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Abstract

Research into object deformations using computer vision techniques has been

under intense study in recent years. A widely used technique is 3D non-rigid

registration to estimate the transformation between two instances of a deform-

ing structure. Despite the previous developments in this topic, it remains a

challenging problem. In this paper we propose a novel approach to non-rigid

registration combining two data spaces in order to robustly calculate the cor-

respondences and transformation between two data sets. In particular, we use

point color as well as 3D location as these are the common outputs of RGB-D

cameras, which leads to the Color Coherent Point Drift (CCPD) algorithm (an

extension of the CPD method [1]). Evaluation is performed using synthetic and

real data. The synthetic data includes easy shapes to evaluate the different

effects of noise, outliers and missing data. Moreover, an evaluation of realistic

figures obtained using Blensor is carried out. Real data acquired using a general

purpose Primesense Carmine is used to validate the CCPD for real shapes. For

all tests, the proposed method is compared to the original CPD showing better

results in registration accuracy in most cases.
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1. Introduction

The study of the evolution in shapes over time is under intense study in

many areas, such as biology, health, etc. During evolution, objects are affected

by multiple changes, disturbing both shape and appearance. To measure all the

changes is a difficult and tedious task, due to the complexity of some shapes5

and the large amount of data necessary to have a complete study. Computer

vision techniques can help provide methods which, given a set of data from a

sensor, estimate the changes. In this paper, we propose a method to robustly

estimate the deformation observed in an object. Concretely, non-rigid registra-

tion methods estimate the transformation between two shapes aligning the data10

using non-rigid transformations.

There are several applications that require non-rigid alignment. For instance,

face or body motion recovery where the different parts need to be tracked to

perceive the motion or identify the action. Applications where shape evolution is

studied require from deformable alignment as well, and may involve appearance15

changes, which commonly include color variations. Using machine intelligence to

evaluate those changes mean to use methods than can perceive them regardless

the nature of the change. For example intelligent farms can use these techniques

to increase the quality of the products since they can be constantly supervised

while growing. In health, automatic analysis of human body change will help20

specialists in treatment supervision (eg. for cancer therapy.

There exist various kind of deformations: isometric deformation, where both

topology and distances are preserved (e.g. articulated changes or flag move-

ments); elastic deformation, where the topology is kept but distances can vary

(e.g. balloon inflation); and free deformations where both topology and dis-25

tances can change (e.g. growing objects or breaking situations).

In this paper we focus on 3D point clouds without any previous filtering,

only downsampling if necessary. For the specific case of this paper, the data

comes from a low-cost RGB-D sensor, such as a Microsoft Kinect, which provides

color and 3D information. The sensitivity of these sensors may be lower than the30
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requirements of the problem, and may be difficult for some tasks. Nonetheless,

they are widely used and a contribution using this sensor will be useful in many

research tasks and industrial applications.

The deformations considered in this work are not constrained. That is, they

do not assume a prior restriction in the deformation as topology/size constraints,35

larger/smaller variations, etc. Then, the objective is to develop a non-rigid

registration method for non-constrained free deformations.

Non-rigid registration methods for 3D point sets, such as the well-known

Coherent Point Drift (CPD) [1], only use spatial 3D information (or location

information) to register the data. Ignoring other information, such as color, in-40

creases the probability of misalignment. For instance, in cases where the object

grows the number of points may increase or decrease in an irregular distribu-

tion. If only 3D spatial data is taken into account, those irregularities are harder

to register. Those are situations where additional information can be used to

robustly register. A practical example is the plant growth, where leaves change45

shape differently over their surface. Commonly, the central region remains simi-

lar whilst the edges enlarge significantly, but in the spatial data this variation in

growth is not as obvious. It is necessary to use color information to perceive this

difference. The leaf growth problem motivates our work, which improves the

CPD algorithm including color information in the process of matching estima-50

tion to improve the estimation of the deformations. Although original motivated

by the leaf growth problem, the developed Color Coherent Point Drift (CCPD)

algorithm is a general algorithm usable for registering deforming colored point

clouds.

The main contribution of this paper is a novel approach for colored point55

cloud non-rigid registration combining various inputs in the correspondence es-

timation step. To handle real and adverse situations, the method has to deal

with noise, outliers and missing data, common issues in real applications. The

proposal makes use of the basis proposed in the CPD algorithm [1], because

of its generality and because it has shown good results in point set non-rigid60

registration in presence of noise and outliers.
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The rest of the paper is organized as follow: Section 2 presents a review of

the State-of-the-Art in 3D non-rigid registration methods for point sets. Section

3 details the proposed CCPD method. The evaluation is shown in Section 4

where synthetic and real data are used to validate the proposal. Finally, some65

discussion and conclusion are presented in Section 5.

2. Previous research

Recently, the increasing interest in non-rigid registration has produced much

research that improves existing algorithms or introduces new methods, but this

is still a challenging problem to be solved. This interest comes from the need70

to improve reconstruction, mapping or other computer vision problems, where

dynamic objects are treated. Tam et al. [2] surveyed different methods for point

cloud and mesh registration, in both rigid and non-rigid situations.

Chui and Rangarajan [3, 4] proposed the TPS-RPM non-rigid registration

method for 3D point clouds based on Thin Plate Splines to stabilize the dis-75

placement of the points during the process of registration. This method uses

softassign matches between each point set [5]. Softassign refers to the use of

non-binary correspondences to handle noise and outliers because there is no im-

posing of a unique matching per point. Deterministic annealing [6] is also used

in the kernel of TPS-RPM to gradually allow a less constrained movement of80

the individual points. Their proposal outperforms ICP in 2D, and also achieves

better results in 3D than the main state-of-the-art methods. Yang revisited

TPS-RPM in [7] demonstrating limited performance when outliers are present

in both point sets simultaneously. He proposed a double-sided outlier handling

approach obtaining better registration results.85

Li et al. [8] presented a non-rigid registration method that simultaneously

estimated confidence weights, that measure the reliability of each correspon-

dence, and identified non-overlapping areas. A warping field brings the source

scan into alignment with the target geometry.

Sang et al. [9] proposed the FDMM non-rigid registration method based on90
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GMM and the use of features, that they called Gaussian soft shape context,

based on radial distribution of the neighbourhood. This feature was initially

presented in [10, 11], and they modified it adding a Gaussian distribution for

avoiding the problem of non-real similarities. The algorithm takes into account

the relative distribution of all points with respect to the analysed point, making95

a histogram, which adds information to the registration process. Comparison to

CPD, RPM and BEM [12] is provided using 2D data, outperforming the previous

results. Yawen et al. [13] proposed also the use of this feature enhancement with

CPD to handle noise and outliers with better results.

Wang and Fei [14] proposed B-spline-based point matching (BPM), an ex-100

tension of RPM, using a deterministic annealing scheme to regularize the regis-

tration process. The method was evaluated in different situations with accurate

results in 2D and 3D data. Yang et al. proposed in [15] the GLMD, a two

step non-rigid registration method for point sets. They proposed the use of lo-

cal and global distances combined to estimate the binary correspondences, and105

transformation using the TPS kernel. The local distances are measured using a

certain neighbourhood, which is provided initially. Experiments were provided

using the proposed method against CPD, TPS-RPM and GMMreg for different

levels of noise, outliers and rotations.

Recently Chen et al. [16] proposed the Coherent Spatial Mapping (CSM)110

algorithm. They used the shape context [10] which describes the shape using

a histogram of each point relative position to the others, and calculate corre-

spondences with this information. The Hungarian method is also used to es-

timate the initial correspondences. The transformation is iteratively estimated

with EM method using a spatial mapping function of the correct matches, and115

TPS to provide smooth deformations. Hence, the improvement comes from the

matching estimation. They compare CSM to CS [11], CPD, COA-RPM [17]

and TPS-RPM with 2D data achieving better alignment with lowest RMS error

with different levels of noise and outliers. In 3D they compare against CPD

achieving lower registration error.120

S. Lin et al. presented in [18] a proposal for incorporating color in the regis-
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tration process, both in rigid and non-rigid registration. The non-rigid approach

is based on the paper of Li et al. [8], incorporating the color information in the

vertex selection by evaluating 3D location and color distance in Euclidean space,

using a neighbourhood to improve robustness, between the two views. More-125

over, after estimating the descriptors (Gabor and HOG) from the vertex, color

is also used for rejecting wrong correspondences. This paper considers small

deformations mainly related to orientation of views which deform the shapes

due to the RGB-D sensor pattern projection.

