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Range sensors are devices that capture the 3D struc-
ture of the world from the viewpoint of the sensor, usu-
ally measuring the depth to the nearest surfaces. These
measurements could be at a single point, across a scan-
ning plane, or a full image with depth measurements at
every point. The benefits of this range data is that a
robot can be relatively certain where the real world is,
relative to the sensor, thus allowing the robot to more
reliably find navigable routes, avoid obstacles, grasp ob-
jects, act on industrial parts, etc.

This chapter introduces the main representations for
range data (point sets, triangulated surfaces, voxels),
the main methods for extracting usable features from
the range data (planes, lines, triangulated surfaces), the
main sensors for acquiring it (Section 22.1 - stereo and
laser triangulation and ranging systems), how multiple
observations of the scene, e.g. as if from a moving robot,
can be registered (Section 22.2) and several indoor and
outdoor robot applications where range data greatly sim-
plifies the task (Section 22.3).

22.1 Range sensing basics

Here we present: 1) the basic representations used for
range image data, 2) a brief introduction to the main 3D
sensors that are less commonly used in robotics applica-
tions and 3) a detailed presentation of the more common
laser-baser range image sensors.

22.1.1 Range images and point sets

Range data is a 2 1
2D or 3D representation of the scene

around the robot. The 3D aspect arises because we
are measuring the (X,Y,Z) coordinates of one or more
points in the scene. Often only a single range image is
used at each time instance. This means that we only
observe the front sides of objects - the portion of the
scene visible from the robot. In other words, we don’t
have a full 3D observation of all sides of a scene. This is
the origin of the term 21

2D. Figure 22.1a shows a sam-
ple range image and (b) shows a registered reflectance
image, where each pixel records the level of reflected in-
frared light.

There are two standard formats for representing range
data. The first is an image d(i, j), which records the
distance d to the corresponding scene point (X,Y,Z) for
each image pixel (i, j). There are several common map-
pings from (i, j, d(i, j)) to (X,Y,Z), usually arising from
the geometry of the range sensor. The most common
image mappings are illustrated in Figures 22.2 and 22.3.

Figure 22.1: Above: Registered infrared reflectance im-
age. Below: Range image where closer is darker.

In the formulas given here, α and β are calibrated values
specific to the sensor.

1. Orthographic: Here (X,Y,Z) = (αi, βj, d(i, j)).
These images often arise from range sensors that
scan by translating in the x and y directions. (See
Figure 22.2a.)

2. Perspective: Here d(i, j) is the distance along the
line of sight of the ray through pixel (i, j) to point
(x, y, z). Treating the range sensor focus as the ori-
gin (0, 0, 0) and assuming that its optical axis is the
Z axis and (X,Y ) axes are parallel to the image (i, j)

axes, then (X,Y,Z) = d(i,j)√
α2i2+β2j2+f2

(αi, βj, f),

where f is the ‘focal length’ of the system. These
images often arise from sensor equipment that in-
corporates a normal intensity camera. (See Figure
22.2b.)

3. Cylindrical: Here, d(i, j) is the distance along the
line of sight of the ray through pixel (i, j) to point
(X,Y,Z). In this case, the sensor usually rotates to
scan in the x direction, and translates to scan in the
y direction. Thus,
(X,Y,Z) = (d(i, j) sin(αi), βj, d(i, j) cos(αi)) is the
usual conversion. (See Figure 22.3c.)

4. Spherical: Here, d(i, j) is the distance along the
line of sight of the ray through pixel (i, j) to point
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b) Perspective

Figure 22.2: Different range image mappings: a) ortho-
graphic, b) perspective.

(X,Y,Z). In this case, the sensor usually rotates
to scan in the x direction, and, once each x scan,
also rotates in the y direction. Thus (i, j) are the
azimuth and elevation of the line of sight. Here
(X,Y,Z) =
d(i, j)(cos(βj) sin(αi), sin(βj), cos(βj) cos(αi)).
(See Figure 22.3d.)

Some sensors only record distances in a plane, so the
scene (x, z) is represented by the linear image d(i) for
each pixel i. The orthographic, perspective and cylindri-
cal projection options listed above still apply in simpli-
fied form.

The second format is as a list {(Xi, Yi, Zi)} of 3D data
points, but this format can be used with all of the map-
pings listed above. Given the conversions from image

(0,0,0)

+Y

+X

d(i,j)

+I

(x,y,z)(i,j)

+J

+Z

IMAGE SURFACE

c)
Cylindrical

β jα i(0,0,0)

+Y

+I

+X

(x,y,z)
d(i,j)

+Z

d) Spherical

Figure 22.3: Different range image mappings: c) cylin-
drical and d) spherical.

data d(i, j) to (X,Y,Z) the range data is only supplied
as a list. Details of the precise mapping and data format
are supplied with commercial range sensors.

22.1.2 Stereo vision

It is possible to acquire range information from many dif-
ferent sensors, but only a few have the reliability needed
for most robotics applications. The more reliable ones,
laser based triangulation and LIDAR (laser radar) are
discussed in the next section.

Realtime stereo analysis uses two or more input im-
ages to estimate the distance to points in a scene. The
basic concept is triangulation: a scene point and the two
camera points form a triangle, and knowing the baseline
between the two cameras, and the angle formed by the
camera rays, the distance to the object can be deter-
mined.

In practice, there are many difficulties in making a
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stereo imaging system that is useful for robotics applica-
tions. Most of these difficulties arise in finding reliable
matches for pixels in the two images that correspond to
the same point in the scene. A further consideration is
that stereo analysis for robotics has a realtime constraint,
and the processing power needed for some algorithms can
be very high. But, in recent years much progress has
been made, and the advantage of stereo imaging is that
it can provide full 3D range images, registered with vi-
sual information, potentially out to an infinite distance,
at high frame rates - something which no other range
sensor can match.

In this subsection we will review the basic algorithms
of stereo analysis, and highlight the problems and po-
tential of the method. For simplicity, we use binocular
stereo.

Stereo image geometry

This subsection gives some more detail of the fundamen-
tal geometry of stereo, and in particular the relationship
of the images to the 3D world via projection and repro-
jection. A more in-depth discussion of the geometry, and
the rectification process, can be found in [31].

The input images are rectified, which means that the
original images are modified to correspond to ideal pin-
hole cameras with a particular geometry, illustrated in
Figure 22.4. Any 3D point S projects to a point in the
images along a ray through the focal point. If the princi-
pal rays of the cameras are parallel, and the images are
embedded in a common plane and have collinear scan
lines, then the search geometry takes a simple form. The
epipolar line of a point s in the left image, defined as the
possible positions of s′ in the right image, is always a
scan line with the same y coordinate as s. Thus, search
for a stereo match is linear. The process of finding a
rectification of the original images that puts them into
standard form is called calibration, and is discussed in
[31].

The difference in the x coordinates of s and s′ is the
disparity of the 3D point, which is related to its distance
from the focal point, and the baseline Tx that separates
the focal points.

A 3D point can be projected into either the left or
right image by a matrix multiplication in homogenous
coordinates, using the projection matrix. The 3D coor-
dinates are in the frame of the left camera (see Figure
22.4).

Figure 22.4: Ideal stereo geometry. The global coordi-
nate system is centered on the focal point (camera cen-
ter) of the left camera. It is a right-handed system, with
positive Z in front of the camera, and positive X to the
right. The camera principal ray pierces the image plane
at Cx, Cy, which is the same in both cameras (a varia-
tion for verged cameras allows Cx to differ between the
images). The focal length is also the same. The images
are lined up, with y = y′ for the coordinates of any scene
point projected into the images. The difference between
the x coordinates is called the disparity. The vector be-
tween the focal points is aligned with the X axis.

