A Particle Filter for Tracking a Firefly
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Abstract

The Farticle filter estimates a probability distribution
of target object’s state by sampled hypotheses and their
weights. This method is more expressive than existing
method such as Kalman filtering, because the object state
is represented as a multi-modal distribution. However,
the method can’t be directly applied to temporally vari-
able appearance object tracking, for example, a firefly, or
a flickering neon-sign. For solving this problem, we pro-
pose a particle filter for a variable appearance object,
which estimates a unique state parameter independent
of target’s position. Our method decomposes the state
space into disjoint parameter spaces, i.e., object position
and posture space and appearance parameter space. In
the appearance parameter space, the likelihood of each
hypothesis is evaluated at the position parameters gen-
erated in the other space, and the best explain parame-
ter is determined. Based on this parameter, likelihood in
the position and posture space is evaluated. By interact-
ing the parameter estimations in different spaces, we can
successfully track blinking firefly in the darkness.

1 Introduction

The Particle filtering (or called the CONDENSATION
[1]) or its extensions generate many hypotheses in a
state parameter space spanned by target’s position, pos-
ture, and shape. The hypotheses’ weights are calculated
by consistency between hypotheses and captured image
[4, 6, 7, 8]. It develops characteristics 1) there are rela-
tionships among state parameters, 2) it allows ambiguity
about many combinations of parameters. These charac-
teristics should appear as an advantage, however, it may
become defects sometimes. For example, in a case when
a set of state parameters can be decomposed into some
classes, many hypotheses are generated on unnecessary
state parameter. In the matter of tracking efficiency, this
can become a big problem. For solving this problem,
importance sampling [2], partitioned sampling [5] and
many methods have been proposed [3].

This problem adversely affects not only efficiency but
also tracking stability. For example, a problem of blink-
ing firefly tracking has a parameter including appearance
independent of position. The appearance parameter can’t
be represented as a shape or other geometrical model in
the dark scene. Under this condition, we have to estimate
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a likelihood of firefly from the brightness. Therefore, a
likelihood estimation will vary whether each hypothesis
assumes “a firefly is lighting” or “disappear.” Because,
most hypotheses assume “disappear” using original par-
ticle filter, the tracking may be performed in a dark place.

For solving this problem, we change criteria of likeli-
hood evaluation depending on unique object appearance
parameter. This is equivalent to daringly introducing an
uni-modal distribution that does not allow ambiguity into
the particle filter allowing ambiguity.

When the ambiguity is excluded completely, the par-
ticle filter doesn’t have any advantages. Therefore, for
tracking variable appearance object, state parameters are
considered as two types of parameters; ambiguity or
unique. For example, in the case of blinking firefly, the
unique parameter represents the brightness and it keeps
changing, which is independent of position. For esti-
mating the brightness parameter, we estimate probability
distribution which is excluded multimodality. This uni-
modal distribution estimation can obtain both a consis-
tency of likelihood estimation and stability of tracking.
We call a parameter which includes ambiguity “object
position parameter,” a parameter which is independent
of object position “appearance parameter.”

2 Appearance estimation and object track-
ing

In the following discussion, we propose a stable likeli-
hood estimation for tracking a variable appearance object
using the particle filter. We explain how the appearance
parameter influences position parameter space in firefly
example.

2.1 One dimensional appearance parameter

In the tracking problem that the brightness of target
object varies, the appearance parameter space R4 can
be represented as one dimensional space. As the ob-
ject’s appearance and the parameter of appearance have
one to one relationship, estimation can use the continu-
ous space. Therefore, we can also treat the problem sim-
ply as the particle filter problem in the product space of
both of R 4 and position parameter space R p as shown in
Fig.1. However, each hypothesis differently estimates an
appearance parameter ¢ € R 4. When tracking a blinking
firefly in the dark, tracking may fail because hypotheses
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Figure 1. A product space of object’s posi-
tion parameter space and appearance pa-
rameter space
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Figure 2. Object state space assumed in
this paper: Our method uses a position pa-
rameter space for estimating a likelihood
of appearance parameter

in the dark position, where target does not exist, become
more confident.

