Tracking dragonflies in image sequences
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Abstract

This paper investigates the problem of estimating the
position and the 3D motion of a dragonfly from an im-
age sequence. We propose to tackle this problem using a
hybrid 2D/3D approach that deals with reflections con-
straints while requiring a limited computational cost.
The algorithm is divided into two steps. First, a 2D
alignment between two successive images computes a
first estimation of the 3D parameters. Secondly, a re-
finement step is applied by matching the rendered im-
age created using a complete 3D model of the dragonfly
with each image of the sequence. Because image align-
ment fails to deal with large displacements, a prediction
step is added. This step is based on a Taylor transform
and takes into account a specific dynamic and kinematic
model and a statistical behavior model to yield a first
coarse approximation of the 3D model.

1 Introduction
1.1 Context

A complex foraging strategy : Dragonflies are ex-
cellent predators. They wait, perched on a vegetation
stick, and choose the appropriate moment to take off af-
ter small insects. Prey pursuit strategy is remarkable,
with success rates as high as 97% [9]. In addition, prey
interception happens during the flight as the dragonfly
swoops upwards from underneath its flying prey, grab-
bing it with its outstretched legs. This complex behavior
is an example of visually guided interception, which is
composed of at least three different processes: decision
to take off after the prey, steering towards the prey and
coordinating leg movements in time and space to grab
the prey. The biologists are interested in understanding
those separate but interdependent processes. The neural
guidance system is also interesting for control scientists
who look forward to developing effective biomimetic
guidance mechanisms.

Experiments and initial analysis : Since dragon-
flies do not normally forage in captivity, in order to cap-
ture their chase maneuver on video (figure 1(a)), biolo-
gists had to reconstruct their natural environment inside
a cage mounted outdoors. They attached a 2 mm white
glass bead that resembles a small insect and moved it

Christophe Vieren*
2 INRETS-LEOST

20, rue Elisee Reclus

Sébastien Ambellouis® Robert Olberg®
3 Department of Biological Sciences
Union College

Schenectady, NY 12308, USA

Pseudopupil

-

(a) A perching dragonfly (b) Pseudopupil phenomenon
Figure 1. Acquired images

above the perching dragonfly. This setting attracted the
dragonfly and drove it to start the pursuit. It was then
possible to acquire high-speed videos (500 frames/s)
with a camera fixed in a position and orientation allow-
ing the dragonfly and its prey to remain in the camera
viewfield during the whole pursuit. To restrict the be-
havior to a single plane, the bead was moved in the same
plane as the dragonfly, on a path orthogonal to the cam-
era optical axis. Biologists analyzed those sequences
manually, while trying to validate a certain number of
hypotheses.

Pursuit tracks: a first manual analysis [9] easily
proved that the dragonfly steers to intercept its prey (fig-
ure 2(a)) instead of heading directly toward its prey (fig-
ure 2(b)). In fact, the straight line flight path indicates
that the dragonfly predicts its prey’s position.

(a) Interception (b) Tracking
Figure 2. Two possible pursuit tracks

Response latencies: inaccurate early studies [9]
showed that the dragonfly’s wing correction response to
changes in its prey’s trajectory comes after 33 ms. The
dragonfly’s course correction latency is of 50 ms. How-
ever, novel studies [7], applied on sequences with better
time and spatial resolution, showed different latencies :
28 to 36 ms.

Head orientation: the biologist’s purpose in [7] was
to prove that the dragonfly moves its head so as to keep
the image of its prey at a fixed position on the eye, in



opposition to what had been proved in [9]. This task is
cumbersome due to several obstacles: it is not evident
to define marks on the dragonfly’s head due to the non
consistency of its texture (specular reflections, pseudop-
upil), the small number of sequences where the head is
not occluded by other parts of the body or blurred, as-
sumptions made on the size of the dragonfly’s head and
body used to estimate the depth.