P =





Fx

0
0

0
Fy

0

Cx

Cy

1

−FxTx

0
0



 (22.1)

This is the projection matrix for a single camera. Fx,
Fy are the focal lengths of the rectified images, and Cx,
Cy is the optical center. Tx is the translation of the
camera relative to the left (reference) camera. For the
left camera, it is 0; for the right camera, it is the baseline
times the x focal length.

A point in 3D is represented by homogeneous coor-
dinates and the projection is performed using a matrix
multiply
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(22.2)
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where (x/w, y/w) are the idealized image coordinates.
If points in the left and right images correspond to the

same scene feature, the depth of the feature can be calcu-
lated from the image coordinates using the reprojection

matrix.

Q =
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0
0
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0
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







(22.3)

The primed parameters are from the left projection ma-
trix, the unprimed from the right. The last term is zero
except for verged cameras. If x, y and x′, y are the two
matched image points, with d = x − x′, then
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(22.4)

where (X/W,Y/W,Z/W ) are the coordinates of the
scene feature, and d = x − x′ is the disparity. Assuming
Cx = C ′

x, the Z distance assumes the familiar inverse
form of triangulation

Z =
FxT ′

x

d
. (22.5)

Reprojection is valid only for rectified images - for the
general case, the projected lines do not intersect. The
disparity d is an inverse depth measure, and the vec-
tor (x, y, d) is a perspective representation range image
(see Section 22.1.1), sometimes called the disparity space

representation. The disparity space is often used in ap-
plications instead of 3D space, as a more efficient repre-
sentation for determining obstacles or other features (see
Section 22.3.3).

Equation 22.4 is a homography between disparity
space and 3D Euclidean space. Disparity space is also
useful in translating between 3D frames. Let p0 =
[x0, y0, d0, 1] in frame 0, with frame 1 related by the rigid
motion R, t. From the reprojection equation 22.4 the
3D position is Qp0 Under the rigid motion this becomes
(

R t
0 1

)

Qp0, and finally applying Q−1 yields the dis-

parity representation in frame 1. The concatenation of
these operations is the homography

H(R, t) = Q−1

(

R t
0 1

)

Q. (22.6)

Using the homography allows the points in the reference
frame to be directly projected onto another frame, with-
out translating to 3D points.

Stereo Methods

The fundamental problem in stereo analysis is matching
image elements that represent the same object or object
part in the scene. Once the match is made, the range to
the object can be computed using the image geometry.

Matching methods can be characterized as local or
global. Local methods attempt to match small regions
of one image to another based on intrinsic features of
the region. Global methods supplement local methods
by considering physical constraints such as surface con-
tinuity or base-of-support. Local methods can be further
classified by whether they match discrete features among
images, or correlate a small area patch [7]. Features are
usually chosen to be lighting and viewpoint-independent,
e.g., corners are a natural feature to use because they re-
main corners in almost all projections. Feature-based
algorithms compensate for viewpoint changes and cam-
era differences, and can produce rapid, robust matching.
But they have the disadvantage of requiring perhaps ex-
pensive feature extraction, and yielding only sparse range
results.

In the next section we present local area correlation in
more detail, since it is one of the most efficient and prac-
tical algorithms for realtime stereo. A survey and results
of recent stereo matching methods is in [63], and the au-
thors maintain a web page listing up-to-date information
at [64].

Area Correlation Stereo

Area correlation compares small patches among images
using correlation. The area size is a compromise, since
small areas are more likely to be similar in images
with different viewpoints, while larger areas increase the
signal-to-noise ratio. In contrast to the feature-based
method, area-based correlation produces dense results.
Because area methods needn’t compute features, and
have an extremely regular algorithmic structure, they
can have optimized implementations.

The typical area correlation method has five steps
(Figure 22.5):

1. Geometry correction. In this step, distortions in
the input images are corrected by warping into a
”standard form”.
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Figure 22.5: Basic stereo processing. See text for details.

2. Image transform. A local operator transforms each
pixel in the grayscale image into a more appropri-
ate form, e.g., normalizes it based on average local
intensity.

3. Area correlation. This is the correlation step, where
each small area is compared with other areas in its
search window.

4. Extrema extraction. The extreme value of the corre-
lation at each pixel is determined, yielding a dispar-
ity image: each pixel value is the disparity between
left and right image patches at the best match.

5. Post-filtering. One or more filters clean up noise in
the disparity image result.

Correlation of image areas is disturbed by illumina-
tion, perspective, and imaging differences among images.
Area correlation methods usually attempt to compensate
by correlating not the raw intensity images, but some
transform of the intensities. Let u, v be the center pixel
of the correlation, d the disparity, and Ix,y, I ′x,y the in-
tensities of the left and right images.

1. Normalized cross-correlation.
∑

x,y[Ix,y − Îx,y][I ′x−d,y − Î ′x−d,y]
√

∑

x,y[Ix,y − Îx,y]2
∑

x,y[I ′x,y − Î ′x−d,y]2

2. High-pass filter such as Laplacian of gaussian
(LOG). The laplacian measures directed edge in-
tensities over some area smoothed by the gaussian.
Typically the standard deviation of the gaussian is
1-2 pixels.

∑

x,y

s[LOGx,y − LOGx−d,y],

where s(x) is x2 or ||x||.

Correlation surface [55]
peak width wide peak indicates poor feature

localization
peak height small peak indicates poor match
number of peaks multiple peaks indicate

ambiguity
Mode filter lack of supporting disparities

violates smoothness
Left/Right check non-symmetric match
[13, 26] indicates occlusion
Texture [56] low texture energy yields

poor matches

Table 22.1: Post-filtering techniques for eliminating false
matches in area correlation.

3. Nonparametric. These transforms are an attempt
to deal with the problem of outliers, which tend to
overwhelm the correlation measure, especially using
a square difference. The census method [77] com-
putes a bit vector describing the local environment
of a pixel, and the correlation measure is the Ham-
ming distance between two vectors.

∑

x,y

(Ix,y > Iu,v) ⊕ (I ′x−d,y > I ′u,v)

Results on the different transforms and their error
rates for some standard images are compiled in [64].

Another technique for increasing the signal-to-noise
ratio of matches is to use more than two images [20].
This technique can also overcome the problem of view-
point occlusion, where the matching part of an object
does not appear in the other image. The simple tech-
nique of adding the correlations between images at the
same disparity seems to work well [58]. Obviously, the
computational expenditure for multiple images is greater
than for two.

Dense range images usually contain false matches that
must be filtered, although this is less of a problem with
multiple-image methods. Table 22.1 lists some of the
post-filters that have been discussed in the literature.

Disparity images can be processed to give sub-pixel ac-
curacy, by trying to locate the correlation peak between
pixels. This increases the available range resolution with-
out much additional work. Typical accuracies are 1/10
pixel.
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Figure 22.6: Sample stereo results from an outdoor gar-
den scene; baseline is 9 cm. Upper: original left im-
age. Middle: computed 3D points from a different angle.
Lower: disparity in pseudo-color.

Stereo range quality

Various artifacts and problems affect stereo range im-
ages.

Smearing. Area correlation introduces expansion in
foreground objects, e.g., the woman’s head in Figure
22.6. The cause is the dominance of strong edges on the
object. Nonparametric measures are less subject to this
phenomenon. Other approaches include multiple corre-
lation windows and shaped windows.

Dropouts. These are areas where no good matches
can be found because of low texture energy. Dropouts are
a problem for indoor and outdoor man-made surfaces.

Projecting an infrared random texture can help [1].
Range resolution. Unlike LADAR devices, stereo

range accuracy is a quadratic function of distance, found
by differentiating Equation 22.5 with respect to dispar-
ity:

δZ = −FxT ′
x

d2
. (22.7)

The degradation of stereo range with distance can be
clearly seen in the 3D reconstruction of Figure 22.6.