For avoiding this tracking failure, we propose a stable
likelihood estimation using unique appearance parameter
q*. The target position (z,y) is being tracked estimat-
ing ¢*. We decompose a target parameter space into two
spaces as shown in Fig.2. Estimation of a distribution in
Rp is stabilized by ¢*. Then, a likelihood estimation in
R 4 is performed by the image feature involving Rp. Our
method can keep consistency of the relationship between

each space.

Parameters of hypotheses are represented as s§”> =

@™, 4™ ™)) with weights 7™, where z{™ and y{™
represent a target position, and q( n) represents appear-
ance parameter respectively. The hypothesis represents
assumed an appearance parameter ngn) for a target po-
sition (x ("), yf")) where n represents samples’ number.
The dynamical model for our method is Gaussian noise.

2.2 Position parameter estimation

In time ¢ = 0, we can’t determine the unique appear-
ance parameter. Then, the first time likelihood is esti-

mated by qt") The likelihood is calculated as
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Figure 3. A likelihood estimation in the ap-
pearance parameter space

Where, It( ,yf )) represents a vector of RGB image

value!. On the target position, A(qt(n)) represents a vec-
tor of RGB value corresponded to appearance parame-
ter. Eq. (1) represents evaluation of matching degree be-

tween RGB of image and appearance parameter. In other

time ¢ # 0, we obtain a weight m; 7™ a

) = oxp (- [l - a0 /o) @)

where g; represents the unique appearance parameter
which is described following subsection.

2.3 Appearance parameter estimation

As mentioned above, we realize a tracking with g
> 7r£7;)q§"). In other

words, the expectation with weight S;) of hypotheses

q\" represents g;.

which is calculated as g}

Now, we explain how to calculate weight 772? which

should indicate correctness of qt(n) When we calculate

( )

qt( ) representing “a firefly disappears” at the dark posi-

tion ($§ ), yg )) is evaluated correct though the firefly is

lighting. Because, the assumed target position and the
appearance parameter are not correct. For such a reason,
we introduce the ¢; into Eq. (1). Fig.3 represents appear-

in the same way as Eq. (1), appearance parameter

ance parameter estimation. Ellipses represent qgn), and
its size indicates how much qt(") fits with image feature.
On the middle arrow, the ellipse size indicates weight

ff? Around the position of ¢;_;, the ellipses on the
middle arrow become large compared with ones on the
top arrow. Introducing ¢; into Eq. (1) gives correct esti-
mation.

However, it is not enough for determining “disappear”
or not. Because, almost hypotheses (z{™, 4\™) don’t ex-
ist lighting firefly. For solving this problem, a weight at
dark positions is set to low value.

For obtaining correct g;, iterative calculation where

g; is introduced into Eq. (1) is required because obtained

The reason we don’t use grayscale value not RGB value is that we
noticed that each RGB values didn’t indicate same value in the experi-
ments.



Figure 4. A part of input image sequences.
An arrow in this figure represents a target.

value g; is not converged with one-time-only calculation.
Then, from the discussion, we propose an estimation of

likelihood for g™ and estimation of g} as
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where ¢; , denotes k times estimation iteration result of

unique appearance parameter, w,i"() , denotes weight esti-
mated by likelihood in £ time itefeftion, I, denotes back-
ground image information (in a case of a problem of a
blinking firefly tracking, it represents an RGB equal to
zero). In Eq. (3), the result of appearance parameter
Qo1+ = di—1,9f = G-k ¢ Where K is iteration total.

