight class) that suggests that some modeling is possible.
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7.1.3 Gaussian Mixture Regression

Gaussian mixture regression (GMR) [12],[9] is a modified version of Gaussian mixture modeling
(GMM) used for regression. GMR is a probabilistic approach that assumes that all the data points
in the input × output space can be effectively represented by a finite number of Gaussian mixtures.
As it deals with probabilistic distributions rather than functions, it can model multi-modal mappings.
A brief overview of training and prediction details for GMR is given below. Readers are encouraged
to go through [12] and [47] for further details.

The training for GMR is done by fitting a Gaussian mixture model (GMM) over the feature set
F (eq. 2), in an unsupervised format using the EM algorithm. There is no distinction between
input xn and target yn, hence they can be concatenated into one vector zn = [xT

nyn]
T . The GMM

represents a weighted sum of E Gaussian functions as a model of the probability density function of
the vector zn, shown in eq 3.

p(zn) =

E∑
e=1

πeN (zn;µe, σe), with

E∑
e=1

πe = 1 (3)

For inference, with regression we are interested in predicting ŷ = E(y|x) i.e., the expected value
of y given x. For this purpose, µe and σe can be separated into input and output components as
follows:

µe = [µT
e,X , µT

e,Y ]; σe =

[
σe,X σe,XY

σe,Y X σe,Y

]
(4)

Given the decomposition in eq. 4, the expected value of y given x can be calculated by,

ŷ =

E∑
e=1

he(x)(µe,Y + σe,Y Xσ−1
e,X(x− µe,X)); (5)

where,

he(x) =
πeN (x;µe,X , σe,X)∑E
l=1 πlN (x;µl,X , σl,X)

(6)

Due to flexibility in the intrinsic nature of probabilistic models, as they are uncertainty-aware
and can represent complex problems effectively, we propose to use GMR for modeling the regression
problem across various subjects. The experiments, as shown in section 7.3, show that GMR performs
well.

7.1.4 Multi-Layer Perceptron Regression

A Multilayer Perceptron (MLP) is a type of artificial neural network (ANN) that is popular due to
its ability to learn and recognize complex (non)linear patterns in data. It is a supervised algorithm
that is made up of several interconnected layers of neurons, each layer processes and alters the input
to conform to an output.

The deterioration (i.e. weight) estimation problem tends to not generalize over all the subjects,
i.e., over-fitting to a subset of subjects in training. Thus, a joint loss function is used that includes
both lasso (L1) and ridge (L2) regularization. If the ground truth label (i.e. weight) is y, and ŷ is
the regression predicted output, then eq. 7 shows the loss function. The feature set F (eq. 2) was
used for training.

L = α∥y − ŷ∥22 + (1− α)|y − ŷ| (7)

where α was set to 0.5.
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Figure 8: The plots show the predicted weight vs. the ground truth weight. The dashed black line
illustrates perfect correlation and the solid line is the least square fit of the data shown in color.
The four regressors evaluated are GMR (top-left), MLP (top-right), LightGBM (bottom-left), and
ST-GCN Regression (bottom-right). Each colored curve corresponds to the result of an individual
leave-one-out model. Since there are several frames or clips for each micromovement in the test set,
the solid-colored curves represent the average of these predictions, while the shading surrounding
each curve indicates the range of one standard deviation.

7.2 Deep Features-Based Regression

Deep features are defined as high-level representations of data learned by deep neural networks
(DNN) that capture complex patterns and relationships in data. Deep features possess several
advantages over handcrafted features or shallow representations. One key benefit is their automatic
inference from the data, allowing the network to dynamically adjust and adapt to the specific task.
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To demonstrate generalized regression with deep features, we used a Spatial-Temporal Graph
Convolutional Network (ST-GCN) [52]. ST-GCN was chosen for this task as it was the best action
recognition algorithm for EatSense, as evidenced in [40].

