
Projetive ICP and Stabilizing ArhiteturalAugmented Reality OverlaysRobert B. FisherUniversity of Edinburgh and Trinity College DublinSummary. The reently developed tehnique of Iterative Closest Point (ICP)mathing has been used for a number of 3D-to-3D and 2D-to-2D point mathingappliations, and has been further developed in several useful ways, as desribedbelow. Central to these appliations is the notion of rigid shape mathing. This pa-per extends the onept to projetive point mathing, in whih shapes are relatedby a projetive transform rather than a Eulidean transform. With this extendedtehnique, we show that diretly registering 2D Augmented Reality (AR) overlaysvia a projetive transform has greater registration stability than the more usualtehnique of estimating the 3D position of the overlay and then applying pinholeprojetion, whih an produe notieable frame-rate jitter of the graphial objets.Moreover, the tehnique does not rely on expliit feature point orrespondene andtraking. We then further extend the tehnique to diretly register 3D shapes pro-jetively by using mutually onstrained 2D projetive mappings. These two newtehniques enhane the repertoire of methods for produing high-detail, stable aug-mentation of built senes.Keywords: Augmented Reality stabilization, Iterative Closest Point1 IntrodutionOne of the fundamental operations in an Augmented Reality (AR) system isthe projetion of the graphial objets onto a video sequene. The traditionalmethod for this projetion is to analyze the video sequene to dedue the 3Dsene position of graphial objet and then to projet the graphial objet intothe video sequene using a standard amera model [1,2,12℄. This approah isommonly used in arhitetural AR beause of the straightforward 3D seneanalysis. While this 3D-to-2D approah is tehnially orret, our experieneof working with 3D senes suggests that estimating the 6 degrees of freedomof the graphial objet in 3D spae an be slightly unstable. This auses thegraphis objets to have a frame-rate jitter, whih an ertainly be observedin many AR appliations. An alternative is to map diretly from the graphialspae to the image spae, whih is the approah being presented in this paper.The reently developed tehnique of Iterative Closest Point (ICP) math-ing [3℄ has been used for a number of 3D-to-3D and 2D-to-2D point math-ing appliations, and has been further developed in several useful ways, as



2 Robert B. Fisherdesribed below. Central to these appliations is the notion of rigid shapemathing. This paper extends the onept to projetive point mathing, inwhih shapes are related by a projetive rather than a Eulidean transform.With this extended tehnique, we then show that diretly registering 2DAugmented Reality (AR) overlays via a projetive transform has greater reg-istration stability than the more usual tehnique of estimating the 3D positionof the overlay and then applying pinhole projetion. By using the PICP teh-nique, transformations an be estimated without using expliit feature pointorrespondenes. We then further extend the tehnique to diretly register 3Dshapes projetively by using mutually onstrained 2D projetive mappings.This method an be used in AR appliations requiring aurate omposit-ing, suh as in speial e�ets in video post-prodution, or live entertainmentoverlay where viewer opinion is important. Arhitetural appliations inludemuseum enhanement, emergeny servie route diretions, building mainte-nane plan overlay, et.Smith et al [11℄ have also explored diret image mapping to improvegraphial objet registration using sene onstraints suh as parallel lines andoplanarity of traked features, Eulidean bundle adjustment, and estimatingparameters over the whole image sequene using supplied amera projetionmatries. In addition, they also explored added onneted 3D strutures (aretangular solid), by traking the vanishing points of three sets of paral-lel lines to de�ne an aÆne systems and then estimate the amera matries,subjet again to onstraints suh as parallelness and oplanarity.Kutalakos and Vallino [8℄ demonstrated diret, but aÆne, mapping of 3Dobjets using four aurately traked non-oplanar ontrol points to deter-mine the mapping of the remainder of the 3D objet.The researh presented here extends this previous work by using per-spetive projetion, avoiding dependene on aurate traking of individualpoints or features, working with urved shapes as well as linear boundariesand working with multiple onstrained projetions.1.1 The Rigid Iterative Closest Point AlgorithmICP [3℄ is an iterative alignment algorithm that works in three phases: 1)establish orrespondene between pairs of features in the two strutures thatare to be aligned based on proximity, 2) estimate the rigid transformationthat best maps the �rst member of the pair onto the seond and then 3)apply that transformation to all features in the �rst struture. These threesteps are then reapplied until onvergene is onluded. Although simple, thealgorithm works quite e�etively when given a good initial estimate.The basi algorithm has been previously extended in a number of ways:1) orrespondene between a point and a tangent plane to overome thelak of an exat orrespondene between the two sets [5℄, 2) robustifying thealgorithm to the inuene of outliers and features laking orrespondenes[14,9℄, 3) using a weighted least-square error metri [6℄, and 4) mathing



