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Abstract

Timely information about the necessity of thinning in the forest is vital for forest man-
agement to maintain a healthy forest while maximizing income. Currently, very high spatial
resolution remote sensing data can provide crucial assistance for the experts to evaluate the
maturity of thinnings. Yet, this task is still predominantly determined in the field and de-
mands extensive resources. This paper presents a deep convolutional neural network (DCNN)
to detect the necessity and urgency of thinnings by using only remote sensing data. The
approach uses very high spatial resolution RGB and near-infrared orthophotos, canopy height
model (CHM), digital terrain model (DTM), slope and the reference data, in this case from
spruce dominated forests in the Austrian Alps. After tuning, the model achieves a test set
F1 score of 82.23%, which is practically usable. We conclude that DCNNs are capable of
detecting the need for thinning in forests. In contrast, attempts of assessing the urgency of
thinnings with DCNNs proved to be unsuccessful. However, additional data such as age or
yield class has the potential of improving the results. Investigation of the influence of the
individual input features showed that orthophotos appear to contain the most relevant infor-
mation for detecting the demand for thinning. Moreover, we observe a gain in performance
by adding CHM and slope, whereas adding the DTM harms the model’s performance.
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1 Introduction

Maintaining a healthy, stable forest to produce valuable wood requires fostering the forest. An
essential technique to accomplish this is a silvicultural operation called thinning [12]. The main
objective of thinning is to regulate the vertical space of trees, thus steering the allocation of the
available resources (e.g. sunlight, water, nutrients) into the stems of remaining higher quality
trees [48]. Although the primary objective of thinning is to prepare the forest stand for the final
harvest, it also provides forest owners with the opportunity of obtaining additional income by
selling the removed trees [43, 58, 31, 55].

Determining if a forest stand needs thinning is a complex task since it depends on many
factors such as soil quality, age and tree species composition [37]. This assessment makes assessing
a forest stand for the necessity of thinning a non-trivial task, and this is why the job is still mainly
conducted by specialized forest personnel. Sending personnel into the field is often very expensive.
Hence, thinning assessment is either not done at all, like in the case of small forest owners or done
at long time intervals. Long time intervals might be sufficient for slowly growing sites, however
vital areas with high mean annual increment are often overlooked, which results in a sub-optimal
timing of thinning in these stands.

Recently, the proliferation in the amount and enhancement in the quality of remote sensing
data has raised the possibility of providing uniform and detailed aerial information over large
areas [17]. Furthermore, with the advances in sensor technology as well as computing power,
the interest in applying algorithms for automated extraction of forest parameters from remotely
sensed spectral information has increased [44]. Aerial forestry data coupled with recent increases
in computing power allows machine learning (ML) algorithms to be deployed, such as for change
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detection in forests [32, 66], classifying tree species [4, 14, 34, 3] or estimating the standing volume
[20, 6, 15].

Despite the high importance of timely planning of forest operations, few studies have been
conducted to predict the necessity of thinning from remote sensing data. Just two known studies
addressed the challenge. First, [33] tried to predict forest operations at the stand-level by using
Landsat-TM satellite imagery with moderate success. Then [63] employed ALS data-derived
features to predict the thinning maturity at the stand-level. This study showed much better
results, with classification accuracy ranging from 79% to 83% for predicting the timing of the
subsequent thinning. Another approach to predict the necessity of thinning is to utilize key forest
parameters acquired through remote sensing together with additional inventory data to create
statistical models [19]. Nevertheless, ALS data is still expensive to obtain, and just a few
countries acquire it systematically.

To extract information about the necessity of thinnings from widespread areal images, we use
semantic segmentation, as it was successfully used for many remote sensing tasks [40]. Semantic
segmentation is a computer vision task where the algorithm labels each pixel or patch of an
image to a predefined range of classes. Accelerated by the first end-to-end fully convolutional
network (FCN) [42], the utilization of end-to-end DCNNs for the task of semantic segmentation
increased greatly. Since then, many different architectures were proposed and adapted to remote
sensing applications [64, 67, 13]. The main advantage of using DCNNs for semantic segmentation
is their effectiveness in extracting complex features from wide receptive fields. Nonetheless, this
capability comes with the price of not being able to maintain high spatial resolution and results
in inaccurate and blurred boundaries between the classes. To counteract this, newer DCNNs
use more pronounced/distinct encoder-decoder architectures with skip connections. For example,
UNet applies such skip connections in its symmetrical encoder-decoder architecture [52], where
the features extracted in the encoder are directly coupled to the corresponding decoder layers.
The outstanding performance results, together with the simplicity of the architecture, ensured the
wide adoption in the remote sensing research community for a variety of applications such as ship
detection [28], road extraction [11] and land cover classification [60].

To obtain models that can learn more complex input representations, deeper DCNNs with more
stacked layers were created. However, these deeper DCNNs often resulted in worse-performing
models than the more shallow predecessors due to the degradation problem [21]. This issue was
resolved by Deep residual networks (e.g. ResNet) that employed residual blocks, which added an
identity shortcut connection and overcame the degradation problem [24]. Further development
of the DCNNs resulted in the creation of a network architecture called DenseNet, which utilizes
dense blocks that introduce direct connections from any layer to all subsequent layers to improve
further the information flow between layers [30]. [36] adopted the DenseNet connection structure
for semantic segmentation by applying dense blocks to the UNet like symmetric encoder-decoder
structure. This merge resulted in a DCNN called FC-DenseNet that needs fewer parameters while
performing better on various semantic segmentation challenges.

Another compelling approach to resolve the trade-off between high context extraction with
heavy downsampling and accurate boundary prediction is the use of dilated or atrous convolu-
tions. Atrous convolutions contribute with a convolution filter that is spaced apart, thus attaining
a wider field of view while retaining its spatial dimension. [8] proposed a DCNN architecture
called DeepLabv1 that incorporates the atrous convolutions in a VGG-16 architecture to address
the trade-off between high context extraction with heavy downsampling. After several revisions of
this architecture that included, among other things, a Spatial Pyramidal Pooling that was intro-
duced in SPPNet [23] and adopted by [9] to create the Atrous Spatial Pyramid Pooling (ASPP)
in DeepLabv2. The current network architecture DeepLabv3+ [10], provides some of the best
results in semantic segmentation challenges. Furthermore, its use in remote sensing applications
is auspicious. For example, [41] showed the network’s excellent performance in classifying marsh
vegetation in China. Accordingly, DeepLabv3+ is the network used in Section 3.2 to classify tree
thinning regions.