7.2.1 ST-GCN

When using ST-GCN [52], given the sequence of the body joints (3D in our case), a spatial-temporal
graph is constructed with joints as graph nodes, inter-joint connections and temporal connections
(e.g., joint j at time t and t + 1) as graph edges. By applying spatial-temporal graph convolution
operations to the input data, high-level feature maps are generated. Subsequently, a classification
head is employed to perform the classification task.

The same approach was used for extracting high-level features. The specific problem here required
regression instead of classification. Therefore, two important modifications were made to the ST-
GCN framework. Firstly, the classification head was replaced by a regression head. Secondly, the
loss function was replaced by the mean squared error, as described in eq. 8.

L = ∥y − ŷ∥22 (8)

7.3 Experiments

As mentioned earlier, the experiments for generalized regression are divided into two sub-experiments.
Handcrafted feature-based regression and deep features-based regression. Each of these sub-experiments
has a prior step of hyper-parameter tuning. The sub-experiments along with their hyper-parameter
selection methods are discussed below.

7.3.1 Hyperparameter Tuning

The most important hyperparameter for GMR is the number of Gaussians E used to represent the
input × output space effectively. An iterative approach that alternates between, searching for E
and running 26-vs-1 cross-validation across subjects was used.

In 26-vs-1 cross-validation, 26 subjects were used in the training and validation, and 1 was left out
for testing. This was repeated for all 27 subjects, with average results reported. Each set contains
different subjects. Searching for the best E used Bayesian optimization to find the configuration
that has the minimum mean squared error across subjects between the ground truth and predicted
labels.

The hyperparameters in MLP include the number of layers, neurons in each layer, learning rate,
drop-out rate, and batch size. They were chosen empirically. For MLP, similar to GMR, only
features selected with the criteria mentioned in sub-section 7.1.1 were used. Hyperparameters for
ST-GCN such as learning rate and others were also chosen empirically.

The experimental question is: how accurately can the amount of weight worn by the subject be
estimated (as a proxy for modeling deterioration in elderly eaters)?

7.3.2 Estimating the Weight Level using Regression

After selecting the best configurations, leave-one-out cross-validation was used for measuring the
average mean squared errors (MSE) and actual error for GMR, MLP, LightGBM and ST-GCN
regression. In the leave-one-out approach, the model is trained on all of the available data (here
26 subjects) except for one subject, and then the model’s performance is evaluated on the left-out
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subject. This process is repeated for all subjects, and the overall performance of the model is the
average performance across all subjects.

Each of the two sub-experiments used only the 2 most distinctive micro-movements (actions),
i.e., ‘move hand towards mouth’ and ‘move hand from mouth’. These 2 actions were chosen because
they are the ones that seem most likely to be impacted by varying weights because they involve
working against or with gravity. For MLP, LightGBM and GMR, a frame-by-frame setting of the
features were used. Whereas for training ST-GCN, vectors containing the 3D poses of one full action
each was used to extract feature maps. Afterwards, these feature maps go through regression head
and predict the weights. The regression models for each subject are used to predict the weight worn
by the subject.

To demonstrate the performance of the proposed regression model, we present both visual and
quantitative results. Fig. 8. shows the predictions of the 27 different models trained using the leave-
one-out strategy. Each curve is the output of the one subject who was not involved in the training
process. Since the test set comprises multiple instances of the micro-movements, i.e., every subject
moves the hand to and away from the mouth multiple times in one eating session, hence these
predictions are averaged over time. The solid-colored line represents this mean and the shading
around it shows the ±1 standard deviation of the predictions. For ‘summary’ purposes, we fit
a RANSAC [11] linear regression model across the predicted weights of all 27 of the regression
models.3 In figure 8, the black solid line represents the RANSAC linear regression fit line across the
predicted weights and the black dashed line illustrates the perfect correlation between the predicted
and ground truth weights.