PICP & Stabilizing AR Overlays 3between features using a metri trading o� distane and feature similarity(based loal shape invarianes) [10℄. All of these approahes assume a rigidEulidean transformation between the orresponding features, whereas themethod presented here uses projetive orrespondene.2 The Projetive Iterative Closest Point AlgorithmUnlike the Eulidean ase, the strutures being mathed don't neessarilyhave the same shape, beause of projetive distortion. However, as we areworking with full projetive geometry, it is still possible that the shapesan have an exat math. Thus, it is neessary to de�ne a distane measurebetween projetive points, so that we an �nd the `losest' points. We alsoneed a way of estimating the homography between the set of paired `losest'points. These are the main di�erenes between the normal Eulidean ICPalgorithm and that presented here.2.1 Projetive Distane EstimationBeause a point in projetive spae an be represented by an in�nite set ofhomogeneous oordinates, the normal Eulidean distane ould be an unsuit-able distane metri. We de�ne a distane metri dp() between two 2D pointswith homogeneous representations p1 = (x1; y1; z1)0 and p2 = (x2; y2; z2)0 as:dp(p1;p2) = os�1( p1 � p2jj p1 jj jj p2 jj )This is the angle between the points, when onsidered as 3D vetors. dp() isa true metri (identity, ommutativity, triangle inequality - not proved here).2.2 Projetive Transform EstimationLet fp1;p2; : : :png and fq1; q2; : : :qng be two sets of paired homogeneouspoints linked by a projetive transform. The 2D projetive transform T anbe represented with a 3 � 3 matrix having an arbitrary saling, and thus 8degrees of freedom. If n = 4, then T an be solved for exatly. Here, weexpet that n will be muh bigger than 4 and so use the diret linear method[7℄ to estimate T suh that: qi := TpiLet T = 0� t11 t12 t13t21 t22 t23t31 t32 t331ADe�ne: t = (t11; t12; t13; t21:t22; t23; t31; t32; t33)0



4 Robert B. FisherNormalize vetors so pi = (pix; piy; 1)0 and similarly for qi. Construt the2n� 9 matrix A:A(2i� 1; :) = (pix; piy; 1; 0; 0; 0;�qixpix;�qixpiy;�qix)A(2i; :) = (0; 0; 0; pix; piy ; 1;�qiypix;�qiypiy;�qiy)The solution vetor t is the eigenvetor of A0A with smallest eigenvalue.2.3 PICP AlgorithmUsing the results from the previous subsetions, we de�ne the ProjetiveICP algorithm (PICP) as follows (adapted from [10℄). Let S be a set of Nsoplanar 2D points fs1; : : : ; sNsg and M be the orresponding 2D model.Let dp(s;m) be the projetive distane between point s 2 S and m 2 M.Let CP(s;M) be the `losest' point in M to the sene point s, using theprojetive distane de�ned in Setion 2.1.1. Let T[0℄ be an initial estimate of the homography.2. Repeat for k = 1::kmax or until onvergene:(a) Compute the set of orrespondenes C = SNsi=1f(si; CP (T[k�1℄(si);M))g.(b) Compute the new homography T[k℄ between point pairs in C usingthe method of Setion 2.2.It is possible for the ICP algorithm to diverge if the initial transformationestimate is not lose enough to the orret alignment. This problem also arisesin the PICP algorithm, whih an lead to very distorted transformations. Thisbehavior was observed in the experiments presented below, when the initialtransformation estimate left the registration features lose to a distintlydi�erent part of the sene.3 Planar Struture Registration Using PICP forAugmented RealityUsing the theory developed in Setion 2, we look at diretly projeting planargraphial strutures from the graphial spae to the image spae. In thenext setion, we present results for 3D graphial objets omposed of planarsubstrutures.Assume that we are trying to map a planar urve S = f(�)g; � 2 [0::1℄(represented homogeneously) onto an image plane using the homography T,that is, drawing T(�). We need to estimate T.Assume that we have identi�ed orresponding strutures in the image,and have a set of points P = fpig; i 2 [1::n℄ that desribe that struture.For example, this might be the boundary of the objet as loated by an edgedetetor. Using the theory in Setion 2, we want to estimate the T that bestsatis�es pi = T(�i) for the orresponding projetively losest point pairs