Nevertheless, little research has been done to detect the necessity of thinning solely with remote
sensing data. This paper presents a model capable of achieving this task.
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In this study, we tested a deep learning approach to determine if remote sensing data alone
could be used to detect the need for thinning. The two factors investigated were whether the
approach could:

1. Detect if thinning is needed, based on deep convolutional neural networks (DCNNs) trained
on very high spatial resolution imagery, and

2. Differentiate between thinnings with different urgencies (i.e. timescales).

An accurate prediction of thinnings from remote sensing data has the potential of delivering
information for vast or remote forest areas promptly and thus improving the stability and wood
quality of forests.

2 Previous Research and Background

This section provides background information related to detecting the necessity of thinnings with
the help of remote sensing. First, we introduce thinning, its effect on the forest stand, and its
impact on the timber quality. After that, we show the current state of remote sensing in forestry
on its most important research questions. Finally, we overview the current state of the art on
image change analysis techniques and its application in remote sensing.

2.1 Thinning

Thinning can be seen as the primary steering technique in preparation for the final harvest.
Although many types of thinning have emerged through the history of forestry, the main objective
of all of them is to remove some trees to accelerate the growth in the remaining future crop trees.
Notably, this enables the remaining trees to allocate the newly available resources mainly into
their basal stem [48, 26], which is economically the most valuable part of the tree.

Furthermore, by applying selective thinning, hence selecting the most promising future crop
trees, log quality can be significantly enhanced [59, 45]. Thus, thinning provides an opportunity
to increase the amount of good quality timber in the final harvest while producing additional
income from the sale of the removed trees. Since the main objective of many forest owners is to
maximize the net present value of their forest area, thinned stands outperform unmanaged stands
[58, 31, 25].

One of the main concerns of performing thinning is the enhanced risk for damage to the forest
due to high wind or snow. Various studies have shown that right after thinning, a forest stand’s
stability is lower due to the higher roughness of the tree crowns [50]. Although this is true for the
time right after thinning, the risk of injuries decreases with time until no additional risk is present
anymore [50, 46]. Nonetheless, thinning in Norway spruce stands has been recorded to reduce the
h/d ratio of trees (height to diameter ratio) [56]. The h/d ratio is an indicator for the individual
stability of a tree, where low h/d values are equivalent to high tree stability [51, 61, 62]. Thus,
newer research suggests that early heavy thinning might even increase the stability of a stand [54].
Thereby, timeliness is crucial, as delaying thinnings results in a risk increase of damage in the
stands [51, 7].

Optimal thinning schemes differ by the tree species present, any previously applied measures,
and the density of the standing trees. Due to this variation, it is essential to define the type of
thinning that is being used throughout this study. The study area is predominantly stocked with
Norway spruce dominated coniferous forest. [1] and later [25] found that the highest economic
return on investment is produced by selective crown thinning with a selection of target trees for
this typical forest type. The Austrian Federal Forest adopted this thinning type as the standard
thinning scheme and thus, nearly all thinnings are planned as such. Therefore, when we refer to
thinning in this study, it is equivalent to this specific thinning type.

Thinnings of Norway Spruce stands of the Austrian Federal Forest are executed 2-3 times
during a lifetime of a stand, where 1/4 to 1/3 of the actual stocking volume is being harvested
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each time. The first thinning is carried out typically at around 13-19 m top height, followed by
a second thinning at approximately 20-30 m top height, with a third thinning on good-growing
sites. The exact timing of the procedure depends on the density of the standing trees, which is
related to conditions such as the timing of the previous thinning and the growth performance at
the site.

2.2 Remote sensing in forestry

Utilizing remote sensing imagery for extracting information about the forest structure and its
employment in forest planning has been practised since the 1960s [2]. Remote sensing provides
the opportunity to gather uniform information about larger areas otherwise impossible to collect
from field measurements. Automated derivation of crucial information from the forest, such as tree
species classification and wood volume estimation, has long been a goal of researchers in forestry
[38]. Traditionally, collecting information about the forest structure was based on sending experts
into the field as in conventional forest inventories. This process is costly and often not affordable
for small forest owners. With the advances in sensor technology as well as computing power,
the interest in applying algorithms for automated extraction of forest parameters from remotely
sensed spectral information increased [44].

At present, the leading sensing instrument technologies applied for retrieving forestry relevant
metrics are multi-spectral or hyperspectral cameras, light detection and ranging (lidar), and to
a certain extent, Synthetic-aperture radar (SAR) [27]. These instruments can be mounted on
three different platforms, satellite, aircraft and unmanned aerial vehicle (UAV), each giving the
sensing instrument different ranges of spatial resolution. Moreover, sensors mounted on a plane
can support conventional forest inventories and provide helpful information for operational forest
management [47], [38].

Despite the importance of forest operations such as thinning, few studies have tried to create
models that can predict the necessity of thinning directly from remote sensing data [63]. Most
research has been focused on change detection, tree species classification as well as wood volume
estimation. Although substantial progress has been made in all the introduced research questions,
they are far from being solved and still active research subjects.

2.3 Change Analysis in Forest Management

A forest changes continuously, whether through carried out forest operations such as thinning or
clear-cutting or by forest damage caused by heavy winds, fire and other natural disasters. The
man-made changes can be reported and easily updated. However, the changes induced by nature
must be spotted differently. Automatic detection of changes in the forest using aerial imagery
shows promising results in areas where severe changes have happened, such as clear-cutting and
intense storm damage. However, moderate changes such as thinning are much harder to discover
[32]. When using airborne laser scanning (ALS) as the data source to detect changes, [66] were
able to identify the removal of individual trees. Nonetheless, acquiring aerial images or even more
expensive ALS data is often done at considerable intervals. Hence, a more interesting remote
sensing platform for this problem are satellites. Due to their higher temporal resolution, satellites
can provide much more timely data as it is often required in disaster response. In particular, SAR
data can provide data even on overcast days. Although weather conditions influence the signal,
this noise can be filtered, as [49] has demonstrated. Thereby they were able to detect changes in
forest areas greater than 1 ha with Sentinel-1 data.