Processing. Area correlation is processor-intensive,
requiring Awd operations, where A is the image area, w
the correlation window size, and d the number of dis-
parities. Clever optimizations take advantage of redun-
dant calculations to reduce this to Ad (independent of
window size), at the expense of some storage. Realtime
implementations exist for standard PCs [75, 61], graph-
ics accelerators [78, 76], DSPs [41], FPGAs [75, 24], and
specialized ASICs [74].

Other visual sources of range information

Here we briefly list the most popular, but less reliable
sources of range information. These sources can poten-
tially supplement other sensors.

• Focus/defocus: Knowledge of the camera parame-
ters and the amount of blur of image features allows
estimation of how far the corresponding scene fea-
tures are from the perfect focus distance [57]. Sen-
sors may be passive (using a pre-captured image) or
active (capturing several images with different focus
settings).

• Structure and motion : Structure and motion al-
gorithms compute 3D scene structure and the sensor
positions simultaneously [62]. These is essentially
a binocular stereo process (see discussion above),
except that only a single moving camera is used.
Thus the images needed by the stereo process are
acquired by the same camera in several different po-
sitions. Video camcorders are also used, but have
lower resolution. One important advantage of this
approach over the normal algorithm is that features
can be tracked easily if the time between frames or
the motion is small enough. This simplifies the “cor-
respondence problem”, however it can lead to an-
other problem. If the pair of images used for the
stereo calculation are taken close together in time,
then the separation between the cameras images will
not be much - this is a “short baseline”. Triangula-
tion calculations are then more inaccurate, as small
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errors in estimating the position of image features
results in large errors in the estimated 3D position
(particularly the depth estimate). This problem can
be partly avoided by tracking for longer periods. A
second problem that can arise is that not all motions
are suitable for estimate of the full 3D scene struc-
ture. For example, if the video recorder only rotates
about its optical axis or about its focus point, then
no 3D information can be recovered. A little care
can avoid this problem.

• Shading: The pattern of shading on a surface is re-
lated to the orientation of the surface relative to the
observer and light sources. This relationship can be
used to estimate the surface orientation across the
surface. The surface normals can then be integrated
to give an estimate of the relative surface depth.

• Photometric stereo: Photometric stereo [32] is a
combination of shading and stereo processes. The
key concept is that the shading of an object varies
with the position of the light sources. Hence, if you
had several aligned pictures of an object or scene
with the light source in different positions (e.g. the
sun moved), then you can calculate the scene’s sur-
face normals. From these, the relative surface depth
can be estimated. The restriction of a stationary
observer and changing light sources makes this ap-
proach less likely to be useful to most robotics ap-
plications.

• Texture: The way uniform or statistical textures
vary on a surface is related to the orientation of
the surface relative to the observer. As with shad-
ing, the texture gradients can be used to estimate
the surface orientation across the surface [51]. The
surface normals can then be integrated to give an
estimate of the relative surface depth.

22.1.3 Laser-based Range Sensors

There are three types of laser based range sensors in
common use:

1. triangulation sensors,

2. phase modulation sensors and

3. time of flight sensors.

These are discussed in more detail below. There are also
doppler and interference laser-based range sensors, but
these seem to not be in general use at the moment so

we skip them here. An excellent recent review of range
sensors is by Blais [12].

The physical principles behind the three types of sen-
sors discussed below do not intrinsically depend on the
use of a laser - for the most part any light source
would work. However, lasers are traditional because: 1)
they can easily generate bright beams with lightweight
sources, 2) infrared beams can be used inobtrusively, 3)
they focus well to give narrow beams, 4) single frequency
sources allow easier rejection filtering of unwanted fre-
quencies, 5) single frequency sources do not disperse from
refraction as much as full spectrum sources, 6) semicon-
ductor devices can more easily generate short pulses, etc.

One advantage of all three sensor types is that it is
often possible to acquire a reflectance image registered
with the range image. By measuring the amount that
the laser beam strength has reduced after reflection from
the target, one can estimate the reflectance of the sur-
face. This is only the reflectance at the single spectral
frequency of the laser, but, nonetheless, this gives use-
ful information about the appearance of the surface (as
well as the shape as given by the range measurement).
(Three color laser systems [6] similarly give registered
RGB color images.) Figure 22.1 shows registered range
and reflectance images from the same scene.

One disadvantage of all three sensor types is specu-
lar reflections. The normal assumption is that the ob-
served light is a diffuse reflection from the surface. If the
observed surface is specular, such as polished metal or
water, then the source illumination may be reflected in
unpredictable directions. If any light eventually is de-
tected by the receiver, then it is likely to cause incorrect
range measurements. Specular reflections are also likely
at the fold edges of surfaces.

A second problem is the laser ‘footprint’. Because the
laser beam has a finite width, when it strikes at the edge
of a surface, part of the beam may be actually lie on
a more distant surface. The consequences of this will
depend on the actual sensor, but it commonly results in
range measurements that lie between the closer and more
distant surfaces. These measurements thus suggest that
there is surface where there really is empty space. Some
noise removal is possible in obvious empty space, but
there may be erroneous measurements that are so close
to the true surface that they are difficult to eliminate.

22.1.4 Time of Flight Range Sensors

Time of flight range sensors are exactly that: they com-
pute distance by measuring the time that a pulse of light
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takes to travel from the source to the observed target and
then to the detector (usually colocated with the source).
In a sense, they are radar sensors that are based on light.
The travel time multiplied by the speed of light (in the
given medium - space, air or water and adjusted for the
density and temperature of the medium) gives the dis-
tance. Laser-based time of flight range sensors are also
caller LIDAR (LIght Detection And Ranging) or LADAR
(LAser raDAR) sensors.

Limitations on the accuracy of these sensors is based
on the minimum observation time (and thus the min-
imum distance observable), the temporal accuracy (or
quantization) of the receiver and the temporal width of
the laser pulse.

Many time of flight sensors used for local measure-
ments have what is called an “ambiguity interval”, for
example 20 meters. The sensor emits pulses of light pe-
riodically, and computes an average target distance from
the time of the returning pulses. To limit noise from
reflections and simplify the detection electronics, many
sensors only accept signals that arrive within time ∆t,
but this time window might also observe previous pulses
reflected by more distant surfaces. This means that a
measurement Z is ambiguous to the multiple of 1

2c∆t be-
cause surfaces that are further away (e.g. z) than 1

2c∆t
are recorded as zmod 1

2c∆t. Thus distances on smooth

surfaces can increase until they reach c∆t
2 and then they

become 0. Typical values for c∆t
2 are 20-40m. On smooth

surfaces, such as a ground plane or road, an unwinding
algorithm can recover the true depth by assuming that
the distances should be changing smoothly.

Most time of flight sensors transmit only a single beam,
thus range measurements are only obtained from a single
surface point. Robotics applications usually need more
information, so the range data is usually supplied as a
vector of range to surfaces lying in a plane (see Figure
22.7) or as an image (see Figure 22.1). To obtain these
denser representations, the laser beam is swept across the
scene. Normally the beam is swept by a set of mirrors
rather than moving the laser and detector themselves
(mirrors are lighter and less prone to motion damage).
The most common technologies for this are using a step-
per motor (for program-based range sensing) or rotating
or oscillating mirrors for automatic scanning.

Typical ground-based time of flight sensors suitable for
robotics applications have a range of 10-100m, and an ac-
curacy of 5-10mm. The amount of the scene scanned will
depend on the sweep rate of the mirrors and the pulse
rate, but 1-25K points per second are typical. Manu-
facturers of these sensors include Acuity, Sick, Mensi,

RANGE

0−90 +90
ANGLE 

Figure 22.7: Plot of ideal 1D range image of sample dis-
tance versus angle of measurement.

DeltaSphere and Cyrax.