PICP & Stabilizing AR Overlays 5f(pi; (�i))g. This in turn requires �nding the orresponding point pairs. Aswe are working in the PICP framework, this searh redues to �nding thelosest pairs between f(T[k�1℄(�i);pi)g at the kth iteration of the PICPalgorithm, where T[k�1℄ is the k � 1st estimate of the homography.As �i spei�es a ontinuous urve, �nding the point in P losest to eahT[k�1℄(�i) an be quite time-onsuming. Fortunately, the homography isinvertible, so instead we searh for the pairs f((T[k�1℄)�1pi; (�i))g and theninvert the estimated homography to get T[k℄.Table 1. Average, standard deviation and maximum deviation of the averageboundary distane between the estimated and true graphi objet retangles forthe PICP, 3D and PICPe (using Eulidean distane for the losest point) algo-rithms at 4 pixel Gaussian noise standard deviations.Noise PICP 3D PICPemean std max mean std max mean std max0 0.35 0.04 0.42 0.99 0.45 2.03 0.33 0.03 0.4010 0.35 0.04 0.49 0.90 0.35 2.34 0.33 0.04 0.4420 0.38 0.07 0.70 1.03 0.38 2.90 0.33 0.07 0.6730 0.43 0.11 0.86 1.33 0.44 3.29 0.37 0.10 0.80
3.1 EvaluationWe investigated the PICP approah's stability ompared with two alterna-tives: 1) estimating the 3D transform and then projeting and 2) using theEulidean distane rather than the projetive distane in the portion of thePICP algorithm that �nds the losest point. The motivation for the seondalternative is that we are attempting to stabilize the graphis in the im-age plane, so perhaps using image plane distanes might be better than theprojetive distane.The test graphial objet is a retangle of dimensions 0.5 by 1, projetedinto a sequene of 20 views with a moving amera. Real strutures like thissimulation inlude a piture on a gallery wall, a notie or advertising board,or a building side. The image bakground has intensity 20 and the retanglehas intensity 100. Gaussian noise of varying standard deviation is added ateah pixel.Ten instanes of the image with di�erent noise were generated at eahview, giving a total of 200 samples at eah noise level. The Canny edgedetetor found the edge points used for registering edges of the retangle.The 3D transformation used in alternative method 1 is estimated by: 1)estimating the orners of the retangle from the image edges and 2) searhingfor the 3D points along the lines of sight through the orners that best �t the



6 Robert B. Fishermodel retangle. Better 3D performane in this experiment ould probablybe ahieved by estimating the orner positions better.The experiments reorded two measures of stability: 1) the distane ofthe estimated graphial objet origin from the known true origin and 2) anestimate of the average distane between the true and estimated retangle'sboundary. The former assesses the stability of a given point and the latterassesses the stability of overall shape mathing and registration.The PICP algorithm was allowed to run for up to 50 iterations, or termi-nate early if the umulative projetive distane between the registered edgepoints and orresponding model retangle points di�ered between iterationsby less than a threshold value (0.004). On average, the PICP algorithm re-quired 15 iterations (range 4{32).Table 1 shows the average boundary distanes and the results for theorigin distanes are similar. It is lear that the boundary alignment algorithmsare muh more aurate (omparing means) and stable (omparing standarddeviations and maximum errors) than the 3D approah at all noise levels.Between the two boundary alignment algorithms, it appears that the usingEulidean distane instead of the projetive distane in the feature mathingstage produes slightly lower average error.
a) b)
) d)Fig. 1. Snapshot of the video transfer onto a urved boundary. a) One frame of theoriginal sequene, b) one frame of the transfer sequene, ) ropped eye from thetransfer sequene, whose boundary is mapped onto the template boundary, and d)orresponding frame from result sequene.This experiment required approximately 2 seonds per iteration withabout 200-230 edge points on a 270 Mhz Sun workstation and unoptimizedMatlab ode. This suggests the possibility of overlay at around 10 frames perseond on a 1 Ghz PC, and real-time video with optimized C/C++ ode.