3 Materials and Methods

3.1 Materials

For training the machine learning model, we used data collected for the Lungau region through
aerial imagery, airborne laser scanning (ALS) as well as data from forest management plans. This
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data was first cleaned and preprocessed before being used as input data for the machine learning
algorithms, resulting in 5 distinct input types as illustrated in Table 1. This section defines
what kind of thinning is used in this study, describes the data and its acquisition, and the data
preprocessing.

3.1.1 Study area

Located in the Lungau region (Tamsweg district), Austria (47°00’ - 47°13’N, 13°23’ - 14°0’E,
UTM/WGS84 projection), the study area is managed by the Austrian Federal Forests (ÖBF AG).
As part of the Central Eastern Alps, the area is mountainous with an altitude range 993 – 1906
m and has a distinct alpine climate with an average annual temperature of 5.2 °C, mean annual
precipitation ranging between 770 – 840 mm and a snow cover minimum of 1 cm on 105 days
per year. The study area illustrated in Figure 1 has an area of 21826.55 ha and is predominantly
covered with forest (63.9% of the area). The forest area is further divided into commercial forest
and protective forest. The commercial forest is managed to maximize the income from timber
production while minimizing the risk of forest damage. In contrast, a protective forest objective
is to protect against avalanches, rockfall, erosion and floods. Although thinnings are planned in
both forest types, thinnings in the protective forest aim to ensure its protective function, whereas
thinnings, as specified in section 2.1, are just planned in a commercial forest. We are merely
interested in the part where commercial thinnings are feasible. Hence we restrict the study area
to the commercial forest. The commercial forest has an extent of 9353.54 ha and is stocked with
mainly coniferous forest. The most frequent tree species are 81.0% Norway spruce (Picea abies,
81.0%) and European larch (Larix decidua, 17.6%). The remaining 1.4% of the area are stocked
with deciduous forest.

3.1.2 Remote sensing and ground truth data acquisition

As shown in Table 1, all data came from three sources and was acquired at three disparate points
in time. Ideally, all data should be acquired simultaneously, but we were limited in this study.

Table 1: Data sources. NIR: near infrared, CHM: Canopy height model, DTM: digital train model,
AI: aerial imagery, ALS: airborne laser scanning, RD: actual thinning reference data, Res.: spatial
resolution, S.E.: standard error and Year: acquisition year. Slope data computed from the DTM

Name Source Format Bands Res. [m] S.E. [m] Year
RGB + NIR AI GeoTIFF 4 0.2 - 2018
CHM AI GeoTIFF 1 1 1 2018
DTM ALS GeoTIFF 1 1 0.15 2013
Slope ALS GeoTIFF 1 1 - 2013
Ground Truth RD Shape 3 - - 2017

The acquisition of the aerial imagery is performed by the States of Austria, where one-third of
Austria is updated every year. All aerial imagery for the study site was recorded on 11.09.2018,
and 12.09.2018 with an UltraCam Eagle Mark 3 431S61680X916102-f100 mounted on a Beechcraft
Super King Air B200 D-IWAW. Four bands were acquired with a spatial resolution of 20 cm, the
three bands for RGB and one band in the near-infrared (NIR) spectrum (Table 1). After the
acquisition, the raw data was geometrically and radiometrically corrected with the corresponding
calibration data of the camera and the four channels were stitched together using the monolithic
stitching method [18]. The second product that was derived from the aerial photos is the canopy
height model (CHM). To obtain the CHM, first, the digital surface model (DSM) is calculated
using photogrammetry from overlapping air images. Then, the CHM is calculated by subtracting
the DSM from the DTM. For this study, the Federal Forest Office (BFW) calculated the CHM.

Acquisition of the utilized digital terrain model (DTM) was performed by airborne laser scan-
ning (ALS) in 2013 as part of the EU project INTERREG. The slope was calculated from the
DTM using the Horn algorithm [29]. The Austrian Federal Forests provided all data.
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Figure 1: Study area of Lungau, Austria. The Austrian Federal Forest area is colored in orange,
includes commercial and protective forest as well as non forest areas. Shown in red are the tiles
that are used to create the data set that is used in this paper. The background image is a true
color orthophoto from airborne photography [5] of the region in Austria that was used. The region
in the main image is the same as the red square shown in the full map of Austria shown in the
upper left.

Reference data collection was performed by forest engineers from May 2017 until November
2017 and subsequently digitalized by April 2018. This data acquisition was made as part of the
forest management plan update by the Austrian Federal Forests. Forest engineers assess every
forest stand by measuring the basal area and tree heights to derive the most important key figures
such as tree species composition, yield class and stocking volume. Another part of the assessment
is the planning of thinnings that need to be executed to ensure the optimal growth of the trees and
maintain healthy forest stands with high-quality wood. At the Austrian Federal Forests thinnings
are planned in three urgency levels, i.e. the forest stand:

• urgency 1 - needs thinning during the next 0 to 3 years

• urgency 2 - needs thinning during the next 3 to 10 years

• urgency 3 - can be thinned after 10 years or can be postponed until the next management
plan

The ‘urgency level’ terminology is an internal annotation used by the Austrian Federal Forests
as a practical approach to record the urgency for use by the forest manager. However, just the
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first two (urgency 1 and urgency 2) are relevant, since by the time urgency 3 would be executed
a new management plan will have been made. Therefore it is used very rarely and will not be
considered in this study. The acquired data was populated into a Database (See Table 2), and
the spatial information of the forest stands was drawn in a GIS. Subsequently, both data sources
were spatially registered.

Table 2: Reference data classes, their definitions and occupied area.

Class Definition Area [ha] Area [%]
thinning 1 Forest, thinning within 0-3 years 958.95 9.3
thinning 2 Forest, thinning within 3-10 years 1404.88 13.6
no thinning Forest, no thinning 7245.62 70.3

other Non forest (buildings, roads, water bodies) 696.19 6.8

3.2 Methods

The goal is to predict where and when thinnings are necessary. Deep convolutional neural networks
(DCNNs) are used to classify based on pixels, i.e. semantic segmentation. This section describes
the data preprocessing, outlines the experimental design, describes the training procedure, and
presents the evaluation criteria applied.

3.2.1 Data preprocessing

Figure 2: Data preprocessing workflow with all data manipulation steps (see text).

Due to different spatial and temporal resolutions (Table 1), the described data needed pre-
processing before input into the DCNN. The workflow is shown in Figure 2 and described in this
section in more detail.