Recently, a type of time-of-flight range sensor called
the “Flash LADAR” has been developed. The key in-
novation has been the inclusion of VLSI timing circuits
at each pixel of the sensor chip. Thus, each pixel can
measure the time at which a light pulse is observed from
the line of sight viewed by that pixel. This allows si-
multaneous calculation of the range values at each pixel.
The light pulse now has to cover to whole portion of the
scene that is observed, so sensors typically use an array of
infrared laser LEDs. While spatial resolution is smaller
than current cameras (e.g. 64×64, 160×124, 128×128),
the data can be acquired at video rates (30-50 fps), which
provides considerable information usable for robot feed-
back. Different sensor ranges have been reported, such
as up to 5m [3] (with on the order of 5-50 cm standard
deviation depending on target distance and orientation)
or at 1.1 km [68] (no standard deviation reported).

22.1.5 Modulation Range Sensors

Modulation-based range sensors are commonly of two
types, where a continuous laser signal is either ampli-
tude or frequency modulated. By observing the phase
shift between the outgoing and return signals, the sig-
nal transit time is estimated and from this the target
distance. As the signal phase repeats every 2π, these
sensors also have an ambiguity interval.

These sensors also produce a single beam that must be
swept. Scan ranges are typically 20-40m and accuracy
of 5mm. Figure 22.1 was captured with a modulation
sensor.
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22.1.6 Triangulation Range Sensors

Triangulation range sensors [47] are based on principles
similar to the stereo sensors discussed previously. The
key concept is illustrated in Figure 22.8: a laser beam is
projected from one position onto the observed surface.
The light spot that this creates is observed by a sensor
from a second position. Knowing the relative positions
and orientations of the laser and sensor, plus some simple
trigonometry allows calculation of the 3D position of the
illuminated surface point. The triangulation process is
more accurate when the laser spot’s position is accurately
estimated. About 0.1 pixel accuracy can be normally
achieved [22].

vrv l

D

α β

LASERSENSOR

p

Figure 22.8: Triangulation using a laser spot.

Because the laser illumination can be controlled, this
gives a number of practical advantages:

1. A laser of known frequency (e.g. 733 nm) can be
matched with a very selective spectral filter of the
same frequency (e.g. 5 nm half width). This nor-
mally allows unique identification of the light spot
as the filtering virtually eliminates all other bright
light, leaving the laser spot as the brightest spot in
the image.

2. The laser spot can be reshaped with lenses or mir-
rors to create multiple spots or stripes, thus allow-
ing a measurement of multiple 3D points simultane-
ously. Stripes are commonly used because these can

be swept across the scene (see Fig 22.9 for an ex-
ample) to observe a full scene. Other illumination
patterns are also commonly used, such as parallel
lines, concentric circles, cross hairs and dot grids.
Commercial structured light pattern generators are
available from e.g. Lasiris or Edmunds Optics.

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������
������������������������������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������

����

ROTATING
MIRROR

Figure 22.9: Swept laser plane covers a larger scene.

3. The laser light ray can be positioned by mirrors un-
der computer control to selectively observe a given
area, such as around a doorway or potential obsta-
cle, or an object that might be grasped.

Disadvantages include:

1. Potential eye safety risks from the power of lasers,
particularly when invisible laser frequencies are used
(commonly infrared).

2. Specular reflections from metallic and polished ob-
jects, which may cause incorrect calculation of where
the laser spot is illuminating, as in Figure 22.10
where the hypothesized surface lies behind the true
surface.

22.1.7 Example Sensors

A typical phase modulation based range sensor is the
Zohler and Frohlich 25200. This is an expensive spher-
ical scan sensor, observing a full 360 degrees horizon-
tally and 155 vertically. Each scan can acquire up to
20,000 3D points horizontally and 8000 points vertically
in about 100 seconds. The accuracy of the scan depends
on the distance to the target, but 4 mm is typical, with
samples every 0.01 degrees (which samples every 1.7 mm
at 10m distance). The densely sensed data is typically
used for 3D scene survey, modelling and virtual reality
reconstruction.



CONTENTS 10

REFLECTING
SURFACE

COMPUTED SURFACE

SENSOR

TRUE SPECULAR
SURFACE

Figure 22.10: Incorrect estimated depths on specular sur-
faces

An example of a laser sensor that has been commonly
used for robot navigation is the SICK LMS 200. This
sensor sweeps a laser ray in a horizontal plane through
an arc of 180 degrees, acquiring 720 range measurements
in a plane in 0.05 seconds. While a plane might seem lim-
iting, the observed 3D data can be easily matched to a
stored (or previously learned) model of the environment
at the height of the scan. This allows accurate estimation
of the sensor’s position in the scene (and thus a mobile
vehicle that carries the sensor). Of course, this requires
an environment without overhanging structures that are
not detectable at the scan height. Another common con-
figuration is to mount the sensor high on the vehicle with
the scan plane tilted downwards. In this configuration
the ground in front of the vehicle is progressively scanned
as the vehicle moves forward, thus allowing detection of
potential obstacles.

The Minolta 910 is a small triangulation scanner with
accuracy of about 0.01 mm in a range of up to 2m, for
about 5002 points in 2.5 seconds. It has commonly been
used for small region scanning, such as for inspection
or part modelling, but can also be mounted in a fixed
location to scan a robot workcell. Observation of the
workcell allows a variety of actions, such as inspection of
parts, location of dropped or bin delivered components,
or accurate part position determination.

More examples and details range sensors for robot nav-
igation are presented in Section 22.3.

22.2 Registration

This section introduces techniques for 3D localization of
parts for robot manipulation, self-localization of robot
vehicles and scene understanding for robot navigation.
All of these are based on the ability to register 3D shapes,
e.g. range images to range images, triangulated surfaces
or geometric models. Before we introduce these applica-
tions in Section 22.2.7, we first look at some basic tech-
niques for manipulating 3D data.

22.2.1 3D Feature Representations

There are many representations available for encoding
3D scene structure and model representations, but the
following representations are the ones most commonly
encountered in robotics applications. Some scene mod-
els or descriptions may use more than one of these si-
multaneously to describe different aspects of the scene
or object models.

• 3D Point Sets : This is a set {pi = (Xi, Yi, Zi)}
of 3D points that describe some salient and identifi-
able points in the scene. They might be the centers
of spheres (often used as markers), corners where 3
planes intersect, or the extrema of some protrusion
or indentation on a surface. They may be a sub-
set of an initially acquired 3D full scene point set,
or they might be extracted from a range image, or
they might be computed theoretical points based on
extracted data features.

• Planes: This is a set of planar surfaces observed
in a scene or bounding part or all of an object
model. There are several ways to represent a plane,
but one common representation is by the equation
of the plane ax + by + cz + d = 0 that passes
through corresponding scene or model surface points
{pi = (Xi, Yi, Zi)}. A plane only needs 3 parame-
ters, so there are usually some additional constraints
on the plane representation (a, b, c, d), such as d = 1

or a2 + b2 + c2 = 1. The vector n = (a,b,c)′

a2+b2+c2 is the
surface normal.

A planar surface may only be described by the in-
finite surface as given by the equation, but it may
also include a description of the boundary of the
surface patch. Again there are many possible rep-
resentations for curves, either in 3D or in 2D lying
in the plane of the surface. Convenient represen-
tations for robotics applications are lists of the 3D
points {(Xi, Yi, Zi)} that form the patch boundary,
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or polylines, which represent the boundary by a set
of connected line segments. A polyline can be rep-
resented by the sequence of 3D points {(Xi, Yi, Zi)}
that form the vertices that join the line segments.

• Triangulated Surfaces :

This representation describes an object or scene by
a set of triangular patches. More general polygo-
nal surface patches or even various smooth surface
representations are also used, but triangles are most
commonly used because they are simpler and there
are inexpensive PC graphics cards that display tri-
angles at high speed.