2.1. Coherent Point Drift variants130

One of the most common algorithms used for non-rigid registration is the

Coherent Point Drift (CPD) proposed by Myronenko et al. in [1, 19]. This

method is based on a Gaussian Mixture Model (GMM) and Expectation Maxi-

mization (EM) to calculate the correspondences, and then the transformations,

of the points to map one set of points into another. They used a GMM to135

represent the moving point set to be registered, and EM to evaluate the new

parameters of the GMM and hence, the new position of the points. Moreover,

in order to constrain the movement, they make use of Coherent Motion Theory

that helps the translation of points to be regular. They compared their results

to the TPS-RPM outperforming the registration for 2D and 3D cases. Wang140

et al. [20] proposed an extended version of CPD to automatically evaluate the

outlier percentage parameter, which is manually provided in the original ver-

sion. They used a combination of Nelder-Mead simplex and genetic algorithms.

The genetic algorithm provides good initial values for this parameter, while the

Nelder-Mead simplex optimizer attempts to find an optimal solution. The ex-145

perimentation showed an improvement of the original version for different levels

of noise, where they initialized the outlier parameter to 0.7.

A different approach called GMMreg was presented by Jian et al. in [21, 22].

Instead of representing a point set with a GMM and registering it to a point

cloud using the EM technique, they align two GMMs each representing one150

of the point sets to be registered. They calculate the displacement between
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Mixtures of Gaussians and iteratively align them using the L2 distance. They

provided rigid and non-rigid results for 2D and 3D data compared to the original

CPD, LM-ICP [23], and TPS-RPM among others, resulting in more accurate

results. Additionally, they apply the L2 distance to TPS and to Gaussian radial155

basis functions, improving the results.

Gerogiannis et al. [24] proposed a different matching method using the Hun-

garian Algorithm instead of the posterior distribution used in CPD and RPM.

Moreover, they used Bayesian regression for the Maximization step (i.e. the

registration or transformation part). The experiments compared the proposed160

method with CPD, RPM and GMMreg for 2D and 3D cases.

Gao et al. studied in [25] the main drawbacks of CPD related to outliers,

which are a consequence of the way CPD keeps the distribution of outliers,

and the input parameter for the outlier ratio. They proposed an Expectation-

Maximization solution to iteratively evaluate the outlier ratio. TPS-RPM and165

the original CPD algorithms show less accurate results when the outlier ratio

grows. The main advantage of this method is to avoid the need to indicate the

outlier ratio initially.

Ge et al. [26] presented a similar approach to the previous one, called Global-

Local Topology Preservation (GLTP). The main motivation of this work is to170

handle non-rigid articulated deformations such as those of human movements.

They added the principle of Local Linear Embedding to the original CPD to

take into account local deformation coherence, apart from the global coherence

intrinsic in the CPD algorithm. With large articulated deformations GLTP

works better than the original CPD, which is not able to find a good registration.175

De Sousa and Kropatsch [27] proposed a variant of Coherent Point Drift

(CPD) by integrating centrality information, a concept initially applied in social

networks. It creates a graph (e.g. Delaunay triangulation), and applies different

centralities (node degree, betweenness, eigenvector ...) to evaluate which results

in a better solution. The proposal shows good performance with noisy data,180

improving the original CPD.

Another variation of CPD was presented by Zhou et al. [28] using Student’s
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mixture model, which they claim to be more robust in the presence of high

amounts of noise. The comparison they made against CPD and TPS-RPM

shows better performance when the noise rate grows. Moreover, they auto-185

matically estimated the probability of outliers whereas in CPD it is manually

indicated.

In conclusion, many studies have been done for non-rigid registration of point

sets. Most of them focused their attention on outliers and noise handling. In

order to do this, they proposed techniques to estimate automatically the outlier190

ratio or used descriptors which use point distributions to improve the matching.

However, there still exist problems when there are large deformations. Another

issue not studied is where the data does not have to move coherently in the whole

space. For example, situations in which one set is a full model and the other

is just a region. Moreover, there are no general proposals facing the problem195

from a generic perspective including several sources of data using individually

the different spaces, e.g. using color and 3D location without using them as a

6D data set but being independent in the process for a more robust and generic

combination.

3. Color Coherent Point Drift200

In this section, a framework for non-rigidly registering 3D colored points

based on CPD [1, 19] is presented. We use the optimization algorithm of the

original CPD algorithm, only replacing the original similarity matching formu-

lation with one that takes account of having colored 3D points.

The proposed Color Coherent Point Drift (CCPD) algorithm registers 3D205

points by using color and shape spaces to jointly estimate the best match. It

improves upon the CPD algorithm by using the two input spaces together to

handle situations where point position is not sufficient to adequately estimate

the matches, e.g. aligning shapes with missing parts, or non-linear growth of

the shape.210

In any registration problem it is normal to have one point set used as the
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anchor or reference point set which we will call Anchor, and the other as the

moving points called Moving. The Moving set will be deformed and moved un-

til it aligns with the Anchor. CCPD (following the basics of CPD) models the

Moving set using a Gaussian Mixture Model (GMM) and estimates the transfor-215

mation of the Moving set using the Expectation-Maximization (EM) technique.

The use of a GMM to represent the Moving set will give soft correspondences,

i.e. they are not binary, allowing a more robust estimation of the displacement

by not requiring one-to-one matching. Moreover, in order to smooth the dis-

placement, the Coherent Motion Theory is used to regularize the motion of the220

points in the process of the transformation.

Here, we introduce the combination of color and shape (3D positions) spaces

for non-rigid registration. Let AS , AC , MS and MC (Eq. 1) be four data sets

representing two spaces (shape and color) of two data sets. AS and AC are

the shape and color values of the Anchor set and MS and MC are the shape225

and color values of the Moving set. To simplify the notation, we will refer to

AS , AC as A, and MS ,MC as M when we refer to both spaces together.

AS = {aS1 , · · · , aSN}

AC = {aC1 , · · · , aCN}

MS = {mS
1 , · · · ,mS

M}

MC = {mC
1 , · · · ,mC

M}

(1)

where aSi ,m
S
i ∈ RDS and aCi ,m

C
i ∈ RDC . N and M are the number of points in

the Anchor and Moving point sets. MS and MC are the Moving to be aligned

with the reference Anchor AS and AC . Each space has its own dimension e.g.230

DS = 3 for shape (3D points), but DC = 1 for monochrome or DC = 3 if we

use 3 color components. The points MS and MC are appended to form the

centroids of the components of a Gaussian Mixture Model (GMM) (m = 1..M)

that encodes the probability of the Moving point set, as described in Eq. 2. x
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and mi are vectors with the point’s position and color appended,235

p(x) =
M∑
i=1

w(mi)p(x|mi) (2)

w(mi) is the weight of each GMM component. Here, all points are treated

equally, so w(mi) = 1
M .

Let D = DS + DC and Λ be the D dimensional covariance matrix. Then,

each Gaussian is modelled using Eq. 3.

p(x|mi) =
1

(2π)
D
2

1

det(Λ)D
e−

1
2 (x−mi)′Λ−1(x−mi) (3)

Eq. 3 will be modified later as all components have equal isotropic variance240

σ2
S (for the shape components) and σ2

C (for the color components). The shape

(S) and color (C) covariance matrices for the old and new (for z ∈ {o, n} for

o:old and n:new which will be defined below) Gaussian distributions are: ΛzS =

(σzS)2IDS , ΛzC = (σzC)2IDC . From these, we get (ΛzS)−1 = (σzS)−2IDS , (ΛzC)−1 =

(σzC)−2IDC , and det(ΛzS) = (σzS)2DS , det(ΛzC) = (σzC)2DC .245

In order to handle noise and outliers, an additional probability distribution

1
N , where N is the number of Anchor points, is included which is weighted with

a predefined parameter α. Thus, Eq. 4 is the complete probability of the fit of

the Anchor points to the Moving points.

p(x) = α
1

N
+ (1− α)

M∑
i=1

1

M
p(x|mi) =

M+1∑
i=1

w(i)p(x|mi) (4)

where w(M + 1) = P (X|mM+1) = 1
N and otherwise w(i) = 1−α

M .250

The GMM is parametrized by a set of parameters (θS , σS , σC) which specify

the translation of the Moving point set (θS), the standard deviation (σS) of the

points’ positions, and the standard deviation (σC) of the points’ colors.

