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Abstract

In this paper, a novel model of object-based visual attention extending Duncan’s Inte-
grated Competition Hypothesis [24] is presented. In contrast to the attention mechanisms
used in most previous machine vision systems which drive attention based on the spa-
tial location hypothesis, the mechanisms which direct visual attention in our system are
object-driven as well as feature-driven. The competition to gain visual attention occurs
not only within an object but also between objects. For this purpose, two new mecha-
nisms in the proposed model are described and analyzed in detail. The first mechanism
computes the visual salience of objects and groupings; the second one implements the
hierarchical selectivity of attentional shifts. The results of the new approach on synthetic
and natural images are reported.

Key words: Visual attention, object-based visual attention, integrated competition,
grouping salience, hierarchical selectivity.

1 Introduction

It is well known that the primate visual system employs an attention mecha-
nism to limit processing to important information that is currently relevant to be-
haviours or visual tasks. It can efficiently deal with the balance between computing
resources, time cost and performing different visual tasks in a normal, cluttered and
dynamic environment [69]. Visual attention selectivity can be either overt to drive
and guide eye movements, picking up useful information over time [32,53,62], or
covert, internally shifting the focus of attention from one locus to another without
eye movements [45,68, p. 519-570].

1.1 General problems of modelling visual attention

Modelling visual attention is a challenging problem for machine vision. Three
closely-related basic questions are immediately identifiable:
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(1) How can the visual system know what information is important enough to
capture attention?
Modern research on visual attention from psychophysical and neurophysio-

logical experiments have found that there exist two ways by which information
can be used to direct attention (see [94,96] for reviews). One approach uses
bottom-up information including basic features such as colour, orientation,
motion, depth, conjunctions of features such as objects in 2D or 3D space
and even learned features. In this case, visually salient features (a feature or
stimulus differs from its immediate surround in some dimensions and the sur-
round is reasonably homogeneous in those dimensions [20]) are mostly used to
attract visual attention. A great number of models make use of “saliency” to
direct attention [1,2,9,54,88]. However, saliency cannot always capture atten-
tion in a purely bottom-up fashion if attention is focused or directed elsewhere
in advance [94,96]. Thus it is necessary to recognize the importance of how
attention is also controlled by top-down information relevant to current vi-
sual behaviours. The deployment of attention is determined by an interaction
between bottom-up input and top-down attentional priming or setting [96].

(2) How does the visual system know when and how to direct attention and choose
important information rather than doing so at random times and by random
selection?
This is the paradox of intelligent selection of attention in visual systems.

We would like to know whether selection happens earlier or later, to what ex-
tent visual processing is serial or parallel, and what interplay exists between
these factors. A number of researchers have proposed two-stage models in
which the preattentive stage performs independent detection or extraction of
primary visual features automatically in parallel (without attention) and the
second stage of attention processes the combination of primitive features by
serially shifting the focus of attention to scan subsets of the incoming informa-
tion available from the previous stage (see [94] for a review). This proposed
strategy, however, conflicts with many modern psychophysical experiments
that confirm that attention can arise from very early visual processing stages
(e.g. feature detection) or arise from relatively late processing stages (e.g. ob-
ject representation or recognition) in different circumstances in which parallel
and serial processing reciprocally intertwine for efficient performance of visual
tasks [44,58,61]. Thus, this problem is far from well understood and requires
further investigation.

(3) Where is (are) the next potential target(s) of visual attention shifts? That is,
how does attention know where to go and what to do next?
There are two traditional assumptions in the literature attempting to ac-

count for this. The space-based attention theory holds that attention is allo-
cated to a region of space, with processing of everything within this spatial
window of attention like a spotlight, internal eye, or zoom-lens [29,72,85,86].
Object-based attention theory argues that attention is actually directed to
an object or a group of objects to process any properties of selected object(s)
rather than regions of space [17,19,49,78]. Some recent findings support a view
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that the two accounts are not mutually exclusive [23,31,44] and they may ac-
tually share common neural mechanisms in the parietal lobes [33]. Until now,
few researchers have proposed attentional models that integrate space-based
and object-based views (but see [60]). As suggested by S. E. Palmer in [68,
p. 547-549], both hypotheses may be true to account for different processing
levels respectively in the visual system and may be necessary to supply and
interact at multiple processing levels for coherent behaviour.

These three problems lead to a general question: How does visual attention
work to perform efficient selectivity? The dominant theory of visual attention is
based on the hypothesis that attention works in space like a “spotlight” or “zoom
lens”, scanning the scene by shifting attention from one location to the next to
limit processing to a variable size of space in the visual field. There have been a
number of attentional models that use this hypothesis. Most of them are derived
from Treisman’s Feature Integrated theory [85] which consists of separate low-level
feature maps that are combined together by a spatial attention window operating
on a master map or saliency map. We will briefly review the most influential
accounts of visual attention in psychophysics and the correspondingly inspired
computable models below.

1.2 Psychophysical models of attention

There are two divisions of theories in the vast literature being developed to un-
derstand visual attention. One is the very influential space-based attention theory.
Another is the developing theory concerning object-based attention. So far Treis-
man’s model is the most successful model of space-based attention and does pro-
vide a general framework for understanding visual attention. Following her theory,
a number of computational models of attention in the psychophysics and computer
vision fields have been developed. The main difference between them is that they
use different methods to construct and combine the low-level feature maps and to
model the control mechanisms of attentional movements. In addition, there are lots
of other well-known models of spatial attention as well, such as the guided search
model of Wolfe [93], the spotlight or zoom lens model of Eriksen et al. [28,29],
the saliency map model of Koch and Ullman [54], the dynamic routing model of
Olshausen et al. [67] and the like.
The essential bifurcation between object-based attention and space-based atten-

tion lies in the question of what are the underlying units of attentional selection. In
contrast to the traditional models of space-based attention, object-based attention
holds that visual attention can directly select discrete objects rather than only and
always selecting continuous spatial areas of the visual field. The research on object-
based attention is still quite new. However, some fundamental theories have been
developed in recent years. In the “Biased Competition Model” of Desimone and
Duncan [15] and the “Integrated Competition” hypothesis of Duncan [24], visual
attention is taken as an emergent effect of competition between neural representa-
tions in multiple systems which work together to serve the same selected object.
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Other pioneer research can be seen in the work of Humphreys and his colleagues
[20,42,43], Grossberg [40], Behrmann [4], and a converged review [78].

1.3 Computable models of space-based attention

Koch and Itti have built the most sophisticated saliency-based spatial attention
model [54,46]. The saliency map is used to encode and combine information about
each salient or conspicuous point (or location) in an image or a scene to evaluate
how different a given location is from its surrounding. A Winner-Take-All (WTA)
neural network implements the selection process based on the saliency map to gov-
ern the shifts of visual attention. This model performs well on many natural scenes
and has received some support from recent electrophysiological evidence [35,76].
Tsotsos et al. [88] presented a selective tuning model of visual attention that used
inhibition of irrelevant connections in a visual pyramid to realize spatial selection
and a top-down WTA operation to perform attentional selection. In the model pro-
posed by Clark et al. [9,10], each task-specific feature detector is associated with a
weight to signify the relative importance of the particular feature to the task and
WTA operates on the saliency map to drive spatial attention (as well as the trigger-
ing of saccades). In [37,75], colour and stereo are used to filter images for attention
focus candidates and to perform figure/ground separation. Grossberg proposed a
new ART model for solving the attention-preattention (attention-perceptual group-
ing) interface and stability-plasticity dilemma problems [38,39]. He also suggested
that both bottom-up and top-down pathways contain adaptive weights that may
be modified by experience. This approach has been used in a sequence of models
created by Grossberg and his colleagues (see [8,39] for an overview). In fact, the
ART Matching Rules suggested in his model tends to produce later selection of
attention and is partly similar to Duncan’s integrated competition hypothesis [23]
which is an object-based attention theory and different to the above models.
Some researchers have exploited neural network approaches to model selective

attention. In [2,3], the saliency maps which are derived from the residual error
between the actual input and the expected input are used to create the task-
specific expectations for guiding the focus of attention. Kazanovich and Borisyuk
proposed a neural network of phase oscillators with a central oscillator (CO) as
a global source of synchronization and a group of peripheral oscillators (PO) for
modelling visual attention [52]. Similar ideas have also been found in other work
[12,13,56,64,65] and are supported by many biological investigations [56,81,89].
There are also some models of selective attention based on the mechanisms of gating
or dynamic routing information flow by dynamically modifying the connection
strengths of neural networks [38,43,67,73].
In some models, mechanisms for reducing the high computational burden of

selective attention have been proposed based on space-variant data structures or
multiresolution pyramid representations and have been embedded within foveation
systems for robot vision [7,77,11,30,82,84,92]. But it is noted that these models
developed the overt attention systems to guide fixations of saccadic eye movements
and partly or completely ignored the covert attention mechanisms. Fisher and
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Grove [41] have also developed an attention model for a foveated iconic machine
visual system based on an interest map. The low-level features are extracted from
the currently foveated region and top-down priming information are derived from
previous matching results to compute the salience of the candidate foveate points.
A suppression mechanism is then employed to prevent constantly re-foveating the
same region.