The triangles can be large (e.g. when represent-
ing planar surfaces) or small (e.g. when represent-
ing curved surfaces). The size chosen for the tri-
angles reflects the accuracy desired for represent-
ing the object or scene surfaces. The triangulated
surface might be complete in the sense that all ob-
servable scene or objects surfaces are represented
by triangles, or there might be disconnected surface
patches with or without internal holes. For grasp-
ing or navigation, you don’t want any unrepresented
scene surface to lie in front of the represented por-
tion of the surface where a gripper or vehicle might
collide with it. Hence, we assume that the triangu-
lation algorithms produce patch sets that, if com-
pletely connected at the edges, implicitly bound all
real scene surfaces. Figure 22.11 shows an example
of a triangulated surface over the original underlying
smooth surface.

There are many slightly different schemes for repre-
senting the triangles [25], but the main features are
a list {vi = (Xi, Yi, Zi)} indexed by i of the 3D ver-
tices at the corners of the triangles, and a list of the
triangles {tn = (in, jn, kn)} specifying the indices of
the corner vertices.

From the triangular surface patches, one can com-
pute potential grasping positions, potential naviga-
ble surfaces or obstacles, or match observed surface
shapes to previously stored shapes.

• 3D lines: The 3D lines where planar surfaces meet
are features that can be easily detected by both
stereo and range sensors. These features occur
commonly in built environments (e.g. where walls,
floors, ceilings and doorways meet, around the edges
of wall structures like notice boards, at the edges of
office and warehouse furniture, etc.). They are also
common on manmade objects. In the case of stereo,

Figure 22.11: Triangulated surface (Thanks to T.
Breckon).

changes of surface shape or coloring are detected as
edges, which can be matched in the stereo process to
directly produce the 3D edge. In the case of a range
sensor, planar surfaces can be easily extracted from
the range data (see next section) and adjacent pla-
nar surfaces can be intersected to give the edges.

The most straightforward representation for 3D
lines is the set of points x = p + λv for all λ, where
v is a unit vector. This has 5 degrees of freedom;
more complex representations e.g. with 4 degrees of
freedom exist [31].

• Voxels

The voxel (volume pixel) approach represents the
3D world by 3D boxes/cells that indicate where
there is scene structure and where there is free space.
The simplest representation is a 3D binary array,
encoded as 1 for having structure and 0 for free
space. This can be quite memory intensive, and
also requires a lot of computation to check many
voxels for content. A more complex but more com-
pact representation is the hierarchical representa-
tion called the octree [25]. This divides the en-
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tire (bounded) rectangular space into 8 rectangular
subspaces called octants (see Figure 22.12). A tree
data structure encodes the content of each octant as
empty, full or mixed. Mixed octants are then sub-
divided into 8 smaller rectangular octants, encoded
as subtrees of the larger tree. Subdivision contin-
ues until some minimum octant size is reached. De-
termining whether a voxel is empty, full or mixed
depends on the sensor used, however, if no 3D data
points are located in the volume of a voxel, then it is
likely to be empty. Similarly, if many 3D points are
present, then the voxel is likely to be full. The re-
maining voxels can be considered to be mixed. More
details of a voxelization algorithm can be found in
[17].

}
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Figure 22.12: Recursive space decomposition and a por-
tion of the corresponding octree.

For the purpose of robot navigation, localization or
grasping, only the surface and free space voxels need
to be marked accurately. The interior of objects and
scene structure are largely irrelevant.

22.2.2 3D Feature Extraction

Three types of structured 3D features are of particular
interest for robot applications: straight lines, planes, tri-
angulated surfaces. How these are extracted from range
datasets is summarized here:

• Planes: Planes are generally found by some region
growing process, based on a seed patch. When the
scene largely consists of planes, a particularly simple
approach is based on selecting a previously unused
point and the set of points {vi = (Xi, Yi, Zi)} in its
neighborhood. A plane is fit to these points using a
least square method: Create a 4×N matrix D of the
N points in the set, each point augmented with a 1.
Call these extended points {vi}. As each point lies

in the same plane ax+by+cz+d = 0, we can easily
estimate the plane parameter vector p = (a, b, c, d)′

by the following. We know that a perfect plane fit
to perfect data would satisfy Dp = 0 . Since there is
noise, we instead create the error vector e = Dp and
find the vector p that minimizes its length (squared)
e · e = p′D ′Dp. This vector is the eigenvector with
the smallest eigenvalue of the matrix D ′D . This ini-
tial hypothesized plane then needs to be tested for
reasonableness by 1) examining the smallest eigen-
value - it should be small and on the order of the
square of the expected noise level and 2) ensuring
that most of the 3D points in the fitted set lie on
the plane (i.e. | vi · p |< τ).

Larger planar regions are “grown” by locating new
adjacent points vi that lie on the plane (i.e. | vi ·p |<
τ). When enough of these are found, the parameters
p of the plane are re-estimated. Points on the de-
tected plane are removed and the process is repeated
with a new seed patch. This process continues until
no more points can be added. More complete de-
scriptions of planar feature extraction can be found
in [34].

When the planes are more sparsely found in the
scene, then another approach is the RANSAC fea-
ture detection algorithm [21]. When adapted for
plane finding, this algorithm selects three 3D points
at random (although exploiting some locality to the
point selection algorithm can improve the efficiency
of the algorithm). These three points determine a
plane with parameter vector p. Test all points {v} in
the set for belonging to the plane (i.e. | vi · p |< τ).
If enough points are close to the plane, then poten-
tially a plane has been found. These points should
also be processed to find a connected set, from which
a more accurate set of plane parameters can be esti-
mated using the least-square algorithm given above.
If a planar patch is successfully found, the points
that lie in that plane are removed from the dataset.
The random selection of three points then contin-
ues until no more planes are found (a bound on how
many tries to make can be estimated).

• Straight lines:

While straight lines are common in man-made
scenes, direct extraction from 3D datasets is not
easy. The main source of the difficulty is 3D sen-
sors often do not acquire good responses at edges of
surfaces: 1) the sensor beam will be sampling from
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two different surfaces and 2) laser based sensors pro-
duce somewhat unpredictable effects. For this rea-
son, most 3D line detection algorithms are indirect,
whereby planes are first detected, e.g. using the
method of the previous section, and then adjacent
planes are intersected. Adjacency can be tested by
finding paths of connected pixels that lead from one
plane to the other. If planes 1 and 2 contains points
p1 and p2 and have surface normals n1 and n2 re-
spectively, then the resulting intersection line has
equation x = a + λd where a is a point on the line
and d = n1×n2

||n1×n2||
is the line direction. There are

an infinite number of possible points a, which can
be found by solving the equations a ′n1 = p′

1n1 and
a ′n2 = p′

2n2. A reasonable third constraint that ob-
tains a point near to p2 is the equation a ′d = p′

2d .
This gives us an infinite line. Most practical appli-
cations require a finite segment. The endpoints can
be estimated by 1) finding the points on the line that
lie close to observed points in both planes and then
2) finding the two extremes of those points. On the
other hand, finding straight 3D lines can be easier
with a stereo sensor, as these result from matching
2 straight 2D image lines.

• Triangulated surfaces:

The goal of the process is to estimate a triangulated
mesh from a set of 3D data points. If the points
are sampled on a regular grid (e.g. from a 2 1

2D
range image), then the triangles can be formed nat-
urally from the sampling (see Figure 22.13). If the
points are part of a 3D point set, then triangulation
is harder. We do not give details here because of the
complexity of this task, but some of the issues that
have to be considered are: 1) how to find a surface
that lies close to all data points (as it is unlikely to
actually pass through all because of noise), 2) how
to avoid holes and wild triangles in the mesh, 3)
how to choose the threshold of closeness so that only
one surface passes through sections of point cloud,
4) how to choose the triangle size, 5) what to do
about outlying points and 6) how to maintain ob-
servable scene features, like surface edges. Popular
early approaches for triangulation are the marching
cube and triangle [35, 33] algorithms. These algo-
rithms can give meshes with many triangles. The
triangle size and thus the computational complexity
of using the mesh can be reduced by mesh decima-
tion, for which many algorithms exist [36, 65].