Expectation-Maximization (EM) is used to register the Moving points to the

Anchor points.255

The function E finds the parameters (θS , σS) that maximize the likelihood,

or equivalently, minimize the negative log-likelihood (Eq. 5). In this paper
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we are registering only the shape vectors, but not the color vectors. We are

using shape and color information in the similarity score to make the matching

estimation more robust. Thus, the set of parameters is (θS , σS , σC), where θS260

are the parameters that control the position of the Moving points.

E(θS , σS) = −
N∑
n=1

log(
M+1∑
i=1

w(i)p(an|mi)) (5)

Following the original formulation of CPD, the probability of correct corre-

spondence between model point mi and anchor point an is the posterior proba-

bility of the GMM centroid given the anchor point: p(mi|an), which by Bayes’

Rule equals p(mi)p(an|mi)/p(an). Since the objective of the registration is265

to find the parameters to make model M best fit anchor A, the Expectation-

Maximization (EM) algorithm is used. Given the value of the “old” (superscript

‘o’) position and tolerance parameters, we use Bayes’ theorem to estimate the

posterior probability po (Eq. 13), known as Expectation or E-step; then we find

the new parameters that Maximize (M-step) the probability. Here, we minimize270

the negative log-likelihood:

Q(θS , σS) = −
N∑
n=1

M+1∑
i=1

w(i)po(mi|an)log(pn(mi)p
n(an|mi)) (6)

Before we manipulate Q, we need some useful terms. Recalling that M + 1

refers to the background model: p(mM+1) = 1 and otherwise p(mi) = 1 and

p(x|mM+1) = 1
N .

The multivariate Gaussian distributions that we need for the shape term is

(z ∈ {o, n} for o:old and n:new):

pzS(xS |mi,S) =
1

(2π)
DS
2

1

(σzS)DS
e
− 1

2(σz
S

)2
||xS−τ(mi,S ,θ

z
S)||2

(7)

and for the color term is:

pzC(xC |mi,C) =
1

(2π)
DC
2

1

(σzC)DC
e
− 1

2(σz
C

)2
||xC−mi,C ||2

(8)

where τ(m, θS) transforms the position of point m given the Moving point set275

pose parameters θS . Here, the transformation is only a Euclidean rigid motion.
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Note the color matching probability pzC(xC |mi,C) uses the distance between the

colors without any transformation. Combining Eq. 7 and 8 we get P z(x|mi) =

P zS(xS |mi,S) · P zC(xC |mi,C).

The first manipulation addresses the background term M + 1. We split out

the M + 1 term from the rest and analyze it:

Q(θS , σS) = Q′(θS , σS)−
N∑
n=1

w(M + 1)po(mM+1|an)log(pn(mM+1)pn(an|mM+1))

(9)

We have: w(M + 1) = α
N , po(mM+1) = pn(mM+1) = 1, po(an|mM+1) =

pn(an|mM+1) = 1
N ,

po(mM+1|an) = po(an|mM+1)po(mM+1)
po(an) = 1

N
1

po(an) .

Substituting, this gives:

Q(θS , σS) = Q′(θS , σS) +
αlog(N)

N2

N∑
n=1

1

po(an)
(10)

The latter term becomes small as N grows. Further, there are none of the

‘new’ parameters to optimize in that term. So, we can ignore it and find the

parameters (θnS , σ
n
S) that minimizes only Q′:

Q′(θnS , σ
n
S) = −

N∑
n=1

M∑
i=1

w(i)po(mi|an)log(pn(mi)p
n(an|mi)) (11)

Since log(pn(mi)p
n(an|mi))

= log(pn(mi)) + log(pn(an|mi)) and log(pn(mi)) = log( 1
M ) has none of the

optimization parameters, even when multiplied by po(mi|an), we can ignore

this term. Similarly, w(i) = 1−α
M so it is ignored. Thus, we need to optimize:

Q′′(θnS , σ
n
S) = −

N∑
n=1

M∑
i=1

po(mi|an)log(pn(an|mi)) (12)

By Bayes’s rule:

po(mi|an) =

po(an|mi)p
o(mi)∑M

j=1 w(j)po(an|mj)po(mj) + w(M + 1)po(an|mM+1)po(mM+1)
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Simplifying, we get:

po(mi|an) =
M

1− α
po(an|mi)∑M

j=1 p
o(an|mj) + α

1−α
M
N

(13)

This is evaluated using the ‘old’ parameters and does not change with the current280

optimization iteration. The initial M
1−α can also be omitted as an inessential

scaling factor.

Finally, we need to consider po(an|mi) and pn(an|mi). We will analyze both

of these together for z ∈ {o, n} (for o:old and n:new).

We assume that point shape and color are independent, and that the opti-285

mization affects only the position of the points, but not the color. Therefore,

pz(an|mi) = pzS(an|mi)p
z
C(an|mi), and these terms were defined above. For op-

erational reasons, we choose to weight the shape and color components with wS

and wC . So our formula is: pz(an|mi) = [pzS(an|mi)]
wS [pzC(an|mi)]

wC .

Substituting these derivations into Eq. 12, we get (where the first term is

evaluated before optimization using Eq. 13):

Q′′(θnS , σ
n
S) = −

N∑
n=1

M∑
i=1

po(mi|an)×

log([pnS(an|mi)]
wS [pnC(an|mi)]

wC )

Applying the ‘log’ function and then simplifying:

Q′′(θnS , σ
n
S) = −

N∑
n=1

M∑
i=1

po(mi|an)×

[wSlog(pnS(an|mi)) + wC log(pnC(an|mi))]

And then applying the substitutions from Eq. 7 and Eq. 8, and then sim-

plifying:

Q′′(θnS , σ
n
S) = −

N∑
n=1

M∑
i=1

po(mi|an)×

[wS [log(
1

(2π)
DS
2

1

(σnS)DS
)− 1

2(σnS)2
||an,S − τ(mi,S , θ

n
S)||2]

+ wC [log(
1

(2π)
DC
2

1

(σnC)DC
)− 1

2(σnC)2
||an,C −mi,C ||2]]
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Simplifying again and removing terms not involving the optimization param-290

eters, we get Eq; 14 to be optimised in the EM ‘M’ step over the parameters:

(θnS , σ
n
S , σ

n
C):

Q′′(θnS , σ
n
S) =

N∑
n=1

M∑
i=1

po(mi|an)×

[wSDSlog(σnS) +
wS

2(σnS)2
||an,S − τ(mi,S , θ

n
S)||2

+ wCDC log(σnC) +
wC

2(σnC)2
||an,C −mi,C ||2]

(14)

Since the parameters of the color GMM are not optimized in the EM process,

the second term in the addition in Eq. 14 becomes a constant and can be

removed along with the weighting operators. Thus, we end up with a simpler295

Q′′ as next:

Q′′(θnS , σ
n
S) =

N∑
n=1

M∑
i=1

po(mi|an)×

[DSlog(σnS) +
wS

2(σnS)2
||an,S − τ(mi,S , θ

n
S)||2

(15)

Therefore, the color information is involved only in the ‘old’ probability.

Recalling that pz(an|mi) = [pzS(an|mi)]
wS [pzC(an|mi)]

wC for z ∈ {o, n} (for

o:old and n:new) and those terms were defined in Eq. 7 and 8, we substitute

Eq. 13 by Eq 16:300

P o(mi|an) =
[pzS(an|mi)]

wS [pzC(an|mi)]
wC

(
∑M
j=1 p

z
S(an|mj)]wS (

∑M
j=1 p

z
C(an|mj)wC + oC + oL

(16)

Outlier biases oC are calculated with Eq. 17 and oL with the outlier proba-

bility α
1−α

M
N

oC =
M

σC
√

2π
· exp

− 1
M

‖∑Mm PoC (aC |m
C
i )‖2

2σ2
C (17)

The general process of registration is summarized in the next pseudo-code

Algorithm 1. Since we focus on modifying the matching probability (P o), the

14



general procedure is similar to the original CPD, but with modifying step E:305

Data: M and A pointsets, color M and color A information

Initialization: W = o, σ2 = 1
DNM

∑M,N
m,n=1 ||xn − ym||2 ;

Construct G: gij = exp
− 1

2β2
||yi−yj ||2 ;

Expectation-Maximization

while not converged do

E-step: Compute P o, (contribution)

• P o(mi|an) =

=
[pzS(an|mi)]wS [pzC(an|mi)]wC

(
∑M
j=1 p

z
S(an|mj)]wS (

∑M
j=1 p

z
C(an|mj)wC+oC+oL

(see Eq. 16);

M-step:

• Solve (G+ λσ2d(P1)−1)W = d(P1)−1PX − Y (see [1]);

end

The result of alignment: T = τ(Y,W ) = Y +GW ;

Algorithm 1: Pseudo-code of the proposed Color Coherent Point Drift

4. Experiments

A set of tests have been carried out to evaluate the performance of the

proposed CCPD compared to the original version. First, the dataset of the

original CPD (Subsection 4.1), the fish and the face, has been used (Figure 1).310

The implementation of the code has been done in Matlab, using part of the

toolbox provided by Myronenko 1. Color information has been added to the

original data. The distribution of colors on the shape has been done in the way

to distinguish its different parts, i.e. a region with same color corresponds to

a specific part of the shape (e.g. mouth in the face, or tail in the fish). It is315

important for the non-rigid registration with color because it gives meaning to

the relationship between color and shape.