PICP & Stabilizing AR Overlays 7To demonstrate the performane on a real video sequene, observe the ani-mated GIF at URL: http://www.dai.ed.a.uk/homes/rbf/PICP/pip.htm.This shows the transfer of a video sequene (88 frames) of an eye blinkingonto an oÆe interior sequene ontaining a template with a urved boundary.The soure eye was manually edited to selet the eye window with shape asaled version of the traked template. The PICP algorithm was then used toregister the shapes for transfer of the winking eye into the traking sequene.Figure 1 shows a single frame from the animated sequene.A seond interior sequene an be see from the same URL, whih showsthe augmentation of a orridor sene with navigation instrutions, suh asmight be presented to an emergeny servie person on a future head-mountedAR display. In this ase, the overlay lies in the same projetive plane as theregistration features, whih were mathed to the interior edges of the O, butdid not use any of the registration features. Figure 2 shows one frame of theresult sequene (11 frames) and the overlay plane. Note that the transfer stillis stable even though perspetive distortion is now appearing.

a) b)Fig. 2. Snapshot of the transfer onto a orridor sene: a) One frame of the resultsequene and b) the transfer overlay, inluding the registration features.4 3D Struture Registration Using Constrained PICPIf the graphial objet to be projeted ontains 3D struture, then one anuse the normal approah of estimating the full 3D transformation and thenapplying image projetion using a amera model. As both intrinsi and ex-trinsi amera model estimation an have instabilities, then the graphialobjet might jitter around the video objet.One an alternatively apply an extension to the method of Setion 3 ifthe 3D objet onsists of onneted planar segments (e.g. a polyhedral ortriangulated model). For example, the planar models ould be di�erent faesof an objet or walls of a building.



8 Robert B. FisherThe problem with applying the method of Setion 3 diretly to the in-dividual planar segments is the individually estimated homographies mightause the shared edges of the graphial objets to no longer align when pro-jeted. Hene, this setion looks at how to estimate the individual surfaehomographies subjet to the onstraint that shared model verties are oin-ident in the projeted image (whih also guarantees that the shared edgesare oinident).Formally, let M1 = f1(�1)g and M2 = f2(�2)g, �i 2 [0::1℄ be twoplanar urves (represented homogeneously) mapped by the homographiesT1 and T2 into a ommon image plane ontaining image feature pointsS1 = fp11;p12; : : :p1n1g and S2 = fp21;p22; : : :p2n2g. (See Figure 3.) Weassume that the image feature points have already been segmented into setsorresponding to the appropriate graphial objet, by some proess not on-sidered here. Some feature points of S1 and S2 will be shared; these are theverties and urves ommon to both sets.
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Fig. 3. Projetion of 2 non-oplaner urves i(�) via homographies Ti into a om-mon image mapping shared point a to a0 and b to b0.Suppose that 1(�1k) and 2(�2k), k = 1::K, map to the same image point.For example, these are the verties at the end of a shared line segment.Then, the problem an be formulated as: Find the T1 and T2 that min-imizes the mapping distane (using dp()) of f1(�1)g and f2(�2)g onto S1and S2 respetively suh that�kT11(�1k) = T22(�2k)�k are new unknown variables for the di�erene in homogeneous saling.To solve the problem, we eliminate the �k to form six new salar equalitiesas follows. Let T ji be the jth row of homography Ti. Then isolating �k in the