1.4 Inducements and innovations of the proposed model

The computable models of space-based attention reviewed above, however, have
some intrinsic disadvantages. They have only concentrated on mechanisms of vi-
sual attention based on selectivity by spatial locations. Thus they inherently lack
mechanisms accounting for object-based selection (see [25,26] and [68, p. 547-549]
for reviews). The normal scene is usually cluttered: objects may overlap or share
some common properties. In this case attention may need to work in several dis-
continuous spatial regions at the same time. Some different visual features which
constitute the same object can come from the same region of space: in this case
maybe no attention shift is required. The structure of one object may be very com-
plex and hierarchical: in this case the interaction or cooperation of object-based,
location-based selection and selectivity by visual features is required. Object-based
attention has advantages that space-based attention does not have:
• more efficient visual search: speed and accuracy;
• less chance to select a nonsense or empty location;
• naturally hierarchical selectivity.
Thus it is important to properly integrate the two accounts of space-based and
object-based attention.
The above problems led us to propose another machine vision approach for

modelling visual (covert) attention. The model described here is an alternative
computational model of visual attention which is object-based. It absorbs several
ideas and many findings from modern literature in psychophysics and computer
vision, including recent research on: 1) object-based visual attention such as Dun-
can’s Integrated Competition theory [22–24], and [15,16]; 2) visual saliency such
as Koch and Itti’s model of saliency-based visual attention [54,46]; 3) bottom-up
and top-down interaction of visual attention [94,96]; 4) integration of object-based
and location-based attention [60]; 5) visual representations of within-objects and
between-objects [44]; and 6) other investigations [5,39].
One of the novel mechanisms in our model is the grouping-based salience com-

putation for attentional competition between features, objects, and groupings of
features and objects, and competition within objects and groupings of features and
objects. The early visual features of the scene (colours, intensity, and orientations)
are extracted by multiresolution pyramids. The visual salience of points, objects
and regions is calculated for different groupings on the feature pyramids, which
builds up the basis of the purely bottom-up attention competition among various
visual inputs. The competition for visual attention is modulated by the interaction
between bottom-up visual saliency and the top-down attentional setting which is
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decomposed into positive priming, negative priming, free, and occupied cases (in-
troduced later). The main goal of this paper is to present our model for

the visual saliency of groupings and the mechanism of covert attentional

movements.
Another novel mechanism used in the proposed model is hierarchical selectiv-

ity for guiding covert attentional movements, which can be regarded as a kind of
multiple selectivity [68, p. 547-554] integrating attentional selection by spatial lo-
cations, visual features and their complex conjunctions (e.g. objects or groupings).
The competition for attention takes place firstly from the most coarse level on
multiresolution pyramids, then gradually to the finer level, as well as from coarser
groupings to finer groupings within and between groupings and resolutions. The
finest grouping is set to a pixel or point in our model. This mechanism is thus
biologically plausible. Clearly, the strategies from coarse to fine occur on the mul-
tiple architecture of visual resolution and groupings including objects, features and
locations related to the relevant resolution. At each pyramid level, the winner of
selective attention in each competition is generated by a Winner-Take-All (WTA)
strategy.
The presented model explores the first machine-vision implementation of a hi-

erarchical object-based visual attention system. The paper shows that it produces
plausible attention shifts on real imagery and also that its performance on synthetic
displays is similar to human psychophysical results. To simplify the research, we
have assumed that a perceptual organisation of the image into a hierarchical set
of groupings has been done. (We assume that other research from elsewhere will
eventually supply this input. See section 2.6 for the further discussion) Further,
our approach has a mechanism to respond to top-down behavioural inputs, but
we have not completely investigated the actual top-down selection process (as this
is a complex process involving both visual and non-visual reasoning). Lastly, the
presented model only considers covert attention (where the fovea does not move)
rather than overt eye movements that might lead to significant changes in visual
salience.

2 Model

2.1 Overview of the model

Our work is concerned with the development of efficient mechanisms of visual
attention for a machine vision system. The model developed here shows that object-
based and location-based attention can work in a uniform framework depending on
both the current scene and the observer’s goals to deal with complex visual tasks
(see [78] for a comprehensive review of object-based visual attention). The model,
for this purpose, brings together several issues found in the modern literature. The
critical aspects of our theory are:
1. Integrated competition for visual attention
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Our approach extends Duncan’s Integrated Competition hypothesis [16,23,24].
The main adjustment is that we think his model of object-based attention can be
extended to work in both object-based and space-based fields by replacing object-
centered with grouping-centered (see one of the few psychophysical attentional
models [5] and [39] for integrating object-based with location-based evidence).
A grouping is a unit involving object(s) and related features and locations (see
[18,44,78] for detailed discussion on these issues). In this way, a grouping in our
model can be a point (a pixel here), an object or a feature, a group of objects or
features, or a region. At any given moment, enhanced responses to one grouping
will decrease responses to other competitors. Once one grouping gains the domi-
nance of selective attention, all other relevant processing to this grouping and all
components belonging to this grouping share the same dominance. This is why it
is termed “integrated competition”.

2. Bottom-up and top-down interaction

The nature of attentional competition comes from dynamic interaction based
on visual saliency [54,46] between bottom-up visual grouping and top-down at-
tentional biasing or setting [94,96]. That is, purely bottom-up or top-down driven
information for attention can only bias the competition for selection process partly.
In this case, salient visual groupings can capture attention quickly and automat-
ically only if the current attention is not deliberately directed to other groupings
or properties in advance.

3. Hierarchical selectivity of visual attention

Hierarchical selectivity is proposed to guide the attentional movements shift-
ing from one locus of attention to another under multiscale transformation and
directly builds upon the above two issues. It implies that visual attention can di-
rectly select a continuous area of space, discrete object(s), feature(s), point(s), or
their grouping. The space-based and object-based attentional selectivity are either
cooperative or independent of each other for efficient selective acts according to the
current visual situations and tasks. This strategy is especially useful for machine
vision. For example, space-based selection can be applied to region segmentation
whereas object-based selection can be used for object recognition or fine analysis.

Keeping the above issues in mind, our model of visual (covert) attention is
depicted schematically in Figure 1. The model firstly extracts primary features
colours, intensity, and orientations from one fixated image sampled from a given
scene, by multiscale pyramid filters. After perceptual grouping preprocessing, the
bottom-up saliency mappings of various groupings are created via the grouping-
based salience computation. These saliency mappings are dynamically varied ac-
cording to competition conditions among the groupings at different resolutions
and related surroundings during the attentional movements. The results produced
from this stage are fed to the attention competition pool where all coarsest group-
ings compete against each other for preferentially obtaining the selective attention.
The competition procedure is a dynamic interaction between bottom-up salience
and the top-down attentional setting. The rules of winner-take-all and inhibition
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Fig. 1. The schematic description of the model

of return are applied here to ensure the winner benefits and prevent attention
from returning to the previously attended groupings. The attentional movements
among the winning competitors are guided by hierarchical selectivity. The detailed
description of each module in the model is given in the following sections.

2.2 Eye/fixation image

Our model is built for covert visual attention rather than overt eye movements
such as gaze control in active vision research. At any moment, a fixed image, which
is a transformation of the world image into retinal image at each fixation point,
is obtained by simulating the functional mapping of resolution decreasing from
the fovea to the periphery of the retina. The following modules involved in visual
attention operate on one given fixed image and the sampling function of a gaze
at that moment is presented as follows. Future research will consider overt eye
movements such as saccades and how saliency is integrated with overt multiple
fixations.

2.3 Primary feature extraction

Colour image input is decomposed into sets of multiscale feature maps via over-
complete steerable pyramid filters [36], to generate four colour, one intensity, and
four orientation pyramids [46]. Suppose that F is the input image, with r, g, b
being the red, green, and blue colour components of F . An intensity image I(pij)
is created by:

I(pij) = [r(pij) + g(pij) + b(pij)]/3 (1)

where pij is a point of F , i ∈ [1 . . . n], j ∈ [1 . . .m], n×m is the size of the image.
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Then, four colour channels R (red), G (green), B (blue), and Y (yellow) are
obtained as [46] (negative values are set to zero):

R(pij) = r(pij)− [g(pij) + b(pij)]/2

G(pij) = g(pij)− [r(pij) + b(pij)]/2

B(pij) = b(pij)− [r(pij) + g(pij)]/2

Y (pij) = [r(pij) + g(pij)]/2− |r(pij)− g(pij)| /2− b(pij) (2)

Let Wlpf , Wbpf (λ; θ) be Gaussian and orientated Gabor steerable filters respec-
tively. With these filters acting on the five I, R, G, B, and Y channels (see [36,46]
for more details), we can construct intensity, colour (red, green, blue, and yellow)
and orientation pyramids:

Iλ+1 = W T
lpf ·Wlpf · Iλ; I0 = I (3)

Rλ+1 = W T
lpf ·Wlpf ·Rλ; R0 = R

Gλ+1 = W T
lpf ·Wlpf ·Gλ; G0 = G

Bλ+1 = W T
lpf ·Wlpf ·Bλ; B0 = B

Yλ+1 = W T
lpf ·Wlpf · Yλ; Y0 = Y (4)

Oλ(θ) =Wbpf (λ; θ) · I (5)

where λ ∈ [1 . . . l] is the pyramid’s scale and θ ∈ [00, 450, 900, 1350] or [00, 22.50, 450,
67.50, 900, 112.50, 1350, 157.50] (in this paper, we used both orientation sets for dif-
ferent experiment environments but the first is the general one) is the preferred
orientation. The Anderson kernel used for Wlpf is (1/16, 1/4, 3/8, 1/4, 1/16). The
Gabor filter comes from modulating the related Lapacian pyramids with a set of
oriented sine waves, then being followed by low-pass operation, and finally taking
the modulus (see [36] for these two filters in detail).