The second test (Subsection 4.2) presents two synthetic datasets with real-

istic color and shape (Figure 9). A face and a flower are used, which have been

1www.bme.ogi.edu/∼myron/matlab/cpd
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deformed using Blender and acquired using a plugin called Blensor [29]. This320

plugin emulates different sensors, including the general purpose RGB-D sensor

Kinect.

Finally, a real data evaluation using data provided by a Primesense Carmine

RGB-D sensor is done in Subsection 4.3 to confirm that the algorithm is able

to handle real data acquired from a general purpose RGB-D sensor (Figure 19).325

In this section we will use X to refer the Anchor set and Y to refer the

Moving set.

The experimets evaluate different aspects:

• Outliers: points which are in Anchor X but do not have real matching in

Moving Y .330

• Missing data: the opposite of outliers. Points which are in Moving Y but

do not have real matching in Anchor X. This situation is not taken into

account in the original CPD algorithm.

• Large or non-linear deformation: deformations which involve a large dis-

placement that may not be solved with traditional algorithms. Non-linear335

deformation could be seen as an abrupt change in the direction of the

deformation.

The experiments, used a Windows 7, an Intel i5 processor and 8 GB of RAM.

The code was implemented in Matlab vR2013b.

4.1. Synthetic data experimentation340

The tests consider four issues: outliers, missing data, color distribution

changes and large deformations. First, points from Y are removed. With this

test the missing data handling is compared with the original CPD algorithm.

Next, we remove data from Anchor X representing extra points, a situation

which is not possible to parametrize in the original CPD (points in Y do not345

have a real correspondence in X). In this case, CCPD uses the color informa-

tion to improve the probability evaluation to avoid wrong matches. Another test
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evaluates a different displacement in the color with respect to the shape, which

evaluates situations where the color distribution in X and Y are different. An

example of this could be moving the eyebrows up and down, where the shape350

in 3D remains the same, but the color changes its position. Lastly, large defor-

mations are evaluated to show how the color facilitates the perception when the

transformation is complex or semi-coherent. It is important to highlight that

the parameters have been adjusted individually to result in the best alignment

for both the CPD and CCPD algorithms.355

The main difference between the original CPD and the proposed CCPD

method comes when the Moving has missing data, which cannot be modelled

as outliers in the CPD. As the color is a distinctive feature, the proposal is able

to evaluate the correspondences properly and then provide better results.

4.1.1. 2D fish experimentation360

The 2D tests use different Anchor X and Moving Y fishes based on two

initial shapes (dataset from the original work of CPD [1]). Nine colors using the

H component of HSV are used to distinguish the different parts of the fish (see

Figure 1).

Table 1 presents the RMS error of the registration taking into account eu-365

clidean distances of real correspondences in location space. Figure 2 shows the

visual result of the tests. In general, the registration achieves better alignment

(minimize the error distance) in the CCPD results. Test 1 evaluates the effect

of outliers by removing in Y the top and bottom tip of the fish. In this case, the

proposal returns a slightly better registration because the color feature provides370

a more robust matching estimation and hence registration. Test 2 and Test 3

correspond to missing data testing where points in Anchor X are removed, while

Y remains complete. The total amount of points is 91. For Test 2, 20 points

are removed (20/91 = 21.9% of outliers) and for Test 3, 53 points are removed

(53/91 = 58.2% of outliers). The results demonstrate the improved performance375

of CCPD in the alignment against CPD. Concretely, in Test 2, CCPD achieves

0.747E-02 RMS error in registration being 4.82 times lower RMS than CPD,
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Figure 1: Anchor X (left) and Moving Y (right) fishes based on the original work of CPD [1]

including color information.

while in Test 3, CCPD achieves 0.624E-02 RMS error being 23.1 times lower

than the original method. CCPD is more robust against outliers in the Moving

Y (or missing data from the Data point of view).380

A large deformation test has been considered by registering a square to the

Anchor fish in Test 4, where Matlab jet colormap is used. This color map

provides colors in RGB = [0,0,0.562] to [1,1,0], which in H component used

here are H = [0 0.0625 0.1250 0.1875 0.2500 0.3125 0.3750 0.4375 0.5000 0.5625

0.6250 0.6875 0.7500 0.8125 0.8750 0.9375 1.0000]. The RMS error is 26.62E-385

02 in the CCPD method and 51.559E-02 in the original CPD, a 93.69% of

improvement of CCPD against CPD. Furthermore, CPD on the low tip of the

back tail (Figure 2 fourth-row right-image) misaligns the colors as it does not

have this information, which also demonstrates the improvement in registration

accuracy of the proposed color feature consideration in the registration process.390

The next test evaluates changes in the color distribution. In this situation

both shapes have the same points as the original, but the colors are slightly
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X Y CCPD CPD

Figure 2: Tests 1 to 4 of fish shape from top to bottom respectively. The columns represent

from left to right the Anchor X, the Moving Y , the CCPD registration result and the CPD

result.
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Table 1: RMS registration error of fish shape tests.

CCPD CPD

Test 1 0.52064E-02 0.53293E-02

Test 2 0.7468E-02 3.5967E-02

Test 3 0.6239E-02 14.406E-02

Test 4 26.622E-02 51.559E-02

X Y CCPD CPD

Figure 3: Registration result for different color distribution in Anchor X and Moving Y sets

(see Fig. 2). The third and fourth columns are the results for the CCPD and the CPD

algorithms. The red circles highlight the parts where the color distribution changes.

different. The result is visually evaluated in Figure 3. The regions where the

colors do not coincide are marked with a red circle to simplify the visualization.

At the lower part of the upper tip, X has larger region of brown towards the395

back while Y is green from the end of the tip. CCPD registers adequately this

part. Similarly, the lower tip has larger part of orange on the X than in Y , and

again the proposed method achieves better results.

4.1.2. 3D face experiments

The 3D face experiments are presented here. Different Anchor X and Moving400

Y points are used based on two initial positions (data obtained from the original

work of CPD [1]). The face coloring has been done using four tones in RGB.

A main black part, red lips and eyebrows, blue ears and yellow forehead (see

Figure 4).
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Figure 4: Anchor X (first row) and Moving Y (second row) of face shape. There appear 4

colors, yellow in the forehead, red in eyebrows and lips, blue in ears and the rest black.
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Table 2 presents the RMS error for the 3D tests. In Test 1 outliers handling405

is evaluated by removing all data points from the forehead (yellow part) of Y .

Tests 2, 3 and 4 correspond to the missing data evaluation. Test 2 is similar

to Test 1, but removing the data from X. As the unmatched data cannot be

parametrized as outliers, the original CPD is not able to register it properly.

Test 3 removes all color parts except the black one obtaining a better results410

for the CCPD proposal. Finally, in Test 4 the algorithm registers the non-

black parts (i.e.: forehead, ears, lips and eyebrows), in the Anchor X with the

complete Moving Y . Similarly to the 2D experiments, the proposed method is

able to register more accurately.

Figure 5 shows the result of the tests, where each row is a test from 1415

to 4 respectively, to visually evaluate the performance of both methods. In the

second row it is possible to see how CPD moves wrongly yellow points downward

while the proposed method keeps the point in the top part as they do not have

correspondences. The third row has only color points in the Anchor X, without

the black part. The proposal aligns properly these remaining parts while CPD420

cannot align the parts properly. Similarly the fourth test is correctly aligned

by CCPD as the corresponding points in the Anchor and Moving are properly

aligned, while CPD returns an inaccurate result.