PICP & Stabilizing AR Overlays 9above onstraints produes: �k = Tj22(�2k)Tj11(�1k)for shared points k = 1::K and homogeneous oordinates j = 1; 2; 3. One ofj = 1; 2; 3 an be derived from the other two so we just use j = 1; 2. Equatingthese for �k and simplifying gives the onstraints:Cjk(T1;T2) = [(Tj22(�2k))(T3�j1 1(�1k))� (T3�j2 2(�2k))(Tj11(�1k))℄2The goal is to estimate T1 and T2 that minimizesE(T1;T2) = n1Xi=1 dp(T1�1p1i;M1) + n2Xi=1 dp(T2�1p2i;M2)subjet to Cjk(T1;T2) = 0 for k = 1::K and j = 1; 2.We solve this minimization using Werghi's tehnique [13℄ for multiplyonstrained minimization. De�ne a ost funtionF (�;T1;T2) = E(T1;T2) + � Xk=1::K;j=1;2Cjk(T1;T2)Then we:1. Compute initial estimates of T1[0℄ and T2[0℄ independently using thePICP method of Setion 3.2. Set � to a small value (1.0).3. Reompute orrespondenes between losest model and data edge points,as needed for omputing E().4. Minimize F () using a standard numerial method with T1[t�1℄ and T2[t�1℄as the initial estimate to get T1[t℄ and T2[t℄5. Inrease � (50%) and return to step 3 until the desired degree of onstraintis ahieved. In this ase, we want T11(�1i) and T22(�2i), i = 1; 2 to liewithin 0.1 pixel.If more than two planar segments are in the model, the method generalizesby adding extra onstraints for eah shared point.4.1 EvaluationTo evaluate the onstrained projetion method, we show �rst some perfor-mane results using syntheti images, and then an example with a real image.The syntheti results used two onstrained semiirles linked perpendi-ularly as seen in Figure 4a. The individual semiirle edges are registeredto the image edges shown in Figure 4b, and then onstrained to share thesame straight edge. The resulting onstrained mapping projets the model



10 Robert B. Fisheredges onto the image (Figure 4). This problem was onstrained in about 15minutes using Matlab on a 270 Mhz Sun.Regenerating this image with di�erent image noise (� = 10) 5 times eahover a traking sequene with 10 positions gave an mean average boundarydistane error of 0.53 pixels, with standard deviation 0.087 and maximumaverage error of 0.71 pixels. Thus, the proess is stable below the level ofinteger pixel edge data to image noise.
Fig. 4. Test images for 3D registration, showing: a) the raw image, b) the edgesused for image apture ) the two registered semiirle models projeted onto theraw image.We also applied the onstraint method to a real image, namely for trakinga real apple wedge somewhat similar to the syntheti example. Figure 5 showsa) one raw image, b) the edges from that image, ) the apple model �tted toboth sides of the slie and d) the orresponding frame from result sequenewith the model projeted onto the image.To demonstrate the performane on a real video sequene, observe the ani-mated GIF at URL: http://www.dai.ed.a.uk/homes/rbf/PICP/pip.htm.Here, the mathed edges are not as reliably and stably found, nor does theapple have the spherial wedge as in the syntheti example. Thus, the trak-ing is reasonable but not as stable; however, the onstraint is always satis�ed.Beause of the optimization step, the omputation took about 10 minutes perimage (again in Matlab on a 270 Mhz Sun). This tehnique is easily appliableto arhitetural strutures beause of the many onneted planes.5 ConlusionsThis paper has introdued the PICP registration algorithm that ats in pro-jetive, rather than Eulidean spae. One of the key advantages of the algo-rithm is that it does not require expliit feature point orrespondenes. Withthis algorithm, we showed that it an be used for more stable registrationof augmented reality graphis on top of video, by diretly registering to theimage edges rather than via a 3D pose estimation. Further, we extended thesingle plane projetion method to inorporate multiple onstrained planes,
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a) b)
) d)Fig. 5. Snapshot of the video transfer onto a urved boundary. a) One frame (13)of the original sequene (60 frames), b) the edges that are being �t by the twoinstanes of the model, ) the transfer model and d) the orresponding frame fromresult sequene.thus allowing simultaneous registration of 3D strutures. Both of the teh-niques presented here (projetive point alignment and onstraints in align-ment) have muh potential in AR appliations, partiularly in man-madeenvironments beause of their many individual and joined planar strutures.The onstraint linkage approah ould potentially be used in more generalAR appliations (suh as ensuring objets lie on a groundplane or road), orwhere the projeted objet has independently registerable subomponents,but the PICP approah is limited to appliations where the projetion ma-trix an be diretly estimated from the point orrespondenes. Note that theorresponding points need not be real features, but ould be de�ned by e.g.loal texture distributions.If the registered feature is mathed to an oluding ontour, then the ap-proah will fail as the transformation requires exat orrespondenes. How-ever, if the sene has some other features, suh as internal markings, that anbe used for registration, then estimating the homography might be possible.If ontours are ambiguous, thus produing alternative orrespondenes, thenhigher level proessing would be needed to resolve the ambiguity. This is a
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