The provided canopy height model (CHM) contained values ranging from -73.9 to 138. Since
values below 0 are physically impossible and tree heights above 45 m are improbable in Austria,
these values need adjustment. Therefore, values below 0 and over 40 m were highlighted, visually
inspected and classified in GIS. The analysis showed that highlighted pixels higher than 47 m
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and negative values were predominantly rocky steep slopes. Consequently, all pixels with a value
beneath 0 and above 47 m were set to 0.

3.2.2 Synchronization of spatial resolution

Next, the spatial resolution of all input data was synchronized. As shown in Table 1, the orthopho-
tos have a spatial resolution of 0.2 m as opposed to all other raster data having a spatial resolution
of 1 m. There are benefits and drawbacks to using either as the standard spatial resolution. Using
0.2 m as the standard results in more detail in the four orthophoto layers. Greater detail can
be beneficial for the deep learning algorithm to recognize individual tree crowns and thus help it
determine the density of the forest. In contrast, the resolution of 1 m would provide a broader
field of view when maintaining the same input image size to the DCNN. The resolution of 0.2 m
was chosen as the standard for all input data as otherwise the anticipated information loss would
be too high. This assumption is based on the fact that the average tree crown diameter for a
first thinning is approximately 2.5 m. Consequently, a pixel size of 1 m would imply that one tree
crown is represented by about 3 pixels in contrast to the 13 pixels with a pixel size of 0.2 m. The
determination of an individual tree crown using 3 pixel resolution is much harder compared to a
tree crown represented by 13 pixels. Consequently, all data with a spatial resolution of 1 m was
converted using the GDAL library [16].

3.2.3 Tile size

The data needed to be clipped into square tiles as it is the input type of the neural networks used in
this study. Accordingly, an image size of 512x512 pixels was a favorable choice due to the possibility
of processing this image size with modern GPUs with a decent batch size while maintaining a large
field of view. Ultimately the image size could be easily reduced by quartering the dataset without
considerable effort, thereby increasing the batch size while processing accordingly. The image size
of 512x512 pixels corresponds to 102.5m x 102.5m in reality. Since one adult tree crown (Norway
spruce) has a diameter of 5-6 m, 300-400 adult tree crowns can be represented on one tile.

3.2.4 Tile creation

Only commercial forest is relevant for this study, since thinnings are only regularly planned and
executed with commercial forests, as described in Section 2.1. Thus, a regular grid of 102.5m x
102.5m polygons was laid over the entire study area to create polygons that were then intersected
with the reference data. Only polygons that contained over 25% commercial forest area were
selected, while the remaining polygons were removed. Finally, the remaining polygons were used
to clip all input raster data into 512 x 512 pixels tiles.

3.2.5 Reference data adjustment

Considering that the aerial imagery acquisition was recorded in September 2018 and the reference
data from May to November 2017, the provided reference data needed to be adjusted. In the year
between the two acquisitions, the study area was modified by planned and salvage logging.[65]
This inconsistency was resolved using data from the Austrian Federal Forests database, where all
cuttings are registered, to identify already carried out thinnings and salvage logging. Addition-
ally, all commercial forest stands were visually inspected in GIS, and any noticeable errors were
corrected.

3.2.6 Masking

Since the reference data is restricted to the study area and square tiles were used, part of the
tile frequently contains no reference data (ground truth). Having parts of the tile with no ground
truth information while orthophoto and DTM data is available would be misleading for the machine
learning algorithm. Hence, any data outside the study area’s boundaries was removed. A binary
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mask from the reference data for every tile was created. In the resulting tiles, all information
beyond the boundaries of the study area was set to 0.

Table 3: Allocation of the reference data to ground truths TN and TU as well as the proportions
of pixels representing each class. TN is an abbreviation for thinning necessity and TU for thinning
urgency. The definitions of the reference data classes are explained in Table 2.

Reference data TN TU
Class Class Train[%] Test[%] Class Train[%] Test[%]
void void 8.5 8.5 void 8.5 8.5

thinning 1
thinning 21.0 21.0

thinning 1 8.4 8.4
thinning 2 thinning 2 12.5 12.5
no thinning no thinning 64.3 64.3 no thinning 64.3 64.3

other other 6.2 6.2 other 6.2 6.2

Table 4: Allocation of the reference data to masked ground truths masked TN, masked TU as well
as the proportions of pixels representing each class. TN is an abbreviation for thinning necessity
and TU for thinning urgency. The definitions of the reference data classes are explained in Table
2.

Reference data masked TN masked TU
Class Class Train[%] Test[%] Class Train[%] Test[%]
void void 44.2 44.2 void 44.2 44.2

thinning 1
thinning 20.4 20.4

thinning 1 8.4 8.4
thinning 2 thinning 2 12.0 12.0
no thinning no thinning 35.4 35.4 no thinning 35.4 35.4

3.2.7 Design of ground truth label models

The ground truth was created from the reference data with its six unique classes, as shown in Table
3. ”Void” represents the absence of information as described in Section 3.2.6. The other five classes
are defined in Section 3.1.2, with three related to thinning. The first claim is that detecting forests
that need thinning from remote sensing data is feasible. Since we are not interested in the acuteness
of the thinnings for this objective, we summarized thinning 1 and thinning 2 into one class called
thinning. This ground truth is called TN (thinning necessity), and it differentiates between the
classes void, thinning, no thinning and other (Table 3). To address the second claim regarding
the urgency of thinnings, we created another ground truth named TU (thinning urgency) (Table
3). TU was designed to differentiate between urgent thinning (thinning 1 ), not urgent thinning
(thinning 2 ), no thinning, other, and void. Furthermore, we constructed two additional ground
truths named masked TN and masked TU to focus exclusively on commercial forest (Table 4).
The ground truths masked TN and masked TU expect to answer the claims as stated above for
TN and TU, however all non commercial forest (mainly protective forest and roads) was excluded.
Finally, all ground truth data was created by rasterizing the reference data (vector data) with the
GDAL library into images of size 512x512x1.