A large test evaluation is presented in Table 3 where a set of 50 different

changes are registered (dataset available from Myronenko [1]). The average425

RMS errors for the Tests 2, 3 and 4 are 0,36834E-02 for CCPD and 8,8453E-02

for CPD, then the proposal is 24 times lower than original method.

Table 2: RMS registration error of face shape tests.

CCPD CPD

Test 1 0.37278E-02 1.62E-02

Test 2 0.28985E-02 4.078E-02

Test 3 0.21677E-02 12.051E-02

Test 4 0.5984E-02 10.407E-02
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X Y CCPD CPD

Figure 5: Rows 1 to 4 show Tests 1 to 4 of face shape. The columns represent from left to

right the Anchor X, the Moving Y , the CCPD result and the CPD result.
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Table 3: RMS registation error of 50 face shapes.

CCPD CPD

Test 2 0.26E-02 3.93E-02

Test 3 0.32E-02 8.53E-02

Test 4 1.13E-02 11.54E-02

Figure 6: Eyebrow movement test. From the top to the bottom, the CCPD result, the CCPD

flow, the CPD result and the CPD flow. In the flow pictures (2nd and 4th) the red arrows

show the most significant displacement, i.e. the eyebrows.

A final test was carried out to evaluate a displacement of color and a large

deformation. In this test, the eyebrows of Y are lower than in X. The movement

should displace the eyebrows upward. This is considered a large deformation430

or a non-linear deformation as the movement is not coherent in the shape data

space, but coherent in the color data space. Figure 6 shows this registration.

In order to help in the visualization, a flow image is shown for both methods.

The proposed method achieves a proper result moving up the eyebrows while

the original CPD algorithm, as it does not take into account color, is not able435

to achieve the correct result.

4.1.3. Experiments for noise and outliers in color space

In this section we are going to evaluate the effect of noise and outliers in

the color space for the non-rigid registration with the proposed CCPD. The
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Figure 7: Noisy point-clouds of the fish and face corresponding to Y the moving data. From

left to right, the data without noise, 20, 15, 10 and 5 dB of SNR.

experimentation is carried out using the fish and face data used in the previous440

experiments.

The first experiment considers the noise in the color space adding random

gaussian noise to each R, G, and B component in 4 different levels of Sig-

nal/Noise ratio (SNR): 20, 15, 10 and 5 dB (see Fig. 7). Initially, the exper-

iment analyses the effect of choosing the adequate parameters for CCPD to445

compensate the color noise using the fish data. Lately, using the face data,

the parameters are fixed to those the best perform CCPD for the experiments

carried out in Sect. 4.1.2 in order to analyse the color noise effects and toler-

ance of the proposal against that noise. Since the noise is assigned randomly, 5

iterations per level of noise have been performed to calculate the averaged RMS450

as the registration error.

The results for the initial experiment of color noise using the optimal set of

parameters by experimentation are shown in Table 4. As can be proved by the

results, even with high levels of noise, the performance of the CCPD method

remains high being hardly affected by the color noise (the order of the RMS is455

the same regardless the SNR).

The results for the second experiment of color noise (using the optimal set

of parameters obtained for the CCPD without noise presented in Sect. 4.1.2)
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Table 4: RMS registration error of fish shape with color noise. The Signal-to-Noise ratios are

20, 15, 10 and 5 dB.

20 15 10 5

0.41080e-02 0.40603e-02 0.59438e-02 0.69721e-02

are shown in Table 5. The data includes noise in the same four tests shown in

Table 2 and Figure 5. For Tests 2 to 4 with 15 dB of SNR the error of CCPD460

is similar to CPD and decreases. In the case of Test 1, the performance is lower

than CPD but remains similar for every level of noise due to the outliers are

modelled with the original Eq. of outliers oL from the CPD. If we assign high

σC or low wC , we will have the results similar to CPD. Furthermore, Figure

8 presents the same experimentation for the set of 50 faces that is part of the465

original CPD synthetic dataset. This experimentation has a similar behaviour

as the previous one, confirming the results in a large set of deformations. In

average, the CCPD method outperforms the CPD results even for a large color

noise (about 15 dB).

Table 5: RMS registration error of face shape tests with 20, 15, 10 and 5 dB of Signat-To-Noise

ratio.

CCPD CPD 20 15 10 5

Test1 0.0037 0.0162 0.2176 0.2141 0.2150 0.2159

Test2 0.0029 0.0408 0.0308 0.0617 0.1823 0.4560

Test3 0.0022 0.1205 0.0332 0.0830 0.2606 0.4304

Test4 0.0059 0.1041 0.1365 0.1372 0.1483 0.2092

Finally, the effect of outliers in color data is evaluated. In this case, the470

outliers are in the color space, hence to generate them we have chosen the color

that is the furthest to the rest of colors, which in this case is white. We have

randomly generated, over the data set, four percentages of outliers: 5%, 25%,

50% and 75%. The results are presented in Table 6.
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Figure 8: RMS registration error of 50 face deformations with 20, 15, 10 and 5 dB of Signat-

To-Noise ratio.
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Table 6: RMS registration error of face shape for four levels of color outliers, 5%, 25%, 50%

and 75% compared to the CCPD without noise (BL: Baseline).

BL 5% 25% 50% 75%

0.0029 0.0222 0.0783 0.1311 0.2579

4.2. Synthetic realistic experiments475

In this section, we present the experiments to evaluate the method for non-

rigid registration using realistic shapes. The dataset includes two different ob-

jects: a flower2 and a face3. The synthetic models have been acquired using the

Blensor tool [29], a Blender plugin which simulates a Microsoft Kinect RGB-D

sensor. This tool uses raytracing to simulate 3D sensors, that in this particular480

case is an RGB-D, providing a PCD file with all the spatial coordinates of the

points and the color information. The virtual sensor is oriented in the direction

as it would be done with a real one. The only preprocess is to deforme the

models using the Blender tools, to have in this case three shapes, origin, small

deformation and large deformation.485

Figure 9 and 10 show the face and flower models used for the experiments.

The images are from left to right: the target, a first deformation, and a second

larger deformation. The face deformations could be seen as elastic deformations,

because the face remains the same except displacement of some parts. The first

deformation is a eyebrow rise and a mouth change. The second moves both490

eyebrows and the mouth, changes the nose and the chin. For the flower, it

could be seen as growth deformations due to the size of the object changes.

The first deformation enlarges a little the leaves and the second is a larger

deformation.

In order to reduce and enhance the data for the registration purpose, we495

have used different downsampling techniques to sample the data. Figure 11

2https://www.turbosquid.com/3d-models/pink-primrose-flowering-3d-obj/516226

(last access: 11/08/2017)
3http://eat3d.com/forum/art-gallery/models-face (last access: 11/08/2017)
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Figure 9: The face model used in the experimentation. Two viewpoints (each per row) of the

faces used. From left to right, the original face shape as target for the deformations in second

and third columns.
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Figure 10: The flower model used in the experimentation. Two viewpoints (each per row) of

the flower used. From left to right, the original flower shape as target for the deformations in

second and third columns.
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Figure 11: Two sampling examples. The image in the middle represents a point set of a face

shape. At the left is a uniform sampling. At the right side is a representation of a color-based

sampling, which provide higher density of points at salient features, such as eyebrows, eyes or

lips.

shows two different kinds of sampling. The figure has in the middle a face

example. In the left side a uniform sampling is presented, while in the right

side a representation of a color-based sampling, which provide higher density

of points at salient features, such as eyebrows, eyes or lips. In previous works,500

we have studied the use of downsampling as a method to enhance the quality

of the data. This studies have been published in [30] [31]. In this paper we use

the same methods, including: bilinear interpolation, normal-based sampling,

color-based sampling, a combination of color and normal based technique, and

GNG sampling approach proposed in [32].505

4.2.1. Non-rigid registration evaluation

Here we present a comparative evaluation of CCPD and CPD registration

using synthetic realistic subjects. The color information, used by CCPD, allows

the registration method to achieve good results in accuracy when the surface is

not very detailed where the drift of points is not constrained by the irregularities510

of the shape.

Using the data sampled, the non-rigid registration methods are qualitatively

evaluated by visual inspection. Figure 13 shows the face shape for CCPD and

the original CPD with 1000 points sampling with the different methods. More
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experiments have been performed with 250 and 500 data (which correspond to515

the experimentation in [30] [31]), but are not included as the results are similar

to the presented experiment.