2.4 Grouping-based saliency mapping

Salience evaluation based on groupings is the bridge to achieve object-based at-
tention and integrate space-based attention in this paper. In our approach, group-
ings are the primary perceptual units upon which attentional processes operate.
The term “grouping” (or “segmentation”) is a common concept in the long re-
search history of perceptual grouping by the Gestaltists (see [68, p. 257-266] for
a review). We evaluate salience based on groupings here because “grouping” itself
has already embedded “object” and “space”. This usage constitutes a fundamental
difference to most of the previous computable models of space-based attention.
A grouping is a hierarchical structure of objects and space. In this sense, a group-

ing may be a point, an object, a region, or a hierarchical structure of groupings.
However, we are not implementing the grouping process in this paper but assume
in the work below that it exists. That is, we assume that a given scene at each
scale has already been segmented into groupings according to the Gestalt principles
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(or other grouping approaches). Some further discussions on grouping are given in
Section 2.6. The theory proposed here for salience computation is independent of
the approach used for perceptual grouping.

Grouping

Sub-grouping Sub-grouping

Surroundings
of

the Grouping
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Cooperation and
Competition

a

b c

Fig. 3. An example of grouping salience

The salience of a grouping is a function of all saliency contributions coming from
the components within the grouping working together to compete with their com-
mon competitors and competing with each other. This notion covers two issues.
One issue is the relationship of spatial location, objects, and features to the group-
ing they belong to, as shown in Figure 2. The figure shows that grouping salience
is computed from its components of spatial location, feature(s), and/or object(s).
The other issue is the competition between a grouping and its surroundings by co-
operation and the competition between its components. The effect of a competition
between two competitors may either enhance or suppress their salience according
to their contrast properties (Figure 3 (a)). Two simple examples are given in Figure
3 (b) and (c).
Suppose the red circle (grouping A) is the target. We want to calculate its

salience. Its surroundings consist of four groupings (B, C, D, E) and other back-
ground points (green pixels). In Figure 3 (b), all red pixels within grouping A work
together to enhance the grouping salience by feature contrast to compete with the
surroundings. Along with this global competition, local competitions among pix-
els within grouping A also produce a negatively enhanced effect on the grouping
salience due to the same features of these pixels. In Figure 3 (c), the green star sub-
grouping in grouping A brings a suppressive effect on the total A grouping salience
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when it competes with green pixels in the background but a enhanced effect when
it competes with the non-green groupings and pixels with A and elsewhere. The
final salience of grouping A depends on the competitive effects brought by all of
the components within A (including red pixels, white star and green star).
Based on the above considerations, the contrast between any two points is the

primitive operation in the computation of grouping salience. However, we are not
claiming that the salience computation theory introduced below is complete. The
paper in fact is concerned with salience deriving from the colour, intensity, ori-
entation, and distance factors only. Many other factors affecting salience are not
included here, such as motion, shape, size, depth and the like (see [94] for the re-
lated issues in visual search). One unconsidered factor about relative size difference
between groupings will be discussed later (see section 2.4.3).
The salience of a grouping is calculated by combining the colour, intensity, and

orientation salience of the components of the grouping. Due to the close relationship
between the chromatic opponent-colour channels and the achromatic (white-black)
channel in the visual perception and contrast process [90,91], we calculate colour
and intensity salience together.
Suppose < is any given grouping at the current resolution scale λ at time t, Θ

is the surroundings of <. If ∀<i ∈ <, ∀<j ∈ (< ∪ Θ) and i 6= j, we calculate the
colour-intensity salience SCI and orientation salience SO of <i by:

SCI(<i;λ; t) = fCI(<i; {<j};λ; t)

SO(<i;λ; t) = fO(<i; {<j};λ; t) (6)

where fCI , fO are the calculating function of colour-intensity, orientation salience
between <i and <j respectively. The salience S of grouping < is given as:

S(<i;λ; t) = Γ [SCI(<i;λ; t);SO(<i;λ; t)]

S(<;λ; t) = Ψ[S(<i;λ; t)] (7)

where Γ, Ψ are normalization and integration functions respectively. These func-
tions are defined in detail below.
This computational model of saliency is built upon the principle of localization,

relativity and the dynamics of visual input in the scene as covert attention occurs.
As pointed out in [35], most (stable) objects in a normal environment are not
intrinsically salient but can become salient if they are behaviourally significant.
The normal scene has a hierarchical structure, thus features may not always have
the same salience when viewed in extended regions or larger contexts. In other
words, the salient difference among objects or features may change over time, or
as background or the context of the scene changes. The saliency computation is
a complex and difficult problem. Until now few research studies in the field of
attention in machine vision have dealt with it (however, see [46,47,79] for some
discussion related to spatial saliency map). From our point of view, visual saliency
arises from the competition between different groupings and between a grouping
and its surroundings.
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For simplicity in formulas, all computations below are defined for a given cur-
rent time and resolution scale. The salience computation at other times and spatial
scales is similar because the salience of a grouping is decided only by the current
constitution of the grouping and its surroundings. Thus the changing of salience
over time (salience dynamics) of a grouping depends upon the varying of the group-
ing’s current constitution and surroundings over time. That is, the same computa-
tion rules are used for any time and scale when the segmentation of groupings at
that time and scale is given. In this way, the full details of the computable approach
are given below.

2.4.1 Colour and intensity salience
Assume x, y are two arbitrary pixels in a grouping < on level λ of pyramids of

colours, intensity, and orientations. Then, the properties of x and y can be denoted
by a tensor composed of a 4-dimension colour vector, a 1-dimension achromatic
intensity vector, and a 4-dimension orientation vector. For example, pixel x =
({Rx,λ,<, Gx,λ,<, Bx,λ,<, Yx,λ,<}, {Ix,λ,<}, {Ox,λ,<(θ1), Ox,λ,<(θ2), Ox,λ,<(θ3), Ox,λ,<(θ4)}).
In the following section we suppose all calculations are within a given group on a
given pyramid level, so the subscripts < and λ will be generally omitted. We first
compute the property contrast between pixels x and y. Let RG and BY be the two
colour “double-opponent channels” of red-green/green-red and blue-yellow/yellow-
blue [27,48], so we have:

RG(x, y) = |(Rx −Gx)− (Ry −Gy)|/2

BY (x, y) = |(Bx − Yx)− (By − Yy)|/2 (8)

The colour chromatic contrast ∆C between x and y is calculated as:

∆C(x, y) =
√
η2
RGRG

2(x, y) + η2
BYBY

2(x, y) (9)

where ηRG and ηBY are the weighting parameters. In this paper, we set them as:

ηRG =
Rx +Ry +Gx +Gy

Rx +Ry +Gx +Gy +Bx +By + Yx + Yy

ηBY =
2
√
B2
x +B2

y + Y 2
x + Y 2

y

3× 255
(10)

where the 255 parameter is used here because of the representations of colour and
intensity in this paper have the maximum value 255. The weights ηRG and ηBY
can be optimized further according to more colour discrimination experiments or
references in the colour research literature. The results produced by setting ηRG
and ηBY as those in formulae (10) are very close to L*u*v* (see [63,74] for related
issues). We obtain equal maximal contrasts between opponent colours such as red
and green, blue and yellow, or white and black. The contrasts between other colours
are also reasonable. For example, it is acceptable that the colour contrast between
yellow and black is greater than yellow and white, etc. (see [50,63,95] for more
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discussion). All values of colour-intensity contrasts between x and y fall into the
range [0 . . . 255].
The intensity contrast between the two pixels x and y is:

∆I(x, y) = |I(x)− I(y)| (11)

So, the formula for calculating salience SCI(x, y) of colour-intensity between x and
y is:

SCI(x, y) =
√
α∆C(x, y)2 + β∆I(x, y)2 (12)

where α and β are weighting coefficients and we here set them to 1.
Suppose dgauss is the Gaussian distance function between x and y. The Gaussian

distance is defined as:

dgauss(x, y) = (1−
‖x− y‖

n̂− 1
)e−

1
2σ2 ‖x−y‖

2

(13)

with the scale σ and distance ||x−y||. In the experiments in this paper, the Gaussian
scale σ is set to n̂/ρ where n̂ is the maximum of the width and length of the feature
maps on the current pyramid level λ. ρ is a positive integer and generally 1/ρ may
be set to a percentage of n̂, such as 2%, 4%, 5%, or 20%, 25%, 50%, etc. The greater
ρ is, the smaller the radius between the neighborhood and its surrounding center is.
In this way, the Gaussian distance guarantees competition throughout the attention
window but the strength varies with distance. This function produces strong local
competition between short-range neighbours and weak competition between long-
range neighbours. Such similar effects of attention competition have been found in
visual cortex [16]. Research on cortico-cortical connections shows that inhibition
from the surround of the same stimulus properties as the center is strongest [80].
The distance ||x − y|| can be the Euclidean distance but we prefer a chessboard
distance: ||x − y|| = MAX(|i − h|, |j − k|), (i, j), (h, k) are the coordinates of
x, y on the current pyramid level. MAX denotes the maximizing operator. The
reason for selecting the chessboard distance is that with the aid of this operator,
the neighbours within the same, 8-adjacency neighbourhood have equal distance
effects on their common center and the “center-surround” function can be easily
simulated.
Let NHCI be the neighbourhood surrounding x, yi ⊂ NHCI (i = 1 . . . n×m−1)

be a neighbour. We use the following formula to calculate the colour-intensity
salience of x:

SCI(x) =

n×m−1∑
i=1

SCI(x, yi) · dgauss(x, yi)

n×m−1∑
i=1

dgauss(x, yi)
(14)
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2.4.2 Orientation salience
We define θx,y as the orientation difference between pixels x and y. Let ux(θ)

and uy(φ) be the orientation vectors of x and y in the current orientation pyramid
respectively. Note that u, θ, and φ themselves all consist of multiple components.
For example, ux(θ) = [ux(0), ux(

π
4
), ux(

π
2
), ux(

3π
4
)], if we have four preferred orien-

tations. We define the orientation salience CO(x, y) of x to y as:

CO(x, y) = dgauss(x, y) sin(θx,y) (15)

where dgauss has already been defined in equation (13). A major reason that we
select a sinusoid function for orientation contrast is that this function is a nonlinear
and monotonically increasing function from 0 to 1 over the range [0, π

2
] and sym-

metric in [0, π]. Nothdurft has suggested that the salience of pop-out targets has a
nonlinear (enhanced) character from threshold and saturation effects with increas-
ing orientation contrast from 0 to π

2
[66]. If ux and uy have orientation strengths

at all orientations, then the general calculation for θx,y can be given by:

θx,y =

π∫
0
φ

[
π∫
0
ux(θ)uy((θ + φ) mod π)dθ

]
dφ

∫∫ π
0 ux(θ)uy((θ + φ) mod π)dθdφ

(16)

For practical computation in this paper, we give the following discrete form for
θx,y:

θx,y =

ζ−1∑
j=0

jϕ
ζ−1∑
i=0

ux(iϕ)uy((iϕ+ jϕ) mod π)

ζ−1∑
j=0

ζ−1∑
i=0

ux(iϕ)uy((iϕ+ jϕ) mod π)

(17)

where mod is the standard modulus operator, ζ is the number of orientation
pyramids or preferred orientations, ϕ = π/ζ. When ζ is 4 or 8, ϕ is π/4 or π/8.
The salience computation for orientation is more complicated than for colour-

intensity. It is most important to take into account the homogeneity/heterogeneity
of the neighbourhood of each point which is currently taken as a center for center-
surround calculation. Psychophysical findings show that “pop-out” is closely re-
lated to the distribution of orientations in the local neighbourhood [57,69,85,87,94].
Aiming at a practical computation of orientation salience, further considerations
of “center-surround” operations are provided as follows.
Let yi (i = 1 . . . nk, nk is the number of neighbours in the k-th neighbourhood)

be a neighbour in the distance k or k-th neighbourhood NHO(k) surrounding x.
It is clear that the distance 1 or first neighbourhood of x has 8 closest neigh-
bours surrounding x, and that the distance k neighbourhood has 8k neighbours. A
boundary check must be applied to ensure all data comes from within the current
image layer. Then the average orientation contrast of x to its k-th neighbourhood
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is:

CO(x,NHO(k)) =
1

nk

∑

yi∈NHO(k)

CO(x, yi) (18)

Suppose n0 is the number of different directions within NHO(k), we have ωk =
n0−1. This is used for checking and evaluating how heterogeneous the orientations
are in the neighbourhood of x. n0 can be obtained by a simple method: set n0 = 0;
then n0 = n0 + 1 if the orientation on which yi has the maximum value on all
orientation maps (this means the maximum sub-orientation vector of yi is on that
map) is different from the maximum sub-orientation vector of yi+1.
We use the same set of histograms above to evaluate the orientation homogeneity

of the whole surround of x. Let wijk be yi’s value on the orientation (θj) feature
maps on k-th neighbour “ring”, nr be the number of “rings” in the whole neigh-
bourhood of x, then the method to calculate homogeneity weight ω for the whole
surround is given in formulae (20).
Under these considerations, we have the orientation contrast of x to its k-th

neighbourhood:

ĈO(x,NHO(k)) =
CO(x,NHO(k))

ξ + ωk
(19)

where ξ is a parameter used to prevent a zero denominator and usually set to 1.
Let mr be the number of “rings” in a neighbourhood, and dgauss(k) (defined in

equation (13)) be the Gaussian distance of the k-th neighbourhood to x. Because
of the chessboard distance, dgauss(k) is the same for each point within x’s k-th
neighbourhood. Finally, the orientation salience of x to all of its neighbours is:

CO(x) =

∑
k
ĈO(x,NHO(k)) · dgauss(k)

(ξ + ω) ·mr ·
∑
k
dgauss(k)

where

mr =
∑

k

1 and |ĈO(x,NHO(k))| > 0;

ω is given by:

ω =
∑

j

Ĥ(θj); Ĥ(θ) =
{
Ĥ(θj)

}
=





∑

k

∣∣∣Hk(θj)−H(θj)
∣∣∣

MAX
{
Hk(θj), H(θj)

}



 ;

Hk(θj) =
∑

yi∈NHO(k)

wijk(θj, yi); θj ∈ [θ1 . . . θζ ]; H(θ) =
1

nr

∑

k

Hk(θ) (20)
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2.4.3 The salience of a grouping
Suppose xi is an arbitrary component within a grouping <. Here, xi may be

either a point or a sub-grouping within <. Then the visual salience S of a grouping
< is obtained from the following formula:

S(<) = γCI
∑

i

SCI(xi) + γO
∑

i

SO(xi) (21)

where γCI , γO are the weighting coefficients for the colour-intensity, and orienta-
tion salience contributing to the grouping salience.

∑
i SO(xi) is computed from

the primary oriented components of grouping < but not from the shape of < it-
self. The shape distribution or boundary of a grouping may be arbitrary and may
conflict with orientations of the components in the grouping. This causes some
uncertainty about how to evaluate the direction of a grouping. Here we employ
a simple statistical method to deal with this problem (See [14] for other complex
statistical methods involved in this field). Suppose that xi0 , . . ., xij , . . ., xin0

∈ <
are components of a given grouping with orientation components θ0, . . ., θj, . . .,
θn0 respectively. CO(xij ; θj) is the orientation salience of xij with orientation θj,

Ô denotes the primary orientation on which (orientation) map the grouping <
has the maximum sum value at the current layer of the orientation pyramids. A
simple method to compute Ô is: calculate the value sum on each θj orientation
map of all components within < to obtain a distribution histogram of different
oriented vectors (as the horizontal ordinates); then take the orientation which has
the maximum value in the histogram. The formula for calculating

∑
i
SO(xi) is then:

∑

i

SO(xi) =
∑

i

CO(xi) when θj = Ô (22)

The above formulae for the salience computation of a grouping is a practical imple-
mentation based upon the theory discussed in equation (7). As mentioned before,
some other factors influencing salience are not considered at the moment, for ex-
ample, the relative size factor between a grouping and its surrounding groupings.
When the size of a target is different from the surrounding distractors but shares
all other properties with these distractors, the target will “pop-out”. The current
computation method is inapplicable in this special case. This factor looks like very
simple and seems easy to implement but it is not in practice. There are a lot of
problems associated with it and some are difficult to resolve. One problem is how
to evaluate the homogeneity of the target’s surround, especially to surrounding ob-
jects or regions. The homogeneity of a surround is affected by many factors such as
shape, orientation, or colour. The shape of an object or a region may be arbitrary,
so the “pop-out” by the relative size factor would depend upon the shape factor
as well even if excluding other factors such as how to quantify the relationship
between salience and the relative size.
Another problem is how to evaluate the degree of homogeneity and heterogeneity

of the surround of a grouping, especially under the consideration of orientation.
The method (formulae (18), (19), and (20)) used in this paper is simple and may
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a b dC

Fig. 4. An example for salience varying with relative size between the center target and
surrounding distractors

work under many homogeneous or heterogeneous environments. For example, the
homogeneity surround: all neighbours with the same orientation should be different
from another homogeneity surround: some different neighbour rings have (some)
different orientations but on each ring the neighbours have the same orientation.
But this method is not complete especially when the surround consists of arbitrary
objects. As mentioned above, an object has a shape and the shape may be arbitrary.
Even if ignoring other factors such as colours, how to calculate an object orientation
is not easy and this directly affects the homogeneity of a surround. The difficulty
is that there is no reference which can be used to evaluate an exact order of
the different homogeneity distributions of orientations. Solutions for the above
problems need more evidence from other research fields such as psychophysics and
neuroscience.
Figure 4 shows an example about the relative size factor. In Figures 4 (a) and

(b), the red target “pops-out” in (b) when it becomes smaller. But in Figures 4
(c) and (d), which green target is more salient? Although (c) and (d) are the same
to (a) and (b) except the target’s colour, it may be that the target in (c) is more
salient than the target in (d).

2.5 Competition pool of attention

In this module, different groupings are dynamically formed on different layers of
pyramids and compete for attention selection from the coarsest level to the finest
level by visual saliency interacting with top-down attentional biasing. The output
is the dominant signal of the competitive winner(s) which is used to control the
preferential processing or selectivities of visual attention. According to [15,16,24],
the competition for visual attention can occur at multiple processing levels from
low-level feature detection and representation to high-level object recognition in
multiple neural systems. Also, “attention is an emergent property of many neural
mechanisms working to resolve competition for visual processing and control of
behaviour“ [15]. The above studies provide the direct support for the integrated
competition for visual attention by binding object-selection, feature-selection and
space-selection. The grouping-based saliency computation and hierarchical selec-
tivity process proposed here, therefore, is a possible approach for achieving this
purpose. Hierarchical selectivity operates on bottom-up visual salience from var-
ious groupings on each pyramid layer in the space-time context and top-down
attentional setting. The outline of top-down attentional setting logic is shown in
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Figure 5. It is implemented as a control set of four attentional states for the current
bottom-up visual input at any competitive moment:

(1) Positive priming by which consistent bottom-up input will gain a competitive
advantage;

(2) Negative priming which is contrary to positive priming;
(3) Aimless or free state in which visual attention presents a neutral state to any

visual input and thus the competition for attention is completely decided by
bottom-up visual saliency;

(4) Unavailability state in which visual attention is occupied at the moment. It
means no visual attention is available.