To analyze quantitatively, results are provided using two measures: mean squared error (MSE)
and actual error. The MSE is the (L2)-norm of the difference between predicted and true values.
Likewise, the actual error is the average of the difference between predicted and true values, indi-
cating the deviation in kilograms from the actual weight. Equations 9 and 10 estimate the actual
error. Results are given in Table 2.

Mp =
1

Np

Np∑
n=1

(predictedp,n − truep,n) (9)

where Mp is the actual error of pth subject in a set of 27 subjects, i.e., p ∈ (1, ..., 27). Np are the
total number of samples in the test set for each person p. So, the overall mean across all subjects is
given by,

mean =
1

27

27∑
p=1

Mp (10)

7.4 Discussion of Results

Both MLP and ST-GCN can handle a wide range of data distributions and excel in different contexts.
For example, ST-GCN is specialized for tasks that involve both spatial and temporal dimensions,
whereas an MLP can effectively model intricate non-linearities in high dimensional data. GMR on
the other hand employs a probabalistic approach and models data distributions as combinations of
Gaussian mixtures. LGBM works as an ensemble of decision trees and is suitable for tasks where
exploitation of high dimensional feature space is required.

3RANSAC is a technique that estimates the model parameters by randomly sampling the observed data and hence
is robust to outliers.
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Table 1: Mean squared error for GMR, MLP, LightGBM and ST-GCN as a result of Leave-one-out
regression. The last row shows the average of these errors. Lower values are better, and GMR has
the best average performance.

S# GMR MLP LightGBM ST-GCN

0 0.977 0.680 0.658 1.540
1 0.691 1.856 0.724 1.274
2 0.189 1.369 0.845 1.160
3 0.805 1.010 1.382 1.210
4 0.592 1.363 0.669 0.705
5 0.404 1.269 0.859 0.961
6 0.643 0.939 0.396 0.663
7 0.291 0.581 0.618 0.708
8 0.613 0.519 1.674 1.299
9 0.398 1.190 0.760 1.069
10 0.931 1.235 1.229 0.872
11 0.597 0.787 0.738 0.703
12 0.635 1.275 0.544 0.975
13 0.629 0.833 0.420 1.172
14 0.788 0.627 0.345 0.961
15 0.760 0.884 1.279 0.750
16 0.288 0.432 0.433 1.034
17 0.598 0.631 0.629 0.910
18 0.599 0.463 0.383 1.290
19 0.140 0.313 0.127 0.967
20 0.327 0.887 0.329 0.989
21 0.586 1.260 0.442 0.814
22 0.284 0.371 0.177 0.685
23 0.328 0.395 0.452 1.120
24 0.645 1.467 0.810 1.327
25 0.337 0.538 0.852 1.041
26 0.267 0.834 0.258 0.872

Avg. 0.531 0.889 0.668 1.003
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Table 2: Actual error for GMR, MLP, LightGBM and ST-GCN as a result of Leave-one-out regres-
sion. The last row shows the mean of these errors. Lower values are better. (Values closer to zero
are the best.)

S# GMR MLP LightGBM ST-GCN

0 -0.256 -0.186 -0.164 -0.912
1 0.470 0.641 0.464 1.019
2 0.179 0.898 0.755 0.746
3 -0.391 0.144 -0.017 0.055
4 -0.259 -0.296 -0.064 -0.064
5 0.125 0.127 0.072 0.005
6 -0.346 -0.233 -0.009 0.142
7 -0.153 -0.328 -0.093 -0.009
8 -0.422 -0.337 -0.240 0.817
9 -0.345 -0.496 -0.612 -0.801
10 0.187 -0.516 -0.183 -0.222
11 -0.180 -0.082 -0.542 0.399
12 -0.246 -0.497 0.049 -0.181
13 -0.053 -0.356 -0.256 -0.124
14 -0.185 -0.193 -0.023 0.411
15 0.031 -0.234 0.044 -0.137
16 0.146 -0.244 -0.224 -0.087
17 0.402 -0.137 0.526 -0.001
18 0.215 -0.192 0.261 -0.113
19 0.141 0.051 0.027 0.101
20 -0.039 -0.600 -0.488 -0.094
21 0.009 -0.460 0.254 -0.200
22 0.200 -0.038 -0.049 -0.141
23 0.134 -0.183 -0.225 -0.120
24 0.091 -0.405 0.295 0.011
25 -0.003 -0.483 -0.374 -0.230
26 0.031 -0.444 0.092 -0.199