Figure 16 shows the flower shape for CCPD and the original CPD with the

same point sampling (similarly, more experiments have been done with similar

results). The figures show the registration for the second deformation (right of520

Fig. 9 10) of each shape as it is the larger one, and hence, the most difficult

in terms on registration procedure. For each figure, the first row presents the

CCPD method and the second the original CPD. From left to right, the sampling

techniques are: bilinear, normal-based, color-based, NC-based, and GNG.

To analyse the registration, we will pay special attention to a specific Region-525

of-Interest (ROI) for each model (i.e. those parts that are the aim of the study)

depicted in Figure 12. In the face, the ROI will correspond to the mouth and

eyebrows as they are the parts which are mainly displaced. The ROI in the flower

will correspond to the central part, pink and yellow, as they do not deform in

color unlike the rest of the leaves (i.e. the deformation produces an enlargement530

of the tip of leaves, but the center remains the same). This simulates the growth

of a flower, where not all parts grow in the same way. Figure 13 and 16 show

the registration result for all different sampling techniques using CCPD (first

row) and CPD (second row). Figures 14 and 15 present a detailed view of this

analysis for the face shape, and Figure 17 and 18 for the flower shape. For both535

shapes first figure shows the registration using a GNG sampled dataset and the

second the bilinear sampled dataset.

We can conclude different aspects from the results of the experiments for the

face shape. From Figures 13, 14 and 15 we can see that the proposed CCPD

achieves better alignment. If we pay attention to the eyebrows area, it could540

be seen that the alignment of CCPD algorithm register better as it takes into

account the color. In the detailed figures, it is easier to perceive this situation.

The flower shape presents a similarly behaviour to the face in the registration

results. When the data comes from either color-based or NC-based, both CCPD

and CPD achieves similar results. Moreover, when the data has been sampled545
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Figure 12: Example of Region of Interest for both shapes. The ROI are highlighted with blue

circles.

Figure 13: Non-rigid registration result of face shape for a 1000 point sampling. The first

row shows CCPD, and the original CPD in the second. Columns show different sampling

algorithm that are from left to right, bilinear, normal-based, color-based, NC-based, GNG.
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Figure 14: Enlarged example of the ROI for the face sampled with GNG. The first row shows

the CCPD and the second the original CPD. The data size is, from left to right, 250, 500, and

1000 points for the GNG.

Figure 15: Enlarged example of the ROI for the face sampled with bilinear. The first row

shows the CCPD and the second the original CPD. The data size is, from left to right, 250,

500, and 1000 points for the bilinear.

Figure 16: Non-rigid registration result of flower shape for a 1000 point sampling. The first

row shows CCPD, and the original CPD in the second. Columns shows different sampling

algorithms that are from left to right, bilinear, normal-based, color-based, NC-based, GNG.
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Figure 17: Enlarged example of the ROI for the flower sampled with GNG. The first row

shows the CCPD and the second the original algorithm. The data size is, from left to right,

250, 500, and 1000 points for the GNG.

Figure 18: Enlarged example of the ROI for the flower sampled with bilinear. The first row

shows the CCPD and the second the original algorithm. The data size is, from left to right,

250, 500, and 1000 points for the bilinear.

using GNG or bilinear, the proposed CCPD achieves higher registration accu-

racy than the original CPD. As the deformation in this shape is not isometric,

the tips of some leaves are the parts that get larger compared to other, CCPD

moves the points differently in the tip of the leaves than the ROI, achieving accu-

rate results. However, as CPD moves coherently, the points shrink all together550

(the registration is from the larger to the original position) producing that ROI

ends in a wrong color alignment. This situation is presented in Figure 17 and

Figure 18.

Figures 17 and 18 show a detail of the registration to visually evaluate the

accuracy of both methods. It is easy to appreciate that CCPD achieves better555
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Table 7: Average processing time in seconds CCPD and CPD in face shape.

Face deformation 1 Face deformation 2

CCPD

250 500 1000 250 500 1000

bilinear 11.7988 58.4475 560.6209 30.2463 98.0815 654.7234

normals 17.0563 114.3599 555.5070 24.3791 62.2356 873.7409

color 11.7048 58.2177 703.9807 19.7996 69.2475 809.8889

NC 23.2824 141.5593 465.4034 25.8104 70.3541 700.6084

GNG 35.1574 121.0136 541.7851 31.5702 181.0353 698.8645

CPD

bilinear 3.4144 13.3339 58.8231 9.0456 44.0501 175.9423

normals 7.5732 31.0907 173.2305 12.1042 45.0169 181.4115

color 5.501 27.6411 174.1651 7.9162 29.5334 135.8508

NC 12.4572 36.2307 149.8286 7.1914 42.8539 193.599

GNG 11.3055 43.2056 171.6053 11.6725 44.3024 183.5948

results than the original version in the alignment.

Finally, processing time of the registration process has been evaluated and

shown in Table 7 for the face model execution, and Table 8 for the flower. The

original CPD always achieves lower times due to the number of operations. To

calculate the posterior probability in CCPD, it is necessary to estimate for each560

point both color and location probability. Moreover, the convergence is not the

same in both methods, as CCPD commonly needs more iterations to achieve a

more accurate result. The time of both tables is presented in seconds, and is

shown for each sampling method. The columns are: first, the sampling method;

from second to fourth, the sampling rates for the first deformation; and from565

fifth to seventh, the three sampling rates for the second deformation.

4.3. Real data experimentation

To evaluate the method in real conditions, experimentation with data from

a general purpose RGB-D sensor has been carried out. In this case, a face with
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Table 8: Average time processing CCPD and CPD in flower shape.

Flower deformation1 Flower deformation2

CCPD

250 500 1000 250 500 1000

bilinear 33.8404 100.1836 560.1712 13.4003 153.0062 562.0116

normals 18.9529 74.6561 369.0443 20.0593 121.5026 537.5028

color 13.0186 129.9349 458.0764 21.498 74.1095 361.1847

NC 52.0435 91.3152 388.7584 66.038 274.563 267.593

GNG 20.7716 112.4218 443.8667 18.5236 66.7437 615.4628

CPD

bilinear 9.8136 43.4829 175.2797 11.2072 43.2063 172.0116

normals 11.4153 45.7999 181.3168 11.8425 42.7337 172.5745

color 11.5049 42.8385 175.7153 9.9246 42.8615 175.9582

NC 11.79 43.2504 174.0308 11.2697 43.7694 174.9237

GNG 11.8023 45.2732 176.094 11.1835 43.7019 171.5101

different expressions is used to evaluate the non-rigid registration using CCPD,570

against CPD. Due to the absence of ground truth, the data will be visually

evaluated to analyse the performance of both methods. Figure 19 shows the

data used in this experimentation.

Figure 20 shows an eyebrow rising deformation. The target is a neutral

expression and the deformation is a surprise expression. The registration re-575

sults of CCPD accurately aligns the shapes. The right column shows the data

flow. It clearly shows the movement of the eye region downward, from the sur-

prise expression to the neutral one. In this case, CPD only takes into account

the location, then it cannot align properly the eyebrows, resulting in a wrong

homogeneous displacement.580

Figure 21 shows a cheek inflating deformation. The origin inflates one cheek

so the mouth also moves to the side, the target is a neutral expression. The

CCPD outperforms the registration of CPD as it uses the beard color to properly

align and move the points into a correct location, where correct means the color
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Figure 19: Real data used for the non-rigid experimentation. The first column shows the

original color images, the second and third show the 3D point cloud data from front and side

of the faces.
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Figure 20: Real data registration, eyebrow rising. The top row is CCPD, and the second

CPD. From left to right, original deformation, target shape, registered shape, final alignment

and data flow

of both X and Y registered are the most similar over the data. CPD, despite585

the good result, ends in a non accurate registration because it can only perceive

the location information.

Figure 22 presents a large deformation. Here the face is highly deformed to

a side and closing an eye. CCPD aligns the points better because the registered

point set results in a correct location. CPD, however, cannot move correctly the590

points resulting in an inaccurate result (points registered have different color).