3 Experimental results

In this paper, we performed tracking experiment by
using a movie of a wild firefly. Fig.4 shows input images
captured in 30fps. The image frame numbers are frames
89, 178, 267, 356, 445, and 534 from the left top to right
bottom. In frame 267 and 445, the firefly disappears.
A(-) is learned beforehand as a quantum in 59 stages.
The number of hypotheses is 600. The hypotheses are
initialized by user. In this paper, we did three experi-
ments for evaluating effectiveness of proposal method.
First, we did the original CONDENSATION [1] experi-
ments (experiments A). Second is an experiment of with-
out iteration of k£ in Eq. (3); K = 1 (experiments B).
Third is our method (experiments C).

3.1 The original CONDENSATION result

In the experiment A, we track a firefly using the origi-
nal CONDENSATION. Fig.5 shows a result of the experi-
ment. Green points represent each hypothesis. An upper
right rectangle on Fig.5 represents enlarged part around
tracking result. Fig.6 (A) shows a trajectory of the track-
ing result represented as red line with true value repre-
sented as blue lines (when a firefly disappears, we can’t
get a true value). In this figure, x and y-axis represent an
image coordinates, frame axis represents a frame num-
ber. From Fig.5 and 6 (A), we can notice that the track-
ing can’t be performed correctly. The reason the tracking

Figure 5. The experiment results A:Points
in this figure represent hypotheses.

fails is that the appearance parameter of a firefly, which
is criteria of likelihood estimation, can’t be determined
correctly and then tracking results in failure.

3.2 Experimental results without iteration

Experimental result B shows a method for determin-
ing appearance parameter ¢; once in a frame. Fig.7
shows the experimental results, and Fig.6 (B) shows a
trajectory of the tracking result. In Fig.7, rectangular
area on the upper left of image shows the color that cor-
responds to the estimated appearance parameter. We can
notice that the tracking results are more accurate than the
experiment A.

Moreover, Fig.8 shows unique appearance parame-
ter estimation result. The horizontal axis indicates time
(frame number), vertical axis indicates the appearance
parameter estimated in Fig.7. The blue line indicates true
value, and the red line indicates estimated value. Mean
value of the error margin between true value and esti-
mated value of state is 6.42(degree), standard deviation
value is 9.51(degree). Fig.8 shows estimation of unique
appearance parameter, the above-mentioned mean value
of the error margin and standard deviation value. It is
shown that no iterated processing for g; can’t estimate
correct value.

3.3 Experimental results with iteration

Fig.9 and 6 (C) show results of tracking experiment
by our method (including iterated estimation) as well as
experiment B.

Fig.10 shows the result of estimated appearance pa-
rameter in this experiment. Mean value of the error mar-
gin between true value and estimation value of appear-
ance parameter in this experiment is 4.75(degree), stan-
dard deviation value is 7.48(degree). These values repre-
sent that correct appearance parameter estimation needs
an iteration of k. Fig.10 and values show that we real-
ize the estimation of correct appearance parameter. Al-
though, behavior of hypotheses is a little unsteady when
firefly disappeared in frame 267 and 445 in Fig.9. How-
ever, our method can track the target and estimate an ap-
pearance parameter better than any other experiments.



Figure 6. A trajectory of tracked firefly all the experimental results

Figure 7. The experiment results B
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Figure 8. A state estimation results from
the experiments B: a horizontal axis indi-
cates frame, a vertical axis indicates ¢;

4 Conclusion

In this paper, we proposed a stable likelihood estima-
tion for variable appearance object using the particle fil-
ter. Our method calculates the unique “appearance pa-
rameter” of target which is used for likelihood estimation
in “position parameter space.” Hence, we can obtain cor-
rect target’s “appearance parameter” and “position pa-
rameter.”

The experimental results show advantage that can es-
timate appearance parameter “light” or “disappear” and
the target position only once, which a generic particle
filter can’t deal with together. The tracking results that
our method can track a target more robust than original
CONDENSATION.

In future work, we will do experiments for multiple
targets. Synchronizing fireflies in same sequence may
occur tracking failure. Multiple distributions are intro-
duced in the problem. We will consider an overlap and a
mis-estimation of the distributions.
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