Figure 22.13: Triangulation of a regular grid of points.

22.2.3 Model Matching and Multiple-

View Registration

Model matching is the process of matching some stored
representation to some observed data. In the case dis-
cussed here, we assume that both are 3D representations.
Furthermore, we assume that the representations being
matched are both of the same type, e.g. 3D model and
scene lines). (While different types of data can also be
matched, we ignore these more specialized algorithms
here.)

A special case of matching is when the two structures
being matched are both scene or model surfaces. This
commonly occurs when attempting to produce a larger
representation of the scene by fusing multiple partial
views of the scene. These partial views can be acquired
as a mobile vehicle navigates around the scene, observ-
ing it from different places. The SLAM algorithm [70]
(discussed in Chapter 37) is a mobile robotics algorithm
for Simultaneous Localization And Mapping, which in-
crementally fuses newly observed scene structure to its
growing scene map model, while also matching portions
of that newly observed data to previously observed data
to estimate its current location. One SLAM project [49]
used SIFT feature points for 3D modelling and map con-
struction.

The algorithm used for matching depends on the com-
plexity the structures being matched. If the structures
being matched are extended geometric entities such as
planes or 3D lines, then a discrete matching algorithm
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like the Interpretation Tree algorithm [27] can be used.
Alternatively, if the structures are low-level, such as 3D
points or triangles, then a point set alignment algorithm
like the Iterated Closest Point (ICP) algorithm [11] can
be used. Both of these are described in more detail be-
low.

After structures have been matched, then most com-
mon next step is to estimate the transformation (rota-
tion plus translation) linking the two datasets. This pro-
cess is described in the next section. With the transfor-
mation, we can then transform the data into the same
coordinate system and fuse (combine) the datasets. If
the structures being fused are points, then the result is
a larger point set formed from the combination of the
two (or more) original datasets. Sets of planes and lines
can also be simply added together, subject to represent-
ing the matched members of the two datasets only once.
Triangulated surfaces require a more complex merging,
in that we require a topologically correct triangulated
mesh to be the result. The zippering algorithm [73] is a
well-known triangulated mesh merging algorithm.

The Interpretation Tree algorithm [27] is suitable for
matching small numbers (e.g. less than about 20-30) dis-
crete objects, such as vertical edges seen in 2D or 3D. If
there are M model and D data objects, then potentially
there are MD different matches. The key to efficient
matching is to identify pairwise constraints that elimi-
nate unsuitable matches. Constraints between pairs of
model features and pairs of data features also greatly
reduce the matching space. If the constraints eliminate
enough features, a polynomial time algorithm results.
The core of the algorithm is defined as follows. Let {mi}
and {dj} be the sets po model and data features to be
matched, u(mi, dj) is true if mi and dj are compati-
ble features, b(mi,mj , dk, dl) is true if the four model
and data features are compatible and T is the minimum
number of matched features before a successful match is
declared. Pairs is the set of successfully matched fea-
tures. The function truesizeof counts the number of
actual matches in the set, disregarding matches with the
wildcard * which matches anything.

pairs=it(0,{})

if truesizeof(pairs) >= T, then success

function pairs=it(level,inpairs)

if level >= T, then return inpairs

if M-level+truesizeof(inpairs) < T

then return {} % can never succeed

for each d_i % loopD start

if not u(m_level,d_i), then continue loopD

for each (m_k,d_l) in inpairs

if not b(m_level,m_k,d_i,d_l)

then continue loopD

endfor

% have found a successful new pair to add

pairs = it(level+1,

union(inpairs,(m_level,d_i)))

if truesizeof(pairs) >= T, then return

endfor % loopD end

% no success, so try wildcard

it(level+1,union(inpairs,(m_level,*)))

When the data being matched are sets of points or tri-
angles, then the ICP algorithm [11] is more commonly
used. This algorithm estimates the pose transformation
that aligns the two sets to a minimum distance. With
this transformation, then the two sets can be represented
in the same coordinate system and treated as a larger sin-
gle set (perhaps with some merging of overlapping data).

Here we give the algorithm for point matching, but this
can be easily adapted for other sets of features. This al-
gorithm is iterative, so may not always converge quickly,
but often several iterations is sufficient. However, ICP
can produce a bad alignment of the data sets. Best re-
sults arise with a good initial alignment, such as from
odometry or previous positions. The ICP algorithm can
be extended to include other properties when matching,
such as color or local neighborhood structure. A good
spatial indexing algorithm (e.g. k-d trees) is necessary
for efficient matching in the closest point function (CP)
below.

Let S be a set of Ns points {s1, . . . , sNs
} and M be the

model. Let || s −m || be the Euclidean distance between
point s ∈ S and m ∈ M. Let CP(s,M) be the closest
point (Euclidean distance) in M to the scene point s.

1. Let T [0] be an initial estimate of the rigid transfor-
mation aligning the two sets.

2. Repeat for k = 1..kmax or until convergence:

(a) Compute the set of correspondences C =
⋃Ns

i=1{(si, CP (T [k−1](si),M))}.

(b) Compute the new Euclidean transformation
T [k] that minimizes the mean square error be-
tween point pairs in C.
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22.2.4 Maximum Likelihood Registra-

tion

One popular technique for range scan matching, espe-
cially in the 2D case, uses maximum likelihood as the
criterion for match goodness. This technique also takes
into account a probabilistic model of the range readings.
Let r be a range reading of a sensor scan at position s,
and r̄ the distance to the nearest object along the path
of r (which depends on s). Then a model of the sensor
reading is the probability p(r|r̄). Typically the model
has a gaussian shape around the correct range, with an
earlier false-positive region and a missed reading region
at the end (see Figure 22.14).

Figure 22.14: Probability profile p(r|r̄) for a laser sensor
reading. The gaussian peak occurs at the distance r̄ of
the obstacle.

A scan is matched when its position produces a max-
imum likelihood result for all the readings, based on a
reference scan. Assuming independence of the readings,
from Bayes’ rule we get:

maxsp(s|r) = maxs

∏

i

p(ri|r̄i).

The maximum likelihood scan location can be found
by hill-climbing or exhaustive search from a good start-
ing point. Figure 22.15 shows the results of maximum
likelihood for aligning a scan against several reference
scans. In this 2D case, the reference scans are put into
an occupancy grid for computing r̄ [29]. A widespread
modification for efficiency is to compute r̄ by a smearing
operation on the occupancy grid, ignoring line-of-sight
information [42]. In the 3D case, trianglulated surfaces
are more appropriate than voxels [28].

Figure 22.15: Scan match by maximum likelihood
against several reference scans in an occupancy grid.

22.2.5 Multiple Scan Registration

In the previous subsection, multiple reference scans could
be used to form an occupancy grid or surface triangles
for matching. In general, scan matching between sets of
scans produces a network of constraints among the scans,
for example, in going around a loop, successive scans
form a chain of constraints, and the first and last scans
form a closed loop of constraints. Globally consistent
registration of scans is a part of SLAM (Chapter 37).