5. Discussion and conclusions

In this paper, a novel non-rigid registration approach called Color Coherent

Point Drift (CCPD) is presented. This proposal, based on the well-know CPD,

introduces color information in the correspondence estimation of non-rigid reg-595

istration. The combination of color and location (3D position) information in

the estimation correspondence for alignment improves the result in the presence

of noise, missing data and outliers.
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Figure 21: Real data registration, left cheek inflation. The top row is CCPD, and the second

CPD. From left to right, original deformation, target shape, registered shape, final alignment

and data flow

Figure 22: Real data registration, large deformation. The top row is CCPD, and the second

CPD. From left to right, original deformation, target shape, registered shape, final alignment

and data flow
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In general terms, the proposed CCPD outperforms the original CPD in most

cases. The new input, color, provides information that disambiguates situations600

where the 3D space provides the wrong correspondences. For example, a flower

that grows is used because some parts remain the same but the tips of the leaves

expand. Here, CPD returns a coherent movement which moves centre the points

to a wrong position, while CCPD keeps the color in a good registration.

The experiments included three parts: synthetic simple subjects, synthetic605

realistic subjects and real data. The simple subjects are those used in the

original CPD but with added color information (a fish and a face). The realistic

subjects have been obtained using Blensor, and the real data has been acquired

using a Primesense Carmine RGB-D sensor. The first experiments with a fish

and a face shape show how the proposed method is able to overcome noise,610

outliers, missing data and large deformations. To evaluate the outliers and

missing data, first the registered dataset Y is aligned to the target dataset

X, this second set with outliers (points in X without correspondences in the

registered set Y ), providing similar result for both CCPD and CPD. Secondly,

missing data evaluation has been carried out by removing points in X, so that615

there are points in Y without correspondences in X. In this evaluation, for the

fish shape, CCPD had 4.82 times lower RMS error than CPD in registration

accuracy for 21.9% missing data and 23.1 times lower for 58.2% missing data.

For the face, CCPD had 24 times lower RMS error on average for all missing

data tests than the original method. For a large deformation evaluation, a620

square shape was registered to the fish shape, obtaining better alignment by

CCPD than by CPD for the RMS error (23.1 times lower RMS). In the case of

the face, the large deformation moves the eyebrow upper while the rest of face

remains the same, which forces a non-coherent movement in a specific region.

It has been visually evaluated with CCPD outperforming CPD.625

Experimental results show that a balanced adjusting of both color and loca-

tion parameters, using the proposed CCPD, allows to meet the requirements of

a specific problem, dealing with difficult conditions of the input data (very high

level of noise and outliers in color or location space), approaching to the optimal
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solution. Nevertheless, CPD including color information (CCPD) outperforms630

the registration process even taking into account very difficult conditions of color

input data. In the worst case, in presence of corrupt color data, the CCPD can

become the original CPD with either large σC or assigning 0 to wC .

For realistic data experiments, two subjects have been evaluated, a flower

and a face. Both subjects have two deformations, one larger than the other.635

The face changes the shape as expressions, then eyebrow, and mouth are the

regions that mainly deform, which can be studied as an elastic deformation.

The flower, performs the growth of some leaves, which can be seen as a free de-

formation as the subject changes both size and topology as new points appear

in the deformation. CCPD has been evaluated and compared to CPD using640

the data provided by five downsampling methods which were used in previous

works. The results have been visually evaluated, showing more accurate regis-

tration for the proposed method in most cases. The subjects, for all data (each

downsampling method), are aligned not only by the point distribution, but also

with a coherence in the color space (similar colors are aligned together).645

The real data includes three face deformations, from smaller to larger, re-

turning more accurate registration results for the proposed method. The defor-

mations of the shapes are better aligned by CCPD because the flow of the points

is more similar and coherent to the expected (expected by visual inspection),

by aligning the points using the shape and color information.650

Generalization for multiple (e.g.: include topology along with color and lo-

cation) spaces combination is the next step to be done. Moreover, evaluating bi-

ological growth using CCPD is a short term future work that will provide a very

useful tool for many applications. As long term future work, we are interested in

modifying the method to accelerate the process by comparing neighbour points655

instead of the whole data set. Moreover, an implementation of the method in

a massive parallel processing GPU is proposed as future work to speed up the

process.

42



References

[1] A. Myronenko, X. Song, Point set registration: coherent point drift., IEEE660

transactions on pattern analysis and machine intelligence 32 (12) (2010)

2262–75. doi:10.1109/TPAMI.2010.46.

[2] G. K. L. Tam, Z.-Q. Cheng, Y.-K. Lai, F. C. Langbein, Y. Liu, D. Marshall,

R. R. Martin, X.-F. Sun, P. L. Rosin, Registration of 3D point clouds and

meshes: a survey from rigid to nonrigid., IEEE transactions on visualization665

and computer graphics 19 (7) (2013) 1199–217. doi:10.1109/TVCG.2012.

310.

[3] H. Chui, A. Rangarajan, A New Algorithm for Non-Rigid Point Matching,

CVPR 2 (2000) 44–51.

[4] H. Chui, A. Rangarajan, A new point matching algorithm for non-rigid670

registration, Computer Vision and Image Understanding 89 (2-3) (2003)

114–141. doi:10.1016/S1077-3142(03)00009-2.

[5] A. Rangarajan, H. Chui, F. Bookstein, The softassign procrustes matching

algorithm, in: J. Duncan, G. Gindi (Eds.), Information Processing in Med-

ical Imaging, Vol. 1230 of Lecture Notes in Computer Science, Springer675

Berlin Heidelberg, 1997, pp. 29–42.

[6] N. Ueda, R. Nakano, Deterministic annealing {EM} algorithm, Neural

Networks 11 (2) (1998) 271 – 282. doi:http://dx.doi.org/10.1016/

S0893-6080(97)00133-0.

[7] J. Yang, The thin plate spline robust point matching (TPS-RPM) al-680

gorithm: A revisit, Pattern Recognition Letters 32 (7) (2011) 910–918.

doi:10.1016/j.patrec.2011.01.015.

[8] H. Li, R. W. Sumner, M. Pauly, Global correspondence optimization for

non-rigid registration of depth scans, Eurographics Symposium on Geom-

etry Processing 27 (2008) 1421–1430. doi:10.1111/j.1467-8659.2008.685

01282.x.

43

http://dx.doi.org/10.1109/TPAMI.2010.46
http://dx.doi.org/10.1109/TVCG.2012.310
http://dx.doi.org/10.1109/TVCG.2012.310
http://dx.doi.org/10.1109/TVCG.2012.310
http://dx.doi.org/10.1016/S1077-3142(03)00009-2
http://dx.doi.org/http://dx.doi.org/10.1016/S0893-6080(97)00133-0
http://dx.doi.org/http://dx.doi.org/10.1016/S0893-6080(97)00133-0
http://dx.doi.org/http://dx.doi.org/10.1016/S0893-6080(97)00133-0
http://dx.doi.org/10.1016/j.patrec.2011.01.015
http://dx.doi.org/10.1111/j.1467-8659.2008.01282.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01282.x
http://dx.doi.org/10.1111/j.1467-8659.2008.01282.x


[9] Q. Sang, J.-Z. Zhang, Z. Yu, Robust non-rigid point registration based

on feature-dependant finite mixture model, Pattern Recognition Letters

34 (13) (2013) 1557–1565. doi:10.1016/j.patrec.2013.06.019.

[10] S. Belongie, J. Malik, J. Puzicha, Shape Context: A new descriptor for690

shape matching and object recognition, In NIPS (2000) 831—-837.

[11] S. Belongie, J. Malik, J. Puzicha, Shape matching and object recognition

using shape contexts, IEEE Transactions on Pattern Analysis and Machine

Intelligence 24 (4) (2002) 509–522. doi:10.1109/34.993558.

[12] Q. Sang, J. Zhang, Z. Yu, Non-rigid point set registration: A bidirectional695

approach, in: 2012 IEEE International Conference on Acoustics, Speech

and Signal Processing (ICASSP), IEEE, 2012, pp. 693–696. doi:10.1109/

ICASSP.2012.6287978.

[13] Y. Yawen, Z. P. Peng, Q. Yu, Y. Jie, W. S. Zheng, A Robust CPD Approach

Based on Shape Context, in: 33rd Chinese Control Conference, Nanjing,700

China, 2014, pp. 4930–4935. doi:10.1109/ChiCC.2014.6895776.