3.2.8 Creation of data set

All the preprocessed input data and the generated ground truths were stacked into two data
sets. Two separate data sets were needed since the input data corresponding to ground truths
TN, and TU were masked differently to the input data of ground truths masked TN and masked
TU. Hence, the data sets stacked all preprocessed data into two hdf5 files. Each file consists
of all tiles created inside the study area, as shown in Figure 1. Every tile is composed of the
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Figure 3: Input data tile as used in the final data set (non masked). RGB: true color orthophoto,
CIR: the color infrared orthophoto, CHM: crown height model, DTM: digital train model, Slope:
slope and Ground Truth: ground truth TN. Ground Truth classes are colored where green rep-
resents forest not to be thinned (class: forest), red represents forest thinning is necessary (class:
thinning) and blue represents everything else (class: other)

orthophoto (RGB+NIR, 4 layers), the CHM (1 layer), the DTM (1 layer), the Slope (1 layer) and
the Ground truths (3 layers), thus summing up to 10 layers (Figure 3). Thus, in total per data set,
10250 tiles were created, each of size 512x512x10 pixels resulting in an array with the dimensions
10250x10x512x512. All input data were standardized by subtracting the mean and dividing by
the standard deviation for each value of each input channel (1).

4 Results

4.1 Experimental design

The experimental design can be divided into three major parts and is illustrated in Figure 4. In
the first part called Architecture Selection, a search for the best performing DCNN-architecture is
performed. The results of the models predicting the necessity of thinning (Thinning Necessity) and
the urgency of thinning (Thinning Urgency) are analyzed. Finally, an ablation study (Ablation
Study) is performed to determine the impact of the various input data sources.

The exploration to find the best performing DCNN architecture was conducted exclusively on
the data set with the ground truth TN (Table 3). The other ground truth type, TU used later
to clarify if deep nets can determine thinning urgency, was not employed in searching for the best
model. From the literature review reported in [53], the following three DCNNs were found as the
most promising architectures for solving the semantic segmentation problem:

• UNet [52]
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• FC-DenseNet [36]

• DeepLabv3+ [10]

The architecture utilized in this study is shown in Figure 8. The DCNN was modified to accept the
tiles from the data set with the dimensions 512 x 512 x 7 as input and output the predictions as a
512 x 512 x 1 array. We search for the optimal architecture by evaluating the DCNNs on the data
set (TN ). The DCNN achieving the best result is then chosen for further optimization experiments.
This optimization consists of manipulating individual parts of the architecture to further optimize
the model’s performance by applying the Bayesian optimization method [57]. This method is an
alternative to an exhaustive full grid search, which is computationally expensive. Instead, it more
efficiently searches for optimal hyper-parameters. In practice, we sequentially altered critical struc-
tures in the DCNN architecture and always adopted the structure that provided the best results.
All DCNNs are implemented in PyTorch, and all supplementary code was written in Python.
All code is freely available at https://github.com/satlawa/edin_thinning_necessity. The
experiments were performed on a system with Ubuntu 20.04 as the operating system equipped
with an I7 6700K CPU, 32GB of RAM and an Nvidia RTX 3090.

After finding the best architecture, the final models were trained on the two data sets with all
six ground truths (TN, TU, masked TN, masked TU ). These final models were then evaluated on
the test set to estimate the actual performance on unseen data. Subsequently, the results were
analyzed to determine whether the models can satisfactorily fulfil the intended task. In the case of
the ground truth TN and masked TN, we examined if the necessity of thinnings can be detected
by a DCNN using solely remote sensing data. Furthermore, the ground truths TU and masked
TU were used to investigate if the urgency of thinnings can be determined in addition to detecting
the necessity of thinnings.

Finally, an ablation study was performed by omitting different types of data from the input
data set with ground truth TN. The primary purpose of this experiment was to determine the
importance of the individual input data types, as shown in Table 1.

4.2 Training

The data set was randomly shuffled with 70% of the data used for training, 10% for validation
and the remaining 20% for testing of all models. The test set is exclusively applied to the best

Figure 4: Model training workflow with all processing steps to obtain the final models. The first
stage is the Architecture selection to find the best performing DCNN-architecture. The second
stage is the training of the final models to answer the research objectives (Thinning Necessity,
Thinning Urgency, Ablation Study).
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performing model chosen by evaluation on the validation set.
After setting aside 20% of the data for the test set and 10% for validation, the remaining 70%

of the data is randomly shuffled to train the model. All models were trained from scratch due
to the dissimilarity of the input data compared to the data sets used on pre-trained models. For
the initialization of the weights, the Kaiming uniform initialization was employed [22]. For all
experiments, the Adam optimizer was used as in [39], with an initial learning rate for (1) UNet of
0.01, (2) FC-DenseNet of 0.003 and (3) DeepLabv3+ of 0.001. After every epoch, a decay rate of
0.995 was applied to the learning rate. Since loss functions play a decisive role in training models,
choosing a suitable loss function is essential [35]. Here, the distribution of the classes is skewed.
Therefore, the DICE loss was used as the loss function. The DICE loss is defined as 1 - F1 score
(defined in Equ. 5). The batch size was chosen to be as large as possible, with the constraint being
the memory of the GPU. Depending on the DCNN architecture, the batch size ranged between
16 and 72. However, due to long training times (up to 40 minutes for one epoch), only one 5-fold
cross-validation was carried out on the model TN. All models were trained until convergence,
which required at least for 50 epochs. Data augmentation in the form of horizontal flips was
performed only on the training set and the previously chosen best-performing architecture. Data
augmentation was restricted to horizontal flips due to the different environmental conditions on
north and south facing slopes.

4.3 Evaluation Criteria

To evaluate the performance of the trained models thoroughly, five evaluation metrics were used.
The first criterion is the overall accuracy (Acc) which is determined by dividing the number of all
correctly classified pixels by the total number of pixels (Equation 1).

Acc =

n∑
i=1

(TPi + TNi)

n∑
i=1

pi

(1)

where n is the number of images; TPi and TNi are the number of correctly labeled pixels in image
i; pi is the number of pixels in image i.

Although Acc is a very intuitive and thus common evaluation criteria, it is not very meaningful
in cases where the distribution of classes is highly skewed, as is the case with the data set we utilize
(Table 2). Therefore, the metrics precision (Equation 3), recall (Equation 2), IoU (Equation 4)
and F1 score (Equation 5) are used, for each class j:

recallj =

n∑
i=1

TPij

n∑
i=1

(TPij + FNij)

(2)

precisionj =

n∑
i=1

TPij

n∑
i=1

(TPij + FPij)

(3)

IoUj =

n∑
i=1

TPij

n∑
i=1

(TPij + FPij + FNij)

(4)
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F j
1 = 2 ∗ precisionj ∗ recallj

precisionj + recallj
(5)

where n is the number of images; TPij is the number of pixels in image i, which are correctly
predicted as class j; FPij is the number of pixels in image i, which are incorrectly predicted as
class j; FNij is the number of pixels in image i, which are incorrectly predicted as any class other
than class j.