As pointed out in [34,51], top-down priming and bottom-up visual saliency both
play important biasing roles in attention capture. Top-down biasing signals affect
the competition for selective attention by increasing or decreasing the baseline of
neural activity. Until sufficient psychophysical findings are found to show how top-
down influence directly amplifies or reduces the intrinsic salience of targets, it is
feasible to take the top-down setting into the threshold of attentional competition
as proposed below. If employing a competitive neural network such as a WTA
(winner-take-all) network, a top-down setting could be implemented by installing a
dynamic threshold for neuron firing but the overall computational cost for dynamic
attention competition is expensive. A complex structure with an enormous number
of neurons with population competition is needed.
The solution presented here is to implement attentional setting via a threshold

at the decision-points in the hierarchical selectivity process. Top-down attention
setting here plays two roles: one is top-down biasing for globally and locally at-
tentional competition; another is an intention request of whether to “view details”
of a grouping (e.g. its sub-groupings) when attention is deployed at a grouping.
However, top-down priming for special objects or groupings is very complicated
since intricate object recognition from higher level processing is at least required.
At present, top-down biasing here aims to act only on the level of basic features
which here are the colour, intensity, and orientation feature pyramids.
The top-down signals (Table 1) include two flags for colour (which also includes

intensity) and orientation top-down biasing and one flag for “view details”. Each
flag encodes the states of its correspondingly top-down signal. For colour and ori-
entation flags, “00” is the default case in which all groupings compete for visual

Top-Down  Attention Setting

Expectance Case Default Case

Positive
Priming

Negative
Priming

Aimless Unavailability

Fig. 5. Top-down attention setting
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colour flag colour input orientation flag orientation input “view details” flag

Table 1 Top-down attention setting to the basic features

attention in the pure bottom-up way; “01” encodes positive priming in which all
groupings with the positively primed feature preferentially compete for attention
and at the same time other competitors are suppressed; “10” encodes negative
priming which is the inverse to positive priming; “11” is the unavailable state in
which all groupings having these features are prevented from attracting visual at-
tention. For the “view details” flag, “0” signals “continue” to explore details of a
grouping (i.e. its sub-groupings if they exist at the current resolution or the finer
resolution) and “1” means “shift” attention from the current winner to the next po-
tential winning grouping. The next winner will be generated from the unattended
groupings at the same resolution as the current winner if these groupings exist,
otherwise from the unattended groupings that lie at the same coarser resolution as
the parent grouping of the current winner (see hierarchical selectivity below). This
process links from the “lineal chain” to the “collateral chain”.
Hierarchical selectivity operates on the interaction between grouping salience and

the top-down attentional setting at any competitive moment. The competition for
visual attention occurs first among the coarsest groupings (existing at the coarsest
resolution) by global competition. Through a WTA (Winner Take All) mechanism,
visual attention is firstly deployed to the winning competitor. Then, a top-down
or goal-driven (request) control of whether “continuing” to view the details within
the current grouping or “shifting” attention out of this grouping takes place.
If switching attention, the next winning competitor gains visual attention with

the aid of an “inhibition of return” mechanism which prohibits attention from in-
stantly returning to a previously attended winner. The priority order for generating
the next potential winner is:
(1) The most salient unattended grouping that is a sibling of the current attended

grouping. This winning grouping has the same parent as the current attended
grouping and both lie at the same resolution.

(2) The most salient unattended grouping that is a sibling of the parent of the
current attended grouping, if the above winner can not be obtained.

(3) The backtracking continues if the above is not satisfied.
Temporary inhibitions to the attended groupings can be used to implement in-
hibition of return. More elaborate implementations may introduce dynamic time
control into different winners so that some previously-attended groupings can be
visited again. But here we are only concerned that each winner is attended once.
If continuing to check the current attended grouping, the competition for atten-

tion based on bidirectionally bottom-up and top-down interaction by local competi-
tion is triggered firstly among the sub-groupings that exist at the current resolution
and then among the sub-groupings that exist at the finer resolution. This indicates
that the sub-groupings at the finer resolution do not gain attention until their sib-
lings at the coarser resolution are attended. By the force of WTA, the most salient
sub-grouping wins visual attention.
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Fig. 6. Diagram of hierarchical selectivity: see text for detailed explanation.

After attention has been directed to the winning grouping/sub-grouping, the
same (top-down) goal-driven method is used to determine whether or not to “con-
tinue” to look into the details within this grouping/sub-grouping. If not, another
attention “shift” takes place. If continuing to examine the particulars of this
grouping/sub-grouping, another local competition triggers. When “continuing” to
check an attended grouping/sub-grouping is requested, if there is no sub-grouping
existing at the current or a finer resolution, hierarchical selectivity goes back to
the parent of the current attended grouping. At this moment, the same “continu-
ing/shift” attention occurs. This “continuing/shift” recursive procedure continues
until the desired goal is reached or all groupings in a scene are attended.
As we mentioned before, the grouping salience computation is independent of

how to segment the groupings in a scene (Section 2.4). The mechanism for hi-
erarchical selectivity is also independent of what/how a segmentation is used at
multiple resolutions or a single resolution for a scene. The choice of segmentation or
grouping method is not included in these two mechanisms. Hierarchical selectivity
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1. competition begins among the coarsest groupings at the coarsest resolution;
2. if (no unattended grouping exists at the current resolution) goto step 10;
3. unattended groupings at the current resolution are initialised to compete for attention

based on their salience and top-down attentional setting;
4. check the colour-flag and orientation-flag and apply corresponding top-down processing
to modify the active states of the groupings (details are not implemented in this paper);

5. all (modified) groupings compete for attention;
6. attention is directed to the winner (the most salient grouping) by the WTA rule;

set “inhibition of return” to the current attended winner;
7. if (the desired goal is reached) goto step 12;
8. if (“view details” flag=1) (i.e. don’t view details and shift the current attention)

{ set “inhibition” to all sub-groupings of the current attended winner; }
if (the current attended winner has unattended siblings at the current resolution)
{ competition starts between these siblings; goto step 2 and replace the grouping(s)
by these siblings; }

else goto step 11;
9. if (“view details” flag=0) (i.e. continue to view the details of the current attended

winner)
if (the current attended winner has no sub-grouping at the current resolution)
goto step 10;

else { competition starts between the winner’s sub-groupings at the current
resolution; goto step 2 and replace the grouping(s) by the winner’s
sub-groupings; }

10. if ((a finer resolution exists) and (unattended groupings/sub-groupings exist at the
finer resolution))
{competition starts on groupings/sub-groupings at the finer resolution; goto step 2;}

11. if (the current resolution is not the coarsest resolution)
{ go back to the parent of the current attended winner and goto step 2; }

12. stop.
Table 2 The algorithmic description of hierarchical selectivity

runs on a given segmented scene and is driven by both the top-down attentional
setting and the current distribution of the given segmentation and the correspond-
ing salience. Switching attention between groupings/sub-groupings (and between
the coarse and fine resolutions if multiple resolutions are used) is then controlled.
A diagram summarizing the recursive procedure for hierarchical selectivity is given
in Figure 6. Its algorithmic description is given in Table 2.
Two goals can be achieved by taking advantage of hierarchical selectivity. One

is that attention shifting from a grouping to another and from groupings/sub-
groupings to sub-groupings/groupings can be easily carried out. Another is that
the model may simulate the behaviour of humans observing something from far
to near and from coarse to fine. Meanwhile, it also easily operates at a single
resolution level. In addition, a declaration we made here is that the top-down
attentional setting in hierarchical selectivity is not completely implemented in this
paper although its possible approach is given in the algorithm. Except of “colour-
flag=00”, “orientation-flag=00” and “view details flag”, other cases will be realized
in the future.
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Support for this approach to hierarchical selectivity has been found in recent
psychophysical research on object-based visual attention. It has been shown that
features or parts of a single object or grouping can gain an object-based attention
advantage in comparison with those that are separated from different objects or
groupings. Also, visual attention can occur at different levels of a structured hi-
erarchy of objects at multiple spatial scales. At each level all elements or features
coded as properties of the same part or the whole of an object are facilitated in
tandem (see [4] for a review of these viewpoints and detailed findings).

2.6 Perceptual grouping

It has been suggested [4] that grouping processes and perceptual organization
play an integral role in object-based attention. Features that are grouped together
compete against other feature groupings and obtain faster processing than fea-
tures that do not belong together. Perceptual grouping is a complex combinatorial
problem which involves in a lot of influence factors including top-down interfer-
ence in many conditions. These factors work together to affect how groupings are
segmented, such as spatial proximity, similarity, common fate, shared properties,
and even experience and learning [68, p.257-309]. In many cases, the rules for seg-
mentation and interpretations of groupings are associated with visual tasks and
experience. Nevertheless, study of this field is out of the current scope of our re-
search. The groupings used in this paper are produced by manual preprocessing
based on Gestalt principles and heuristic knowledge, to provide the basis for ex-
periments with our attentional model. The principles of grouping used are some
common rules: proximity, closure, continuity, common fate, familiarity, and shared
properties. A visual grouping is defined as an effective hierarchical structure formed
by all components according to these principles. For example, objects which share
a common colour or orientation and are separated from their surrounding which
does not share this colour or orientation may be organized as a grouping. Objects
belonging to a large group or share the same spatial location may be segmented
into a multi-level structured grouping. In Figure 14, the white stripes in the road
are grouped into three groupings by their familiarity. The four cars are organized
as a grouping by their common fate. Two people are grouped together by their
proximity.
In fact, the “grouping” we are addressing here is the “perceptual units” which

serve as the potential units of attention. For object-based attention, it is the “proto-
objects” produced by various segmentation processes rather than the conceptual
or recognizable “objects” we commonly experience in real word. “Evidence sug-
gests that ‘object-based’ attention and ‘group-based’ attention may reflect the
operation of the same underlying attentional circuits” [78]. One general criticism
of object-based attention is the question whether objects are recognized before
or after the selectivity by attention or visual segmentation processes occurs with
attention/without attention, that is, also the traditional story in terms of “early
selection” and “later selection” or the degree of preattentive processing in the vi-
sual systems. The issues we stress here may lead to clear this misunderstanding
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and the detailed discussion of issues can be found in [18,78].