Avg. -0.019 -0.188 -0.026 0.002
std. 0.233 0.333 0.312 0.404
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Figure 8 visually compares the effectiveness of three hand-crafted feature-based methods - GMR,
MLP and LightGBM, and deep feature-based ST-GCN - using line plots that compare the predicted
weights to the ground truth. The more closely the predicted weights (solid black line) align with
the actual values (dashed black line), the better the regression model performs.

When examining the results depicted in the top-left figure, it is clear that GMR performs well as
there is a noticeable upward trend in the plot, indicating a good prediction of weights (0, 1, 1.8, and
2.4 kg). In contrast, the top-right (MLP) and bottom-left (LightGBM) figures suggest that these
models do not generalize as well on the data, as they have a weaker correlation between ground
truth and predicted values. The figure on the bottom-right (ST-GCN regressor) clearly show that
the model does not fit properly on the data. This could potentially be due to two reasons, (1)
the insufficient temporal context and limited discriminative features as the micro-movements under
consideration span over less than 10 frames or (2) insufficent data for training a regresison model
with only two micro-movements.

When comparing these methods quantitatively, GMR performs better, as evidenced by the av-
erage MSE displayed in Table 1. GMR achieved a mean squared error of 0.53, lower than MLP,
LightGBM and ST-GCN.

In real scenarios, it is unlikely to have data from various stages of deterioration to train a
model. Instead, one would have to use one of the generic regression models trained in section 7.3.2.
Therefore, relying solely on MSE to quantify the error may seem to be complicated or not intuitive
in a physical sense and may not be the most appropriate metric for selecting the best model. To
address this, table 2 presents the actual error (each row estimated by 1

N ∗
∑N

n=1(predicted− true)),
which indicates the average amount in kilograms that the predictions are off. The table shows that
the mean difference for GMR is around 19 grams, with the lowest standard deviation of 0.233. On
the other hand, ST-GCN has the lowest mean, with a comparably high standard deviation.

The T-SNE visualization presented in Figure 7 illustrates that the data has multiple modes, and
we anticipate more distinguishable boundaries when considering 8 dimensions. Intuitively, Gaussian
Mixture Regression (GMR) excels in this scenario by representing each mode with its own Gaussian
component and clustering data points, rather than attempting to fit a single line or curve across all
data. Consequently, GMR demonstrates superior capability in modeling the underlying distributions
compared to alternative regression methods.

8 Conclusion

In this paper, we presented an analysis of the eating behavior of subjects that includes: modeling
the actions involved while eating as a state diagram and methods to quantify performance/decay
level. To quantify performance levels while eating, two sets of experiments, i.e., with hand-crafted
features using uncertainty aware algorithm GMR, with comparisons against MLP and LightGBM,
and with deep features-based regression using ST-GCN were conducted.

The results show that GMR performed slightly better compared to other regression models, and
thus can be used to predict the degree of deterioration (i.e., weight level) of individuals based on a
generically trained model (i.e., trained with enough other subject data).

We also presented an extension of the EatSense dataset to four weight levels. Ethical approval
was obtained to allow these experiments using healthy human volunteers. In an ideal world, we would
also collect long-term data from elderly volunteers to validate the deterioration model; however, this
would be highly unethical, as intervention should occur at the first sign of deterioration. Hence, the
experiments presented here are limited to using weights with healthy volunteers.
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