If the individual constraints have covariance estimates,
then maximum likelihood techniques can be used to find
a globally consistent estimate for all the scans [53]. This
global registration is among the scan poses, and doesn’t
involve the scans themselves - all information has been
abstracted to constraints among the poses. Let s̄ij be the
scan-matched pose difference between scans si and sj ,
with covariance Γij . The maximum likelihood estimate
for all s is given by the nonlinear least-squares system

min
s

∑

ij

(sij − s̄ij)
T Γij(sij − s̄ij), (22.8)

which can be solved efficiently using iterative least
squares techniques, e.g., Levenberg-Marquadt or conju-
gate gradient methods [43, 38].

A complication is that the system of constraints is cal-
culated based on an initial set of poses s. Given a re-
positioning of s from (22.8), redoing the scan matching
will give a different set of constraints, in general. It-
erating the registration process with new constraints is
not guaranteed to lead to a global minimum; in practice,
with a good initial estimate, convergence is often rapid
and robust.

22.2.6 Relative Pose Estimation

Central to many tasks is the estimation of the coordinate
system relative position or pose transformation between
two coordinate systems. For example, this might be the
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pose of a scanner mounted on a mobile vehicle relative
to scene landmarks. Or, it might be the relative pose of
some scene features as observed in two views taken from
different positions.

We present here three algorithms that cover most
instances of the pose estimation process, which differ
slightly based on the type of feature being matched.

Point set relative pose estimation

The first algorithm matches point sets. Assume that
N 3D points {mi} in one structure or coordinate sys-
tem are matched to points {di} in a different coordinate
system. The matching might be found as part of the
alignment process in the ICP algorithm just described
or they might be observed triangle vertices matched to
a previously constructed triangulated scene model, for
example. The desired pose is the rotation matrix R and
translation vector t that minimizes

∑

i || Rmi +t−di ||2.
Compute the mean vectors µm and µd of the two sets.
Compute the centralized point sets by ai = mi − µm

and bi = di − µd. Construct the 3 × N matrix A that
consists of the vectors {ai} stacked up. Construct the
3×N matrices B in a similar way from the vectors {bi}.
Compute the singular value decomposition svd(BA′) =
U ′DV ′ [4]. Compute the rotation matrix1 R = V U ′.
Finally, compute the translation vector t = µd − Rµm.
With these least square estimates of the transformation,
a point mi transforms to point Rmi + t , which should be
near to point di.

Straight line relative pose estimation

If 3D lines are the features that are extracted, then the
relative pose transformation can be estimated as follows.
Assume N paired lines. The first set of lines is described
by direction vectors {ei} and a point on each line {ai}.
The second set of lines is described by direction vectors
{fi} and a point on each line {bi}. In this algorithm, we
assume that the direction vectors on the matched seg-
ments always point the same direction (i.e. are not in-
verted). This can be achieved by exploiting some scene
constraints, or trying all combinations and eliminating
inconsistent solutions. The points ai and bi need not
correspond to the same point after alignment. The de-
sired rotation matrix R minimizes

∑

i || Rei − fi ||2.
Construct the 3×N matrices E that consists of the vec-
tors {ei} stacked up. Construct the 3×N matrices F in

1If the data points are nearly planar then this calculation can
introduce a mirror image transformation. This can be checked with
the vector triple product and, if mirrored, the diagonal correction
matrix C(1,1,-1) can be used in R = VCU ′.

a similar way from the vectors {fi}. Compute the singu-
lar value decomposition svd(FE ′) = U ′DV ′. Compute
the rotation matrix1 R = V U ′. The translation esti-
mate t minimizes the sum of the square of the distances
λi between the rotated points ai and corresponding line
(fi, bi). Define matrix L =

∑

i(I − fif
′
i )′(I − fif

′
i ). Define

the vector n =
∑

i(I − fif
′
i )′(I − fif

′
i )(Rai − bi). Then

the translation is t = −L−1n.

Plane relative pose estimation

Finally, if planes are the 3D features extracted for
matching, then the relative pose transformation can be
estimated as follows. Assume N paired planes. The
first set of planes is described by surface normals {ei}
and a point on each plane {ai}. The second set of
planes is described by surface normals {fi} and a point
on each plane {bi}. Here we assume that the surface
normals always point outward from the surface. The
points ai and bi need not correspond to the same point
after alignment. The desired rotation matrix R mini-
mizes

∑

i || Rei − fi ||2. Construct the 3 × N matrices
E that consists of the vectors {ei} stacked up. Con-
struct the 3 × N matrices F in a similar way from the
vectors {fi}. Compute the singular value decomposition
svd(FE ′) = U ′DV ′.[4] Compute the rotation matrix1 R

= V U ′. The translation estimate t minimizes the sum of
the square of the distances λi between the rotated point
ai and the corresponding plane (fi, bi). Define matrix
L =

∑

i fif
′
i . Define the vector n =

∑

i fif
′
i (Rai − bi).

Then the translation is t = −L−1n.

In all of the calculations described above, we assumed
normally distributed errors. For techniques to robustify
these sorts of calculations, see Zhang [79].

22.2.7 3D Applications

This section links the techniques presented above to
the robotics applications of 3D localization of parts
for robot manipulation, self-localization of robot vehi-
cles and scene understanding for robot navigation. The
robotics tasks mentioned here are discussed in more de-
tail in other chapters in the series. While this chapter fo-
cusses on robotics applications, there are many other 3D
sensing applications. An area of much current research is
that of acquiring 3D models, particularly for reverse en-
gineering of mechanical parts [9], historical artifacts [48],
buildings [67] and people for computer games and movies
(see, e.g., Cyberware’s Whole Body X 3D Scanner).

The key tasks in robot manipulation are: (1) iden-
tification of grasping points (see Chapters 27 and 28),
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(2) identification of a collision free grasp (see Chapters
27 and 28), (3) recognition of parts to be manipulated
(see Chapter 23) and (4) position estimation of parts for
manipulation (see Chapters 23 and 42).

The key tasks in robot navigation and self-localization
are: (5) identification of a navigable groundplane (see
Section 22.3), (6) identification of a collision free path
(see Chapter 35), (7) identification of landmarks (see
Chapter 36) and (8) estimation of vehicle location (see
Chapter 40).

The mobile and assembly robotics tasks link together
rather naturally. Tasks 1 & 5 have a connection, when we
consider these tasks in the context of unknown parts or
paths. Part grasping requires finding regions on a part
that are graspable, which usually means locally planar
patches that are large enough that a gripper can make
good contact with them. Similarly, navigation usually
requires smooth ground regions that are large enough for
the vehicle - again locally planar patches. Both tasks are
commonly based on triangulated scene methods to rep-
resent the data, from which connected regions of nearly
coplanar patches can be extracted. The main difference
between these two tasks is the groundplane detection
task is looking for a larger patch, that must be on the
“ground” and upward facing.

Tasks 2 & 6 require a method of representing empty
space along the proposed trajectory of the gripper con-
tacts or the vehicle. The voxel representation is good for
this task.

Tasks 3 & 7 are model matching tasks and can use the
methods of Section 22.2.3 to match observed scene fea-
tures to prestored models of known parts or scene loca-
tions. Commonly used features are large planar surfaces,
3D edges and 3D feature points.

Tasks 4 & 8 are pose estimation tasks and can use
the methods of Section 22.2.6 to estimate the pose of
the object relative to the sensor or vehicle (i.e. sensor)
relative to the scene. Again, commonly used features are
large planar surfaces, 3D edges and 3D feature points.

22.3 Navigation and Terrain

Classification

One of the more compelling uses for range data is for
navigation of mobile robot vehicles. Range data pro-
vides information about obstacles and free space for the
vehicle, in a direct geometric form. Because of the real-
time constraints of navigation, it is often impractical to
reconstruct a full 3D model of the terrain using the tech-

niques presented in this Chapter. Instead, most systems
use an elevation model. An elevation model is a tesse-
lated 2D representation of space, where at each cell there
is information about the distribution of 3D points in the
cell. In its simplest incarnation, the elevation map just
contains the mean height of range points above the nom-
inal ground plane (Figure 22.16). This representation is
sufficient for some indoor and urban environments; more
sophisticated versions that determine a local plane, scat-
ter of points in the cell, etc., are useful for more com-
plicated off-road driving. Elevation maps marked with
obstacles have obvious utility for planning a collision-free
path for the vehicle.