Since this is a multi-class problem statement, we first calculate the proposed metrics per class
and then determine the mean among all classes.

Despite providing all the above metrics for a holistic evaluation of the models, the F1 score is
used as the sole decisive evaluation score. Furthermore, class void carries essentially no informa-
tion. However, it is still necessary as the data outside the study area boundaries of the commer-
cial forest boundaries (in the case of masked ground truths) must be represented. Nonetheless,
although the class void is required for training the DCNNs, it is omitted in the presentation of
the results as it was nearly perfectly classified and carried no valuable information. Besides, its
presence in the metrics would distort the results and indicate a better model performance than
the particular model can achieve in reality. Finally, all evaluation on the test set was performed
on the 512x512 data set.

4.4 Main Experimental Results

This section outlines and interprets the results of the performed experiments based on the pre-
viously described methods in Section 3.2. In particular, it presents the selection of the best
performing model. In addition, it demonstrates the feasibility of using DCNN for classifying the
urgency of thinnings as well as the ablation study.

4.4.1 Architecture Selection

DCNN Selection First, the performance of the three DCNN architectures is compared: UNet
(F1 = 79.82%), FC-DenseNet (F1 = 72.62%) and DeepLabv3+ (F1 = 80.38%) on the TN dataset.
DeepLabv3+ was chosen as the default network architecture and the hyper-parameter tuning was
performed on this DCNN. More details on the selection process can be seen in [53].

Hyper-parameter tuning

Figure 5: Modified parts of DeepLabv3+. Parts represent by letters.

Although the DeepLabv3+ architecture is already tuned on the PASCAL VOC 2012 data
set, the data set used here is considerably divergent. Thus, hyper-parameters were optimized by
applying the Bayesian optimization method [57]. The performance of the DCNN was explored by
modifying five critical parts of the DeepLabv3+ as shown in Figure 5.

The optimization process began with exchanging the modified Xception architecture with the
Resnet 101 architecture as the backbone module of the DCNN (part a). This module is responsible
for encoding the features from the initial images until they are passed to the ASPP module. As
Table 5 shows, replacing the backbone module to the Resnet 101 architecture results in an F1 score
of 81.26%, which is a 0.88% gain compared to the 80.38% achieved with the Xception architecture.
Hence, Resnet 101 was chosen as the backbone for our DeepLabv3+ net for all further experiments.
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Other variations were explored: to part b, ([1x1,48] convolution), part c ([1x1,256]*2 upsam-
ple), part d, ([3x3,256]*2 decoder) and part e (output stride 8) and augmentation with left-right
flipping. Only the stride change and flipping gave an improvement, resulting in F1 = 83.01%.
More details of the tuning can be found in [53]. The best performing hyper-parameters and
DCNN-architecture were used to train all subsequent models. A detailed diagram of the final
architecture is provided in the Appendix.

4.4.2 Thinning

After optimizing the DCNN-architecture on the data set, the main research objectives of this
study were addressed. First, the possibility of detecting the need for thinning with the optimized
DCNN was evaluated, exclusively with remote sensing data (Section 4.4.3). Then, the feasibility
of detecting the need of thinning with urgency was assessed (Section 4.4.4).

4.4.3 Thinning necessitity

Based on the network architecture from Section 4.4.1, the model was evaluated on the TN test
set (Table 6). With a mean F1 score of 82.23%, the model achieves a similar score to the 83.01%
on the TN validation set. Thus, one can conclude that the chosen model is not overfitting to the
validation set. Additionally, when focusing on the class-specific scores, the model performs best
on predicting the class no thinning, whereas the scores of the other two classes are significantly
lower.

When examining the confusion matrix in Table 7, one can gain further insight into the mis-
classifications of the model. Accordingly, the main mistakes are those between the classes thinning
and no thinning as well as between no thinning and other, while misclassifications between the
classes thinning and other are insignificant. These results match our knowledge about the classes.
Examples of predictions are illustrated in Figure 6.

For instance, class thinning represents dense forest with a minimum top height of around 13 m
and thus contrasts to class other that often represents no vegetation or shallow growing vegetation
like grassland or mountain pines. In contrast, it makes sense to see the model misclassifying the
class no thinning with both other classes as it embodies forest at all ages. For example, a very
young forest has almost identical features compared to grassland, as presented in Figure 6 row 1.
Therefore, it is challenging and sometimes impossible to distinguish between no thinning and other
with only remote sensing data. Equally ambitious are some classification cases between the classes
thinning and no thinning. In this situation, the model struggles to differentiate between edge cases
of dense forest (Figure 6 rows 5 to 8). These errors might arise due to lacking information about
the yield class of the forest. For instance, dense old forest on less vigorous sites might appear
similar to a dense middle-aged forest on productive sites or vice versa (Figure 6 row 6). Likewise,
young forest on very viable sites might already require thinning during the planning period whereas
similar forest on less viable sites grows slower and should therefore not be planned for thinning.

Unquestionably, the model produces misclassifications, yet the results are excellent for most
cases. For example, it correctly classifies the recently thinned forest as not to be thinned (Figure
6 row 2). Similarly, the model has no problems classifying correctly the cut forest and the more
sparsely standing forest as no thinning, whereas the dense forest it accurately predicts as thinning
(Figure 6 row 3 and 4).

As foresters are particularly interested in the differentiation between forest with and without

Table 5: Effect of backbone (part a) on the validation set performance (ground truth TN ). Acc:
overall accuracy, mIoU: mean intersection over union and F1: F1 score

Backbone Acc Precision Recall mIoU F1
Xception 85.83% 81.88% 79.47% 67.76% 80.38%
ResNet 101 86.81% 82.94% 79.85% 69.00% 81.26%
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Table 6: Class scores and mean class scores on the test set (ground truth TN ) with 5-fold cross
validation. The model’s objective is to detect the necessity of thinning. Class definitions, thinning :
thinning within 1-10 years, no thinning : no thinning necessary, other : non forest areas. std:
standard deviation.