3 Results and Discussion

For the evaluation of our object-based attention model, we ran a number of
experiments based on synthetic and natural images.

3.1 Performance in synthetic images

The goal of the experiments in this section is to compare the performance of our
model with human behaviour in visual attention experiments. The experiments are
designed for this purpose. Additional experiments can be found in [83].

3.1.1 Neighbourhood influence on a grouping
Many psychophysical studies of visual attention (especially on object-based at-

tention) have suggested that visual search is greatly affected by the attribute dis-
tribution and interaction between target and its surroundings (see [4,70,94] for a
detailed explanation). These effects are clearly observed in experiments testing sim-
ilarity or shared feature dimensions between target and non-target and homogene-
ity or heterogeneity of non-targets themselves. When the distractors surrounding
the target are more homogeneous to each other and share less features with the
target, search becomes more efficient or accelerated. Perceptual grouping also plays
an important role, by which distractors are grouped by type so stronger grouping
strength leads to easier pop-out [20,55,59].
We designed three kinds of experiments to test the model performance. The ex-

periments probe the salience variation of the target in response to the surrounding
changing without top-down attentional priming. It is also not necessary to calcu-
late the target’s salience on all resolution levels. For a demonstration, it is sufficient
to compute the target’s salience on the coarsest resolution and set the top-down
attentional setting to the free-state by default. (This kind of consideration runs
through the following synthetic experiments by default.)

Experiment 1: The scaling effect of uniform neighbours
The experimental method is that the target is located at one place and kept

fixed. Then we add more and more homogeneous neighbours which have at least
one feature different to the target. The goal of this test is to prove that when the
number of such homogeneous neighbours increases (i.e., the facilitated strength
of the neighbours is stronger), the target’s salience increases so that the target’s
pop-out becomes easier. We produced two series of sub-experiments to examine
the model performance. In experiment A and B, the created images are all of
256× 256 and the target is always a red bar located at the center of the displays.
Green horizontal bars are gradually added in the neighbourhood of the target and
kept homogeneous. Compared with experiment A, the target in experiment B is
vertical. So, the target is different from its neighbours by only one feature of colour
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Fig. 7. The performance of the model in experiments varying the scaling effect of uniform
neighbours. Left and middle columns: two of the displays used in each sub-experiment.
The related results of each experiment are shown in the right graphs respectively.

in experiment A, two features of colour and orientation in experiment B. Features
considered in the computation of the target’s salience are colour and orientation.
Both distractors and background take part in the salience computation of the
target. That is, the target’s salience is derived from the contrast not only between
the target and distractors but also between the target and background. Figure 7
shows several created images and the results of the target’s salience in these two
experiments.

Discussion: The results from experiments A and B clearly show increasing tar-
get salience with increasing homogeneous neighbours (greater strength of neigh-
bourhood). This is consistent with the findings from psychophysical experiments.
Furthermore, the curve in experiment B ascends faster than that in experiment
A (notice the different scales of Y-axes in experiments A and B). It is suggested
that uniform neighbours sharing fewer features with the target make the target
more salient and hence attract more visual attention. We also did another exper-
iment based on experiment A (not presented) in which we adjusted the target’s
size. When the target became smaller its salience became smaller. But when the
target became smaller and shared the same colour with the distractors, the results
became unpredictable because of the relative size factor. As we already discussed
in section 2.4.3, the model will fail to perform for this special case.

Experiment 2: The effect of coherence in the target’s neighbourhood
This experiment investigates the salience of the target in an originally homoge-

neous surrounding by gradually changing one attribute of more and more neigh-
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bours to another one (colour or orientation) but keeping them homogeneous. We
produced two series of test images with size 256×256 for two sub-experiments. In
the first sub-experiment more and more items surrounding the target change colour
to be the same as that of the target. The target’s salience comes from its compar-
ison with all other circles and green background. In the second sub-experiment,
the neighbour items become orthogonal to the target one by one. In this sub-
experiment, the salience of the target is derived from its comparison with all other
red bars and black background. To remove the effect of distance varying when a
horizontal bar is rotated, the computation for distance factor is designed as: all red
bars within the same neighbourhood have the same distance whatever their orien-
tations are. That is, when a horizontal red bar is rotated to vertical, its distance
remains the same as before. Several images and the results of these experiments
are given in Figure 8.

Discussion: The results shows that the target’s salience becomes weaker as more
neighbours share the same colour as the target in experiment 2-A, but stronger
as more neighbours turn orthogonally to the target in experiment 2-B. The rea-
son is that in experiment 2-A the strength of grouping based on the colour green
within the target’s homogeneous neighbourhood became weaker while the strength
of grouping based on colour red is stronger. In experiment 2-B, although the neigh-
bours form two types of groupings, the new continuously growing grouping did not
affect the neighbourhood homogeneity but enhanced the contrast to the target. In
fact, both experiments have the same nature but reflect different aspects of the
effect of the target’s neighbourhood. The result of experiments 1 and 2, as pointed
out in [21,43] and other researches on object-based visual attention, have shown
that stronger grouping distractors and greater differences between the target and
distractors enable the target to be sought more efficiently. In other words, stronger
contrast between the target and its neighbourhood makes the target more salient
to capture visual attention in the bottom-up competition.

Experiment 3: Effect of the target neighbourhood heterogeneity
This experiment examines the performance of the model in heterogeneous cir-

cumstances. In theory, the target should be less salient with a more disorderly
distribution of the neighbourhood. The method used here is similar to the two pre-
vious experiments. The red vertical target was initially located at the center of a
homogeneous surrounding in which the same colour bars are orthogonal to the tar-
get. After that, we gradually varied the neighbours’ orientations to create a series
of more and more heterogeneous displays. One experiment is shown in Figure 9. All
displays have added 30% random colour noise. The target’s salience is computed
by colour and orientation of the target contrasting with both of the distractors and
background. Although we do not give results from all the experiments, the overall
experimental results are similar to that in Figure 9.

Discussion: The results shown in the bottom diagram in Figure 9 indicate that
the target’s salience decreases with the growing heterogeneity of its surroundings.
This means that the efficiency of visual search becomes worse and worse. Notice
that the downtrend of salience is much steeper in the first four steps and tends

25



Fig. 8. Model performance when varying attributes of target’s neighbours in a homoge-
neous environment. 2-A: the target is a red circle located at the center of the display
and the neighbours change to the colour of the target. 2-B: the target is the vertical
red bar located at the center of the display and its neighbours change to the orientation
orthogonal to the target. Left column: first test display. Middle column: 8th test display.

Fig. 9. Model performance in an oriented heterogeneous environment. The target is the
red vertical bar located at the center of the display. Its neighbours become more and
more heterogeneous by gradually varying their orientations from the target and each
other. Two members of the sequential displays are shown here.
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to a mild decline afterwards. The saturated tendency effect is not surprising but
expected. The Gabor filter for orientation extraction used here is sensitive to four
orientations of 00, 450, 900, and 1350. When the number of disorderly orientations
exceeds four directions, the result is an almost saturated weight ω in equation
(19) (see Section 2.4.2) because ω is limited by the maximum different orientations
(4 here). This ω is used to evaluate the orientation disorder within an object’s
neighbourhood. Another observed phenomenon from the graphs in Figure 9 is that
the main contributor to regularly reduce the target’s salience is the orientation
disorder factor rather than feature colour. The explanation for this effect is that
the distractors always shared the same colour with the target and the varying
position of each pixel within each distractor grouping in this experiment produced
only a tiny effect in the colour contrast between the target and the distractor, so
the overall trend of the target’s salience is hardly affected by the colour of the
surrounding features.
We have also examined the behaviour of the model performance with varying

target intensity with a random noise background, varying target orientation from
0 to 360 degree [66], and the eccentricity of the target location [94]. The results on
these experiments are compatible with the corresponding findings from the human
psychophysics literature.

3.1.2 Grouping effect and related hierarchical selection
Figure 10 shows a display in which the target is the only vertical red bar and

no one of the bars has exactly the same colour as another bar. Three bars have
the same orientation and others have different orientations. If we do not use any
grouping rule, each bar may form a single grouping by itself. Then we obtain 36 sin-
gle groupings. If segmenting the display by shared orientation, the only structured
grouping is formed by the 3 vertical bars, which includes the red target (forms
one sub-grouping) and other two vertical green bars (forms another two-level sub-
grouping). In this way, 34 top groupings (38 in total) can be obtained: a structured
three-level grouping (contains 4 sub-groupings) and 33 single groupings formed by
other distractors respectively. The resulting salience maps and attention sequences
for these two segmentations are given in Figure 10. The background, colours, and
orientations are considered in the salience computation. The top-down attentional
setting is set to the free state, so this is pure bottom-up attention competition.
The results show different orders of paying attention to the targets. The target

belonging to a grouping (see Figure 10 (C1), (C2), (C3), (C4), and (C5)) has an
advantage in attracting attention much more quickly than the non-grouped. The
competition starts among different groupings in the display. The structured group-
ing of 3 vertical bars is the most salient compared to others and obtains attention
firstly. Then the competition occurs within this grouping between the target and
another sub-grouping formed by the two vertical but different colour bars. Atten-
tion is directed to the sub-groupings according to their salience orders when we
do not consider top-down attentional priming. The target is attended after the
two-level sub-grouping is attended. This grouping advantage for attentional com-
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Fig. 10. An example for structured groups and hierarchical selection. In the display the
target is the vertical red bar at the third row and the second column. B1: salience map
(in shades of grey) in the case of no grouping. B2: partial attention sequence of most
salient bars for B1. C1: salience map in the case of grouping. C2, C3, C4: salience maps
of the grouped bars. C5: partial attention sequence of most salient bars for C1. B, C:
salience histograms for B1 and C1 respectively. Note target is attended after 7 shifts in
B2 but only 3 in C5.

petition has been confirmed by psychophysical research on object-based attention
[4,78].