Estimating distances: the decision to take off is prob-
ably the result of a distance estimation performed by the
dragonfly. An analysis, undertook in [8], aims at reveal-
ing it by trying two different hypotheses. The first sug-
gests that the dragonfly moves its head and legs while
perched on the vegetation to acquire stereoscopic im-
ages of its prey used to estimate its distance and its size.
The second suggests that the sharp increase or decrease
in angular velocity as the prey passes overhead is an in-
dication of its vicinity since far away objects maintain a
relatively constant angular velocity on the retina. This
study requires an accurate estimation of the head posi-
tion and orientation before take off that manual analysis
can hardly reveal.

Contributions of automatic analysis : Automatic
analysis of the image sequences would therefore be very
useful. These analysis will have the advantage of avoid-
ing the time cost required to extract different informa-
tion from the sequence images. In addition, we expect it
to be more accurate by avoiding human errors induced
by manual analysis. Finally, automatic analysis have
the advantage of reconstructing directly the 3D motion
and do not require further computations based on point
correspondence.

1.2 Motion Estimation Related Work

Given a video sequence of a foraging dragonfly, our
purpose is to determine accurately its position in each
image. This looks like a classical motion estimation
and object tracking problem, which has been highly
explored in computer vision. However, new problems
arise in the dragonfly tracking application.

One classical method is to define a perfect geomet-
ric model of the tracked object and use it to render
synthetic images of the scene. Unknown model pa-
rameters are updated using an optimization algorithm
that reduces the discrepancy between synthetic images
and actual ones. The 3D model must be very accu-
rate, and the rendering of synthetic images is compu-
tationally expensive. For a dragonfly, an accurate tex-
ture model is even harder to determine since, in addition
to diffuse and specular components, one must take into
account the pseudopupil phenomenon appearing in in-
sects’ eyes: some regions of the eye appear dark due to
the absorption of light rays by the omatidiae that are ori-

ented in the same direction as the camera (figure 1(b)).

Analyzing motion of standard image features, such
as contours [10], is useless since this information is of
no use for determining the 3D motion. For example, the
dragonfly’s head that can be modeled by a sphere will
show a static external contour when rotating about one
of its axes. Image alignment techniques, using texture
information such as the Lucas-Kanade algorithm [5],
seem more appropriate. Image alignment’s goal is to
warp an image or a patch into another that matches the
most the analyzed image.

However, these methods used alone can yield bad
results when tracking objects with reflective proper-
ties, because of the inconsistency that exists between
the predicted patch and the actual one. In our applica-
tion, in addition to specular reflection, pseudopupil phe-
nomenon on the dragonfly’s eyes is expected to drive
the image alignment algorithm to fail. The approach
that we suggest is a hybrid 2D/3D technique taking
advantage of the high computational speed of the 2D
alignment technique and the robustness relative to spec-
ular reflections and pseudopupil phenomenon of the 3D
model based method (section 2.2).

Besides the challenges posed by the geometric
model and the texture model, the rapid motion of the
dragonfly results in a frame to frame image motion
sometimes greater than 10 pixels, which is a problem
for classical motion estimation approaches. We suggest
to tackle this problem by introducing efficient predic-
tors in the processing chain, based either on a statis-
tical analysis of the dragonfly’s behavior, on a Taylor
transform or on a dynamic and kinematic model (sec-
tion 2.3). In section 3, we conclude and we present
some perspectives.

2 Description of our approach
2.1 Inputs

Image sequences showing the dragonfly capturing
its prey are available, acquired by a static camera with
known pose and optical parameters. The goal is to esti-
mate the 3D motion of the dragonfly’s head, thorax and
abdomen, hence their position and orientation in each
image. We assume that those parameters are known for
the first frame. Its geometric model as well as its texture
model are also known. Our method is recursive : as-
suming that the sought parameters have been disclosed
till image at time ¢ (/;) our algorithm seeks the 3D mo-
tion between times ¢ and ¢ + 1 by analyzing image at
time ¢ + 1 ([y+1). We first extrapolate the model thanks
to the predictors and then apply the hybrid 2D/3D tech-
nique described in what follows. This hybrid approach
allows us to update the 3D model and keeps it as real-



istic as possible avoiding therefore the accumulation of
the matching error.