Score thinning no thinning other mean std
Precision 77.08% 91.58% 79.69% 82.78% 0.78%
Recall 80.32% 90.92% 74.15% 81.79% 0.52%
IoU 64.81% 83.89% 62.34% 70.35% 0.44%
F1 78.64% 91.24% 76.80% 82.23% 0.31%

Table 7: Confusion matrix on test set (ground truth TN ). The numbers represent classified pixels
times 106.

prediction
Class thinning no thinning other

∑

re
fe

re
n

c
e thinning 89 26 1 116

no thinning 22 341 5 368
other 1 7 24 32∑

112 374 30 516

the necessity of thinning, another model was trained that discriminates just among the classes
thinning and no thinning. For this experiment, the data set containing the ground truth masked
TN was used, which just contains information about commercial forest while all other data was
masked.

Table 8: Class scores and mean class scores on the test set (ground truth masked TN ). The model’s
objective is to detect the necessity of thinning restricted to the commercial forest.

Score thinning no thinning mean
precision 76.98% 92.27% 84.63%
recall 85.84% 86.82% 86.33%
IoU 68.31% 80.93% 74.62%
F1 81.17% 89.46% 85.32%

As reported in Table 8, a mean F1 score of 85.32% was obtained. Hence, by focusing on merely
two classes, the mean F1 score was raised by 2.85% compared to the data set without masking
(Table 6). When concentrating on the class-specific scores, it can be seen that the mean F1 score’s
gain is due to the more accurate classification of the class thinning.

More detailed information of the misclassifications between the classes thinning and no thinning
is provided in the confusion matrix in Table 9. What is striking is the lower number of categorized
pixels due to the masking of non-commercial forest areas and the much higher number of false
positives compared to the false negatives. This finding contrasts with the first model evaluated
(Table 7), where the false positives and the false negatives were relatively balanced. Precisely
this behavioral distinction can be observed in the examples of Figure 6. Particularly apparent is
the difference in sensitivity in the fifth row of Figure 6, where the prediction of the non-masked
data set (d) predicts no thinning on the entire tile while the prediction of the masked data set (f)
classifies the entire commercial forest as in need of thinning.

4.4.4 Thinning urgency

The next research question addressed is whether it is possible to detect the need of thinnings
and predict their urgency accurately. Compared to the model in subsection 4.4.3, this question
adds another layer of complexity to the network since it has to assess the thinnings urgency. For
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answering this question, the ground truth masked TU was used. The idea of ground truth TU is to
predict thinnings and their urgency directly. Hence it differentiates between very urgent thinnings
(masked thinning 1 ), less urgent thinnings (masked thinning 2 ) and no need for thinning masked
no thinning. A detailed description of the ground truths is provided in the section 3.2.7. Only the
masked version is considered here to focus on the commercial forest. Experiments with the full
data can be seen in [53].

Constraining the problem by just taking into account commercial forest increased the perfor-
mance slightly in the case of ground truth masked TN (subsection 4.4.3). Accordingly, the same
strategy was applied on the model masked TU. However, the results show no significant overall
improvement in the mean F1 (Table 10) over model TU. Although the model masked TU achieves
a higher F1 score in class thinning 1 (51.48%) compared to model TU (41.03%), all other class
scores achieve worse performance. Since we are particularly interested in predicting the urgency
of thinning, model masked TU provides a slightly better alternative than model TU. Thus one
can conclude that the restricted model masked TU gives a small improvement in class thinning 1
compared to the model TU.

Fortunately, perfect accuracy is not needed because the forestry management procedures can
tolerate the slight inefficiency of postponing an urgent thinning until the next thinning review
cycle.

4.4.5 Ablation study

An ablation study investigated the importance of the individual input features by training models
with various combinations of input features removed. The factors explored were the inclusion
or exclusion of these data planes: Orthophoto, CHM (Crown height model), DTM (Digital train
model), Slope. The performance variations of the different models provide insight into what effect a
specific input feature has on the model. See [53] for the full details of the experiments summarized
below.

The results showed that the inclusion of the DTM has no or a slightly negative impact on
the model’s performance. When examining the classification scores, it is primarily in the class
other where the inclusion of DTM deteriorates the performance. The input feature Slope improves
performance relative to models that do not contain it. Since Slope is calculated from the DTM, we
expected that the DCNN could at least partially learn to extract some useful information out of
the DTM. However, it seems the DCNN is not capable of deriving Slope out of the DTM. Possibly
this is because the input features Slope and DTM provide only information about the terrain and
not the forest itself.

Omitting the input feature CHM results in models having a lower score compared to the
equivalent models with CHM included. Consequently, one can conclude that CHM contains some
unique information since tree heights are essential criteria for assessing the necessity of thinning,
as section 2.1 briefly outlines.

Omitting the input feature Orthophotos gives a significant decline in performance compared
to the full model. It appears that Orthophotos contains the most valuable information of all input
features. This result coincide with the finding that the input feature Orthophotos is also the most
informative for human forest managers when assessing a forest.

Table 9: Confusion matrix on test set (ground truth masked TN ). The numbers represent classified
pixels times 106.

prediction
Class thinning no thinning

∑

re
f. thinning 97 16 113

no thinning 29 191 220∑
126 207 333
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5 Discussion

Timely planning and execution of thinnings are crucial for maintaining a healthy forest, but
minimal research has been performed to derive the need for thinning directly from remote sensing
data. Compared to detecting the necessity of thinnings, the estimation of inventory data [20, 6, 15]
or the classification tree species [4, 14, 34, 3] has received much more attention. Accordingly, this
study demonstrates the potential of predicting the necessity of thinning with state of the art deep
learning architectures solely from high altitude remote sensing data.

Using multispectral orthophotos, canopy height data (CHM), a digital train model (DTM)
and slope, and the reference data collected in the field by experts, two data sets were created to
investigate the research question: can the necessity for thinning be reliably predicted. Using the
DeepLabv3+ DCNN-architecture for semantic segmentation, we achieved an F1 score of 82.2% and
demonstrated that deep learning algorithms can be applied to accurately detect forests in need of
thinning. Additionally, by employing the masked data set to restrict the analysis to exclusively
the commercial forest, the approach improved the F1 score to 85.3%.

From these results, one can conclude that the DCNN was able to extract critical information
about the density of the forest from the remote sensing data, and thus to assess the need for
thinning. In comparison, [33] used machine learning algorithms on satellite imagery to find forest
stands with an thinning need within the next 10 years and achieved an overall accuracy of 64.1%.
However, their achievements are based on Landsat TM satellite imagery with a lower spatial
resolution of 30 m compared to 0.2 m and a stand wise classification of forest operations in contrast
to semantic segmentation. Thus, the results are hardly comparable to this study. Another study
from [63] used exclusively ALS data to predict the necessity of thinnings with an overall accuracy
of 79%. There too, the necessity of thinnings was determined through a stand-wise classification
of forest operations.