3.2 Performance in natural scenes

In the previous section we examined several aspects of our attentional model
by using some artificial images and successfully compared our results with related
findings in psychophysical research. To investigate the model in complex natural
scenes, we used colour outdoor photographs taken with a digital camera. The
implementations for both of “from coarse to fine” and “from far to near” human
eye simulations in these real imagery are described in detail.
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Fig. 11. An outdoor scene photographed from far and near distance respectively. The
obtained images shown here are the same scene but different resolutions. The salience
maps is shown too and the grey scales indicate the different saliences of the groupings.

3.2.1 Hierarchical Selectivity
As suggested in [78], “there may be a hierarchy of units of attention, ranging from

intra-object surfaces and parts to multi-object surfaces and perceptual groups”.
Hierarchical selectivity is a novel mechanism designed for shifting attention from a
grouping to another one or from a parent grouping to its sub-groupings as well as
implementing attention focusing from far to near or from coarse to fine. It can work
under both multiple (or variable) resolutions and single resolution environments.
Resolutions can be either scaled by pyramid decomposition scheme or by digital
camera. Here an outdoor scene is used to demonstrate the behaviour of hierarchical
selectivity. In figure 11, the same outdoor scene is photographed from far and near
distances respectively so that two coarse (64×64) and fine (512×512) resolution
photographs are obtained. In the scene, there are two groupings: a simple shack
in the hill and a small boat including five people and a red box within this boat
on a lake. The people, red box, and the boat itself constitute seven sub-groupings
respectively for this structured grouping. The 1/ρ parameter for Gaussian distance
is set to 25% and the Gabor filter is sensitive to 4 orientations [00, 450, 900, 1350].
The model works with these two images, using the coarse and fine images as

different resolution levels. For this purpose, only feature (colour, intensity, and
orientation) maps at the lowest level of the pyramids are created for each image.
(Multi-level pyramids used to simulate attending a complicated natural photograph
from far to near and coarse to fine is also implemented in this paper. See the next
sections for details.) Competition for attention starts in the coarse or far image
(Figure 12). Using hierarchical selectivity, attention is firstly deployed to the winner
(here the shack) and suppresses other competitors. Then attention shifts to the fine
image for further checking this winner if answering “yes” to the “view details” flag.
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Fig. 12. The attention movements implemented for the outdoor scene: blue arrows indi-
cate attentional movements between resolutions and red arrows denote attention shifts
at fine resolution.

If the answer is “no”, the model will check if there is(are) any other grouping(s)
existing at this image. When attention is shifting, an “inhibition of return” is
set for this attended grouping. Because the shack has no sub-groupings, attention
switches again to the coarse image and checks if there exists any next winner.
Thus the boat grouping obtains attention. In the same way as attending the shack,
answering “yes” to the “view details” flag attention shifts to its sub-groupings in
the fine image. At this moment the competition for attention triggers among the
seven sub-groupings. Attention is deployed to these sub-groupings by hierarchical
selectivity. The salience maps computed for these groupings are shown in Figure
11 and the sequence of attention deployments is shown in Figure 12. The attention
deployment trajectory shown in Figure 12 reveals reasonable movements for this
natural scene.

3.2.2 Hierarchical Selectivity From Coarse To Fine
The image presented in Figure 13 has 512×512 pixels and contains many struc-

tured objects and groupings. The pyramids in the model used here have three
layers, ranging from resolutions 128×128 to 512×512. The Gabor filter was set to
be sensitive to 4 orientations [00, 450, 900, 1350]. The 1/ρ parameter for Gaussian
distance was set to 50%. The model firstly extracted colours, intensity, and ori-
entations from the photo and constructed altogether 9 three-layer pyramids: one
intensity pyramid (Figure 15), four colour pyramids (Figure 16), and four orien-

30



Fig. 13. An outdoor photograph.

tation pyramids (Figure 17). Eleven meaningful groupings of objects were created
manually by preprocessing according to Gestalt grouping rules (see section 2.6).
Figure 14 shows the identifiers of the different groupings in this image. The nu-
merals pointed to by each white arrow denotes the identifier of each grouping at
multiple resolutions. The groupings which have the same prefix identifier belong
to the same parent grouping. The depth of each grouping is the index of its array
mark. For example, identifier 1-1 indicates that this is the first sub-grouping of
grouping No. 1. Identifier 1-1-2 denotes it is the second sub-grouping of grouping
No. 1-1. Groupings No. 1-1-1 and No. 1-1-2 have the same parent grouping No. 1-1.
The black circles or ellipses are used to conveniently distinguish different group-
ings (object(s) in the circles) and not the grouping boundaries. When viewing these
groupings at different resolutions, some groupings/sub-groupings will disappear at
the lower resolution. The hierarchy of groupings is shown in Figure 14 and Figure
26 which is discussed later.
The top-down attention setting was always set to the free state in this test. The

decision-points during hierarchical selectivity to drive whether or not viewing the
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Fig. 14. The identifiers of groupings in the given photograph.

Intensity Pyramid

Fig. 15. The intensity pyramid built from the photograph given in Figure 13.

details within a grouping were always answered “Yes”. Although this may make
hierarchical selection look like an exhaustive exploration, the general performance
of the model can be inspected in detail and completely (see the next section for
an alternative implementation in this view). As we discussed in section 2.5, the
control for recognizing which object is significant is very intricate and needs higher
visual processing related to the current visual tasks (also see the following dis-
cussion about the small white stripes in this scene). Future work will refine this
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Red Pyramid Green Pyramid Blue Pyramid Yellow Pyramid

Colour Pyramids

Fig. 16. The four colour pyramids built from the photograph given in Figure 13. (The
graphs are black-white inverted to improve visibility.)

0o  Orientation Pyramid 45o Orientation Pyramid 90 o Orientation Pyramid 135 o  Orientation Pyramid

Orientation Pyramids

Fig. 17. The four orientation pyramids built from the photograph given in Figure 13.
(Graphs in the second and third rows are black-white inverted to improve visibility.)

complicated control. In the more normal scenes, top-down priming proposed for
the “view details” flag will control choice to produce more interesting behaviour.
Here, the competition for visual attention was firstly triggered at the coarsest

resolution, namely the highest layer of the pyramids. During the attentional move-
ments, shifting into the higher resolution (lower layers of pyramids) or switching
to the lower resolution (higher layers of pyramids) dynamically changed depending
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Fig. 18. Salience of the attending grouping and competing groupings, as well as the se-
quence of attentional movements. The red, green, and blue arrows denotes that attention
is at or switched to the coarsest resolution, middle resolution, and finest resolution re-
spectively. The small red panel at the top left corner in each slide shows a zoomed view
of the objects. The red circle/semi-circle indicates the focus of attention. The grouping
identifiers are also given in each panel.
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Fig. 19. Continued slides of Figure 18
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Fig. 20. Continued slides of Figure 19

on the natural structure of the current grouping being attended and its surround-
ings. When a structured parent grouping is attended at high resolution, some/all
of its sub-groupings will be attended next at this current resolution if these sub-
groupings appear at the same resolution, or at the lower resolution if some/all of
its sub-groupings do not appear at the current resolution. In this procedure, some
sub-groupings within a parent grouping, such as some small white stripes in the
road, may have not much significance and may not necessarily be attended. This
further top-down control for shifting attention will need additional theory to incor-
porate the measure of object similarity, subject’s experience and the current visual
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Fig. 21. Applying the model for space-based attention. Each pixel is an individual group-
ing. Only the raw salience maps of pixels at three resolutions are shown here in shades
of grey.

task, etc. and is not implemented here. The results of the model performing on all
resolution levels are shown in Figures 18, 19, and 20.
At each attentional deployment, we show the entire or unitary salience of the

grouping which is currently being attended. When the related groupings are ready
to compete for visual attention we present the degrees of their individual salience (in
shades of grey) in comparison with all other competitors. The brighter a grouping
is, the more salient it is. It is worth noting that no mosaic appearance is seen
in the results because the model theory is based on object attention in which a
grouping competes for attention using its entire salience integrating the strength
of all its components. Thus, the salience shown is the grouping salience rather than
that of each pixel within the grouping. However, our grouping-based computation
approach can also be applied for spatial attention if we consider each pixel as a
grouping. Figure 21 gives the salience maps obtained from the same outdoor scene
for individual pixels at the coarsest resolution (graph C), middle resolution (graph
B), and finest resolution (graph A). The 1/ρ parameter for Gaussian distance for
this experiment is set to 2%.
According to the obtained results, the order of attention shifts is shown in Figure

22. We can see, the attention movements basically coincide with the salience differ-
ence between the objects in the scene. Some groupings, such as grouping 6, which
consist of several very small sub-groupings, do not exist at the coarser resolution.
They either have no way to take part in the competition, or lose much support
from their smaller members or components or from their surroundings which may
be useful to compete for attention at the finer resolutions. So generally, they lost
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Fig. 22. The overall trajectory of attentional movements of the model in multiresolution.
Red arrows show attentional shifts from one grouping to another. Yellow and purple ar-
rows show attention switches within groupings. The circles denotes the locus of attention.

some possible advantages when at the finer resolutions.