[14] H. Wang, B. Fei, A Robust B-Splines-Based Point Match Method for

Non-Rigid Surface Registration, in: 2008 2nd International Conference on

Bioinformatics and Biomedical Engineering, IEEE, 2008, pp. 2353–2356.

doi:10.1109/ICBBE.2008.921.705

URL http://ieeexplore.ieee.org/document/4535801/

[15] Y. Yang, S. H. Ong, K. W. C. Foong, A robust global and local mixture

distance based non-rigid point set registration, Pattern Recognitiondoi:

10.1016/j.patcog.2014.06.017.

[16] J. Chen, J. Ma, C. Yang, L. Ma, S. Zheng, Non-rigid point set registration710

via coherent spatial mapping, Signal Processing 106 (2015) 62–72. doi:

10.1016/j.sigpro.2014.07.004.

44

http://dx.doi.org/10.1016/j.patrec.2013.06.019
http://dx.doi.org/10.1109/34.993558
http://dx.doi.org/10.1109/ICASSP.2012.6287978
http://dx.doi.org/10.1109/ICASSP.2012.6287978
http://dx.doi.org/10.1109/ICASSP.2012.6287978
http://dx.doi.org/10.1109/ChiCC.2014.6895776
http://ieeexplore.ieee.org/document/4535801/
http://ieeexplore.ieee.org/document/4535801/
http://ieeexplore.ieee.org/document/4535801/
http://dx.doi.org/10.1109/ICBBE.2008.921
http://ieeexplore.ieee.org/document/4535801/
http://dx.doi.org/10.1016/j.patcog.2014.06.017
http://dx.doi.org/10.1016/j.patcog.2014.06.017
http://dx.doi.org/10.1016/j.patcog.2014.06.017
http://dx.doi.org/10.1016/j.sigpro.2014.07.004
http://dx.doi.org/10.1016/j.sigpro.2014.07.004
http://dx.doi.org/10.1016/j.sigpro.2014.07.004


[17] W. Lian, L. Zhang, Robust Point Matching Revisited : A Concave Opti-

mization Approach, in: Computer Vision ECCV 2012, 2012, pp. 259–272.

doi:10.1007/978-3-642-33709-3\_19.715

[18] S. Lin, Y.-K. Lai, R. R. Martin, S. Jin, Z.-Q. Cheng, Color-aware surface

registration, Computers & Graphics 58 (2016) 31–42. doi:10.1016/j.

cag.2016.05.007.

[19] A. Myronenko, X. Song, M. A. C.-P. nán, Non-rigid point set registration:

Coherent point drift, in: B. Schölkopf, J. Platt, T. Hoffman (Eds.), Ad-720

vances in Neural Information Processing Systems 19, MIT Press, 2007, pp.

1009–1016.

[20] P. Wang, P. Wang, Z. Qu, Y. Gao, Z. Shen, A refined coherent point

drift (CPD) algorithm for point set registration, Science China Information

Sciences 54 (12) (2011) 2639–2646. doi:10.1007/s11432-011-4465-7.725

[21] B. Jian, B. C. Vemuri, A Robust Algorithm for Point Set Registration

Using Mixture of Gaussians., Proceedings / IEEE International Conference

on Computer Vision. IEEE International Conference on Computer Vision

2 (2005) 1246–1251. doi:10.1109/ICCV.2005.17.

[22] B. Jian, B. C. Vemuri, Robust Point Set Registration Using Gaussian Mix-730

ture Models., IEEE transactions on pattern analysis and machine intelli-

gence 33 (8) (2010) 1633–1645. doi:10.1109/TPAMI.2010.223.

[23] A. W. Fitzgibbon, Robust registration of 2D and 3D point sets, Image and

Vision Computing 21 (13-14) (2003) 1145–1153. doi:10.1016/j.imavis.

2003.09.004.735

[24] D. Gerogiannis, C. Nikou, A. Likas, Registering sets of points using

Bayesian regression, Neurocomputing 89 (2012) 122–133. doi:10.1016/

j.neucom.2012.02.018.

45

http://dx.doi.org/10.1007/978-3-642-33709-3_19
http://dx.doi.org/10.1016/j.cag.2016.05.007
http://dx.doi.org/10.1016/j.cag.2016.05.007
http://dx.doi.org/10.1016/j.cag.2016.05.007
http://dx.doi.org/10.1007/s11432-011-4465-7
http://dx.doi.org/10.1109/ICCV.2005.17
http://dx.doi.org/10.1109/TPAMI.2010.223
http://dx.doi.org/10.1016/j.imavis.2003.09.004
http://dx.doi.org/10.1016/j.imavis.2003.09.004
http://dx.doi.org/10.1016/j.imavis.2003.09.004
http://dx.doi.org/10.1016/j.neucom.2012.02.018
http://dx.doi.org/10.1016/j.neucom.2012.02.018
http://dx.doi.org/10.1016/j.neucom.2012.02.018


[25] Y. Gao, J. Ma, J. Zhao, J. Tian, D. Zhang, A robust and outlier-adaptive

method for non-rigid point registration, Pattern Analysis and Applications740

17 (2) (2013) 379–388. doi:10.1007/s10044-013-0324-z.

[26] S. Ge, G. Fan, M. Ding, Non-rigid Point Set Registration with Global-

Local Topology Preservation, The IEEE Conference on Computer Vision

and Pattern Recognition (CVPR) Workshops (Ml) (2014) 245–251.

[27] S. de Sousa, W. G. Kropatsch, Graph-based point drift: Graph centrality745

on the registration of point-sets, Pattern Recognition (2014) 1–12doi:10.

1016/j.patcog.2014.06.011.

[28] Z. Zhou, J. Zheng, Y. Dai, Z. Zhou, S. Chen, Robust non-rigid point set

registration using student’s-t mixture model., PloS one 9 (3) (2014) e91381.

doi:10.1371/journal.pone.0091381.750

[29] M. Gschwandtner, R. Kwitt, A. Uhl, W. Pree, Blensor blender sensor sim-

ulation toolbox, in: G. Bebis, R. Boyle, B. Parvin, D. Koracin, S. Wang,

K. Kyungnam, B. Benes, K. Moreland, C. Borst, S. DiVerdi, C. Yi-Jen,

J. Ming (Eds.), Advances in Visual Computing, Vol. 6939 of Lecture Notes

in Computer Science, Springer Berlin Heidelberg, 2011, pp. 199–208.755

[30] M. Saval-Calvo, S. Orts-Escolano, J. Azorin-Lopez, J. Garcia-Rodriguez,

A. Fuster-Guillo, V. Morell-Gimenez, M. Cazorla, A Comparative Study

of Downsampling Techniques for Non-rigid Point Set Registration using

Color, in: International Work-conference on the Interplay between Natural

and Artificial Computation, 2015.760

[31] M. Saval-Calvo, J. Azorin-Lopez, A. Fuster-Guillo, J. Garcia-Rodriguez,

S. Orts-Escolano, A. Garcia-Garcia, Evaluation of sampling method effects

in 3D non-rigid registration, Neural Computing and Applicationsdoi:10.

1007/s00521-016-2258-z.

URL http://link.springer.com/10.1007/s00521-016-2258-z765

46

http://dx.doi.org/10.1007/s10044-013-0324-z
http://dx.doi.org/10.1016/j.patcog.2014.06.011
http://dx.doi.org/10.1016/j.patcog.2014.06.011
http://dx.doi.org/10.1016/j.patcog.2014.06.011
http://dx.doi.org/10.1371/journal.pone.0091381
http://link.springer.com/10.1007/s00521-016-2258-z
http://link.springer.com/10.1007/s00521-016-2258-z
http://link.springer.com/10.1007/s00521-016-2258-z
http://dx.doi.org/10.1007/s00521-016-2258-z
http://dx.doi.org/10.1007/s00521-016-2258-z
http://dx.doi.org/10.1007/s00521-016-2258-z
http://link.springer.com/10.1007/s00521-016-2258-z


[32] S. Orts-Escolano, V. Morell, J. Garcia-Rodriguez, M. Cazorla, Point cloud

data filtering and downsampling using growing neural gas, in: The 2013

International Joint Conference on Neural Networks, IJCNN 2013, Dallas,

TX, USA, August 4-9, 2013, 2013, pp. 1–8.

47


	Introduction
	Previous research
	Coherent Point Drift variants

	Color Coherent Point Drift
	Experiments
	Synthetic data experimentation
	2D fish experimentation
	3D face experiments
	Experiments for noise and outliers in color space

	Synthetic realistic experiments
	Non-rigid registration evaluation

	Real data experimentation

	Discussion and conclusions