Figure 22.16: Elevation map in urban terrain. Each cell
holds the height of the terrain at that point. More ex-
tensive features can also be incorporated: slope, point
variance, etc.

22.3.1 Indoor Reconstruction

SLAM algorithms (Chapter 37) using 2D laser rangefind-
ers can reconstruct floor plans with centimeter precision.
Some research has extended this work to 3D reconstruc-
tion, using 2D lasers that are swept along as the robot
moves [69]. The resultant point cloud is typically regis-
tered using the pose of the robot as corrected by the 2D
SLAM algorithm, rather than any of the 3D registration
techniques covered in this chapter, because the laser is
swept using robot motion.

The raw points can be presented as a 3D image, or
triangulated to give a planar or mesh reconstruction
of indoor surfaces. The latter is especially compelling
when camera images are texture-mapped onto the sur-
faces, creating a realistic 3D model. Figure 22.17 shows
some results from indoor mapping using this technique.
Smoothing of surface facets can be used to recover planar
surfaces [50].
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Figure 22.17: 3D indoor map from a swept vertical plane
LADAR. Registration is from a horizontal LADAR using
SLAM algorithms.

22.3.2 Urban Navigation

In urban navigation, the environment is structured, with
roads, buildings, sidewalks, and also moving objects -
people and other vehicles. There are two main chal-
lenges: how to register laser scans from a fast-moving
vehicle for consistent mapping, and how to detect moving
objects using range scans (of course, other methods are
also used for detecting moving objects, e.g., appearance-
based vision).

Outdoor vehicles can use precision GPS, inertial mea-
surement units, and wheel odometry to keep track of
their position and orientation, typically with an extended
Kalman filter. This method is good enough to obviate
the need for precise registration matching among scans,
as long as the motion model of the vehicle, and tim-
ing from the range scanner, is used to place each scan
reading in its proper position in the world model. This
method also works in relatively easy off-road terrain such
as in the DARPA Grand Challenge [18]. In all cases, the
reduction of pose estimation error is critical for good
performance [71].

Once scan readings are registered using the vehicle
pose estimation, they can be put into an elevation map,
and obstacles detected using the slope and vertical extent
of the range readings in the cells of the map. A compli-
cation is that there may be multiple levels of elevation
in an urban setting, for example, an overpass would not

be an obstacle if it were high enough. One proposal
is to use multiple elevation clusters within each cell; this
technique is called a multi-level surface map (MLS, [72]).
Each cell in the map stores a set of surfaces represented
by a mean height and variance. Figure 22.18 shows an
MLS with a cell size of 10cm2, with ground plane and
obstacles marked.

Figure 22.18: Elevation map of an urban scene, using
10cm x 10cm cells. Obstacles in red, ground plane in
green.

For dynamic objects, realtime stereo at 15 to 30 Hz
can capture the motion of the objects. When the stereo
rig is fixed, range background subtraction isolates just
the moving objects [19]. When the rig is on a moving
vehicle, the problem is more difficult, since the whole
scene is moving with respect to the rig. It can be solved
by estimating the motion of the rig with respect to the
dominant rigid background of the scene. Let R, t be the
motion of the rig between two frames, estimated by ex-
tracting features and matching them across the two tem-
poral frames, using the techniques of Chapter 37. The
homography H(R, t) of Equation 22.6 provides a direct
projection of the disparity vectors p0 = [x0, y0, d0, 1] of
the first frame to their correspondences H(R, t)p0 under
R, t in the second frame. Using the homography allows
the points in the reference frame to be directly projected
onto the next frame, without translating to 3D points.
Figure 22.19 shows the projected pixels under rigid mo-
tion from a reference scene. The difference between the
projected and actual pixels gives the independently mov-
ing objects (from [2]).
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Figure 22.19: Independent motion detection from a moving platform. Reference image on left is forward-projected
using the motion homography to the center image; right image is difference with actual image.

22.3.3 Rough Terrain

Rough outdoor terrain presents to challenges:

• There may be no extensive ground plane to charac-
terize driveability and obstacles.

• Vegetation that is pliable and driveable may appear
as an obstacle in range images.

Figure 22.20 shows a typical outdoor scene, with a
small (1 meter) robot driving through vegetation and
rough ground [44]. Range data from stereo vision on the
robot will see the top of the vegetation and some ground
points below. The elevation model can be extended to
look at point statistics within each cell, to capture the
notion of a local ground plane and penetrability related
to vegetation. In [30], for example, the set of proposed
features includes:

• Major plane slope using a robust fit (Section 22.2.2).

• Height difference of max and min heights.

• Points above the major plane.

• Density: ratio of points in the cell to rays that pass
through the cell.

The density feature is interesting (and expensive to com-
pute), and attempts to characterize vegetation such a
grass or bushes, by looking at whether range readings
penetrate an elevation cell. The idea of using vegeta-
tion permeability to range readings has been discussed
in several other projects on off-road driving [54, 45, 39].

Elevation map cells can be characterized as obsta-
cles or driveable through learning or hand-built classi-
fiers. Among the learning techniques are neural nets

Figure 22.20: Rough terrain, no ground plane, driveable
vegatation.

[30] and Gaussian mixture models with expectation-
maximization learning [46]. The latter work also in-
cludes a lower level of interpretation, classifying surfaces
into planar patches (ground plane, solid obstacles), linear
features (telephone wires), and scattered features (veg-
etation). Figure 22.21 shows some results from a laser-
scanned outdoor scene. Linear features such as telephone
wires and the telephone pole are accurately determined,
as well as vegetation with high penetrability.

Some additional problems occur in rough-terrain navi-
gation. For planar laser rangefinders that are swept over
the terrain by vehicle motion, the precision of vehicle
pose estimation is important for accurate reconstruction.
Attitude errors of less than 0.5o can cause false positives
in obstacle detection, especially for sweeps far ahead of
the vehicle. In [71], this problem is solved by looking at
the time of each laser reading, and noting a correlation
between height errors and time difference in the readings.
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Figure 22.21: Classification using point statistics, from
[46]. Red is planar surface, blue is thin linear surface,
green is scattered penetrable surface.

Negative obstacles (ditches and cliffs) are difficult to
detect with range information, because the sensor may
not see the bottom of the obstacle. This is especially
true for vehicle-mounted sensors that are not very high
off the ground, and that are looking far ahead. Negative
obstacles can be infered when there is a gap in the ground
plane, and a plane slanted upwards at the back edge of
the gap. Such artifacts can be efficiently found using
column search on the disparity image [8].

22.4 Conclusions and Further

Reading

Range sensing is an active and expanding field of research
in robotics. The presence of new types of devices - flash
ladars, multi-beam ladars, on-camera stereo processing
- and the continuing development of robust algorithms
for object reconstruction, localization and mapping has
helped to bring applications out of the laboratory and
into the real world. Indoor navigation with ladars is
already being exploited in commercial products (see, for
example, [37]). As the basic capabilities become more
robust, researchers are looking to perform useful tasks,
such as fetching items or doing dishes [66].

Another set of challenges are found in less benign en-
vironments, such as urban and off-road driving (DARPA
Grand Challenge and Urban Challenge [18]). Stereo vi-
sion and laser rangefinding also will play a role in help-
ing to provide autonomy for a new generation of more-
capable robotic platforms that rely on walking for lo-
comotion [60]. The challenges are dealing with motion

that is less smooth than wheeled platforms, environ-
ments that contain dynamic obstacles, and task-oriented
recognition of objects.
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