3.2.3 Hierarchical Selectivity From Far to Near
Three colour images shown in Figure 23 are taken using different resolutions from

far to near distance (64×64, 128×128, and 512×512) for the same outdoor scene.
The scene is segmented (by hand) into 6 top groupings (identified by the black
colour numbers: one object grouping 6 and five regions here) and 5 of them are
hierarchically structured except grouping 4. In the coarsest image, only grouping 6
(one boat including two people) can be seen. In the finer image, sub-groupings 5-1
and 5-3 within top grouping 5 appear but they lose details at this resolution. The
smallest boat (i.e. sub-grouping 5-2 of grouping 5) can only be seen at the finest
resolution. The salience maps of groupings during attention competition are also
briefly shown in Figure 23 where darker grey shades denote lower salience.
The competition first occurs among the top groupings at the coarsest scene.

The most salient grouping 6 therefore gains attention. When giving a “yes” to the
top-down attention setting (“view details” flag), attention will shift to the sub-
groupings of 6. Two people and the boat then begin to compete for attention. If
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Fig. 23. An outdoor scene taken from different distances. The dotted circles are used to
identify groupings but not their boundaries. The sequence of salience maps used for each
selection of the next attended grouping is shown at the middle. Attention movements
driven by hierarchical selectivity is shown at the bottom using a tree-like structure.
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Fig. 24. The attention movements implemented for the outdoor scene: blue and red arrows
indicate attention shifts between and at the same resolutions respectively. Arrows with
red solid circles denote attention is attending the top groupings.
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a “no” is given or after grouping 6 is attended, attention will shift to the next
winner grouping 2. If a “yes” is given too to the “view details” flag of grouping 2,
attention will first select sub-grouping 2-1 and then shift to sub-grouping 2-2. After
attending 2-2, if continuing to view the remainder of grouping 2, attention will shift
to the finer resolution to visit 2-3. When grouping 5 is attended, the lake (excluding
grouping 6) is visited first and then attention shifts to the finer resolution scene
where 5-1 and 5-3 start to compete for attention. In the case of giving a “yes” to
the top-down flag of the winner 5-3, attention will shift to the finest resolution
scene to check its details. Then attention goes back to the previous finer resolution
scene and shifts to 5-1. After that, attention shifts again to the finest resolution
scene. Thus the smallest boat 5-2 at the finest resolution is attended. Figure 23
shows the overall behaviour of the model performed on the scene. Using this same
scene, when stronger and stronger noise was added above σ = 17 for Gaussian
noise, the order of the attention movements changed. The above results clearly
show hierarchical attention selectivity and appropriated believable performance in
a complicated natural scene. In addition, although this model is aimed at computer
vision applications, the results are very similar to what we might expect for human
observers. The attention movements shown in Figure 24 reveal the reasonable shifts
of visual attention for this natural scene.

3.3 Improved behaviour of hierarchical selectivity in natural scenes

We have shown the model performance in the complex natural scene. For a com-
plete examination, we gave a positive response to each “view details” flag. However,
some small stripes (on the road) may be irrelevant to the current visual task and
are thus unnecessary to attend in turn. Also some tiny unreadable characters are
probably not worth notice by the observer. One possible way to improve the per-
formance on these targets is to incorporate a top-down recognition component or
learning process to produce a control function with reasonable salience thresholds
according to different environments and visual tasks. Our current model does not
yet implement this complicated top-down control. Instead, we propose an alter-
native demonstration of our model’s abilities by using a simple human-computer
interaction to give a positive or negative response to the “view details” top-down
attentional setting (see section 2.5 for more details).
Figure 25 shows a logical diagram of attentional movements in hierarchical se-

lectivity working on a hierarchical scene containing three structured groupings. In
this diagram, groupings A, B, and C have a decreasing salience order and the left
sub-groupings have greater salience than their right siblings. That is, the saliences
of A1, A111, B1, and C1 are greater than that of A2, A112, B2, and C2 respectively.
Suppose that attention is currently deployed at grouping A111 and a negative an-
swer is given to the check flag of the top-down attentional setting “view details”.
Then there are multiple (here four) possible destinations of the next attention
movement, shifting to A112, A12, A2, or B (as shown in the diagram). In our
previous strategy, the most salient sibling of A111 (i.e. A112) would win the next
attention if a positive answer is checked from the “view details” flag of A11. This
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Fig. 25. Diagram of attentional movements in hierarchical selectivity operating on
multi-level structured groupings. Red arrows: attentional movements. Blue arrows:
feed-back checker of “view details” flag. Green arrows: possible winners competing for
the next attention.

strategy has advantages of simplicity and following the closest previous top-down
setting to the higher level grouping (the parent A11 of A111). Here we present an
improved strategy for such hierarchical attention shifts.
Suppose S(X) represents the salience of any grouping X. Assume A and B are

the most salient of the competitive groupings and S(A) > S(B). Grouping A (or B)
has a multi-level hierarchial structure. Then a tree-like data structure can be used
to illustrate these structured groupings. Let the salience of the sub-groupings that
have the same closest parent be decreasing from the left to the right. Let Ai1,i2,...,ij

be the current attended sub-grouping at the level j of A. When i = 0 or j = 0,
Ai1,i2,...,ij = A. Thus the first level sub-groupings of A are . . . Ai1Ai1+1 . . ., the first
level sub-groupings of Ai1 are . . . Ai1,i2Ai1,i2+1 . . ., and the rest is deduced by this
analogy. Clearly, all sub-groupings left of Ai1,i2,...,ij have already been attended or
ignored. Ai1,i2,...,ij+1 is the most salient unattended sibling of the current attended
grouping and Ai1,i2,...,ij−1+1 is the most salient unattended sibling of its parent.
When attending Ai1,i2,...,ij , if a negative answer is given to the “view details” flag
of top-down attentional setting or this sub-grouping has no child, the next potential
winner to gain attention is produced by the following rules:

(1) if Ai1,i2,...,ij+1 = A then attention shifts to grouping B;

(2) otherwise attention shifts to the sub-grouping X with salience:
S(X) =MAX{S(Ai1+1), S(Ai1,i2+1), . . . , S(Ai1,i2,...,ij−1+1), S(Ai1,i2,...,ij+1)} (23)

We applied this improved hierarchical selectivity to the natural scene shown
in Figure 13. Here the entire scene is re-segmented into seven top groupings, as
shown in Figure 26 (Graph B) by different colour lines. The identifiers of different
groupings and their sub-groupings are also given in Graph B. Certain sub-groupings
which are segmented within each top grouping are identified and the remainder
(such as green grass in grouping 7 or trees in grouping 3) are denoted “others” in
Graph A of Figure 26. The “view details” flags of the parent groupings of the small
white stripes in the road, trees in the lawns, and some tiny words (and symbols)
below the “30” speed limit sign were answered “0” (positive) for the first attending
(the first stripe, word or symbol) and “1” (negative) thereafter. Thus most sub-sub-
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Fig. 26. The overall attentional movements on the natural scene produced by the im-
proved strategy for hierarchical selectivity. Red arrows with a hollow circle indicate that
attention goes to a top grouping and then shifts to the sub-groupings respectively. The
dotted ellipses are not the sub-grouping boundaries and only used to conveniently show
attention movements.
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groupings such as those within sub-groupings 6-1, 6-2, and 6-3 of top grouping 6
are also abbreviated as “others” in Graph A, except several first attended sub-sub-
groupings (for example, grouping 6-1-1). The 1/ρ parameter of Gaussian distance
is set to 25% for the global competition between the seven regions and 4% for the
local competition within these regions.
Through the improved hierarchical selectivity, more natural attentional move-

ments are clearly seen (Graph C in Figure 26. Note here attention is assumed to
shift to the center of mass of the attended grouping). The complete hierarchical se-
lectivity procedure for this scene is shown in Graph A in which the representations
have the same meanings as those in Figure 25.

4 Conclusion

The mechanisms of object-based and space-based visual attention have been
widely investigated in psychophysics and neuroscience research, however, mod-
elling visual attention in computer vision is a quickly growing field, especially for
building computable models of covert attention. Until now, to our knowledge, al-
though some computable models for space-based covert attention such as Koch
and Itti’s saliency-based attention model [54,46] have been successfully built, no
computational model for object-based attention has been developed.
We have presented a computable model of hierarchical object-based attention for

computer vision. It suggests that object-based and space-based attention can be
integrated by using grouping-based salience to deal with dynamic visual tasks. By
using the integrated competition of proto-objects based on groupings, the selectiv-
ity of attention by objects, locations and features can cooperatively work together.
We demonstrated the behaviour of the model on a number of synthetic and real
images. The experimental results showed that its performance concurs with the
main findings in the psychophysical literature on object-based or space-based vi-
sual attention. Also, the model shows a good performance of selectivity by objects,
by features, by spatial regions, and by their groupings on complex natural scenes.
Such successful performances depend on three factors that we proposed here:
• grouping-based saliency evaluation

• integrated competition between groupings

• hierarchical selectivity

With the grouping-based saliency mechanism, the pop-out of objects and their
groupings can be evaluated in a uniform computational framework. By using hi-
erarchical selectivity to drive attentional movements, the multiple selectivities of
objects, features, regions, and their groupings in multiscale resolutions can be per-
formed in an integrated selection architecture. To our knowledge, the model pro-
posed in this paper is the first implemented model of object-based visual attention
and of integrated object-based visual attention with space-based visual attention
in computer vision.
However, there are still several limitations to the current model besides the above

strengths. One limitation is that we have not yet built a satisfactory method to deal
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with the grouping processing. This is a great challenge not only for visual attention
but also for computer vision. Another limitation is that we did not present here
a complete theory of goal-driven effects on visual attention, which is necessary for
understanding visual attention. Lastly, if we use a resolution-varying or retina-
like operator at each attention movement, the model will simulate the attention
behaviour of human eyes better, because human eyes have decreasing resolution
from the fovea to the periphery of the retina. We are currently investigating these
points.
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