The necessity for thinning is determined mainly by two criteria: tree heights and the standing
density (basal area) of a forest stand, and the tree heights are already part of the input data.
Thus, it appears that the model was capable of inferring the crown density and not the actual
basal area. Therefore, the crown density is sufficient for the target thinning type, which is crown
thinning. For other thinning types, such as low thinning, the DCNN might struggle to produce
comparably good results. The model might provide moderate performance since only suppressed
and sub-dominant trees are removed in low thinning, which have no impact on the canopy.

Besides creating a model that detects forests in need of thinning, we additionally explored pre-
dicting the urgency of thinning. In this case, the trained models struggled to distinguish between
urgent (51.48%) and not urgent (49.57%) thinning even though we focused just on commercially
utilised forest. (see Table 10). The poorer performance is possibly due to inconsistency in the data
and missing crucial information that is not contained in the input data. Consequently, adding
additional data such as yield class or age could improve the results.

An ablation study explored the importance of the individual input features, showing that
orthophotos contain the most critical information for the model that assesses thinning. Adding
the CHM further improved the performance predicting thinning. On the other hand, the input
features DTM and Slope seem not to contain any additional helpful information.

The proposed model can be seen as a cost-efficient and scalable solution for reducing the costs
of creating new forest management plans. With this approach, the necessity of sending expensive

Table 10: Class scores and mean class scores on the test set (ground truth masked TU ). The
model’s objective is to detect the urgency of thinnings restricted to the commercial forest.

Score thinning 1 thinning 2 no thinning mean
precision 42.72% 50.32% 92.97% 62.00%
recall 64.74% 48.84% 83.19% 65.59%
IoU 34.66% 32.95% 78.27% 48.63%
F1 51.48% 49.57% 87.81% 62.95%
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forestry personal into the field can be greatly reduced. Thus, with the reduced costs the frequency
with which forests are planned can be shortened, thereby greatly improving the robustness of the
stand against natural disturbances, increasing the quality of the wood, and optimising the revenue.

As stated earlier, the proposed model is specifically trained to detect the need of selective crown
thinnings in spruce dominated forest stands in the study area. Consequently, further research could
examine the feasibility of employing DCNNs for other thinning types, additional tree species and
other geographical areas. The training of a comparable model for deciduous forests might be
challenging because of the greater diversity of tree species and the more difficult task of segmenting
deciduous tree crowns.

The performance of assigning the urgency of thinning was unsatisfying in this study. Hence,
one could conduct further research on this objective by providing additional valuable data such as
age or yield class. Another potential direction of research could be the prediction of the volume of
harvested wood for sales planning. Applicable to both small forest owners with limited funds and
also to large forest management of companies as a quick help, this approach provides the ability
to infer critical information about the forest promptly.

Final Remarks Through the fusion of several types of remote sensing data and a suitable
deepnet classifier, this paper presented a method to detect the necessity of thinning in spruce
forests (c. 85% F1 score for identifying if forest stands need thinning). The approach was less
accurate (c. 63% F1 score) when distinguishing between urgent and less urgent thinning needs.
Although the resulting model needs further tuning for production use, the paper showed the po-
tential of using remote sensing data to plan thinning cost-effectively.
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(a) CIR (b) CHM (c) GT (d) Pred (e) GT-m (f) Pred-m

Figure 6: Examples of semantic segmentation on test set. Column (a) CIR are false color com-
posites with near infrared, (b) CHM is the canopy height model, (c) GT is the ground truth of
the Thinning Necessity set TN, (d) is the prediction of the model trained on the ground truth
TN, (e) GT-m is the ground truth masked TN, (f) is the prediction of the model trained on the
ground truth masked TN. In (b) the color palette illustrates low heights as dark (dark blue) and
high heights as bright (yellow). The colored pixels in (c) to (f) represent the following classes,
black: void, red: thinning, green: no thinning, blue: other.
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(a) CIR (b) CHM (c) GT (d) Pred (e) GT-m (f) Pred-m

Figure 7: Examples of semantic segmentation on test set. Column (a) CIR are false color compos-
ites with near infrared, (b) CHM is the canopy height model, (c) GT is the ground truth Thinning
Urgency set TU, (d) is the prediction of the model trained on the ground truth TU, (e) GT-m
is the ground truth masked TU, (f) is the prediction of the model trained on the ground truth
masked TU. In (b) the color palette illustrates low heights as dark (dark blue) and high heights
as bright (yellow). The colored pixels in (c) to (f) represent the following classes, black: void, red:
thinning 1, yellow = thinning 2, green: no thinning, blue: other.
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Appendix: Final DCNN architecture

Figure 8 shows the final DCNN-architecture tuned on the data set (ground truth Thinning Ne-
cessity set TN ). This architecture was used to train all models to resolve the research objectives
”thinning necessity” (Subsection 4.4.3), ”thinning urgency” (Subsection 4.4.4) and the ablation
study (section 4.4.5).

The diagram (Figure 8) illustrates the overall structure of the network. However, batch norm
layers and RELU activation functions are omitted due to space constraints. A batch norm layer
follows every convolution as well as atrous convolution. The RELU activation functions follow
every Resnet-101 convolution block (fine dotted violet lines), otherwise every convolution and
atrous convolution. The numbers on the right side of the ResNet-101 blocks express how many
times the block is repeated. The information flow into the Connection happens after the first
Resnet-101 block is repeated three times. The PyTorch implementation is provided at https:

//github.com/satlawa/edin_thinning_necessity.
Abbreviations The following abbreviations are used in this manuscript:

ALS airborne laser scanning
ASPP Atrous Spatial Pyramid Pooling
CHM canopy height model
DCNN deep convolutional neural network
DTM digital terrain model
FCN fully convolutional network
GIS Geographical Information System
LD Linear dichroism
NIR near infrared
RGB Red, Green, Blue
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Figure 8: Diagram of DeepLabv3+ with ResNet-101 as backbone [10]. This network architecture
is the final deep convolutional neural network used to train all models to detect the necessity and
the urgency of thinnings. Green circles: concatenations.
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