2.2 A hybrid 2D/3D approach

In their paper [5], B. Lucas and T. Kanade investi-
gate the problem of aligning two successive images I,
and I; 1, by finding the warping matrix that transforms
an image or a patch into another that matches the most
the analyzed image by minimizing the SSD (sum of
squared differences) error function over respective pix-
els of both patches. The minimization algorithm used is
the steepest descent. This algorithm gives good results
with low computational cost. However, all pixels un-
dergo the same warping regardless of the kind of image
component they represent. In our application, three dif-
ferent types of image components are considered: spec-
ular reflections, diffuse reflections as well as reflections
due to the pseudopupil phenomenon. In reality, appar-
ent motions of these components are different for the
same movement of the object. For example, on a rotat-
ing sphere the specular component remains static in the
image while the diffuse component moves.

Our approach is a combination of the image align-
ment estimation method and the model based matching
technique. The goal is to reach the same accuracy as the
model based algorithm without involving a high com-
putational cost. A first coarse approximation of the 3D
motion parameters is computed thanks to the alignment
of I and I; . This approximation is used to update the
3D model whose rendering yields image R}, ;. Rj ,
and I;;; are compared using the SSD error function.
Until the error is small, the 3D motion refinement is re-
peated thanks to successive alignment and model match
steps.

Until now we have validated our approach on syn-
thetic images showing a highly reflective textured
sphere. Figure 3 shows an example of the error conver-
gence when matching images in figure 1 and 2. Each
constant level represents an approximation level (z) of
the 3D parameters and each peak represents the error
between patches of the rendered image R, and the
real image. However, applying this approach to the
dragonfly’s images is still cumbersome since its success
is closely dependent on the accuracy of the model of the
dragonfly (geometry and texture modeling) and of the
scene (lighting and camera parameters) which is still an
unresolved problem.

2.3 Predictors

Taylor’s Transform : As mentioned earlier, the
rapid motion of the dragonfly implies a frame to frame
motion projection sometimes greater than 10 pixels.
This represents a challenge to classical motion estima-
tion algorithms. Our proposed solution is to help our

SSDx1e8
4.0

TR @ w80 100 130 140 1co 180 200
Iteration number
Figure 3. Example of convergence.
The error function convergence with respect to the
iteration number when matching images 1 and 2. The

rectangular patch is drawn in white.

motion estimation algorithm with predictors that offer a
first approximation of the sought 3D parameters.

One of the predictors we endeavor to use is based
on a Taylor transform described in what follows. As a
first step validating this predictor, we start by manually
extracting the tip of the dragonfly’s tail coordinates over
the different frames of a sequence.

D(t)" = (z(t),y(1)". (1

(D as Dragonfly’s tip of tail). One should note that this
manual extraction leads to a noisy signal (figure 4). We
suppose that the successive positions of the tip of the tail
is a sufficiently smooth series, which means that at any
point of the equivalent time signal, the derivatives up to
a certain order are continuous. So at a given time ¢ we
use past information of the signal on some interval [t —
T, t] to compute successive derivatives D™ (t), where n
denotes the order of differentiation. Using the Taylor
expansion, the prediction of the tip of the tail position
on a finite interval of time [t, ¢ + 4] is:

. . .52 on
D(t+0) = D(t) + D(H)I+D(t) -+ 4+ D™ (t) -
2
Note that as ¢ gets bigger, the prediction becomes less
accurate. The novelty in the approach is the derivative
estimation. Recall that successive derivative estimation
of a noisy signal is a longstanding ill-posed problem in
numerical analysis and signal processing. Robust and
fast time differentiation of noisy signals is now pos-
sible, thanks to an algebraic approach initiated in [2],
and adapted to signal derivation in [1, 6]. Advanced
results on algebra-based derivative estimation can be
found in [6]. We use those results to estimate the deriva-
tives of the abscissa which are used to estimate equation
2. The prediction of the abscissa on a finite future time
0 = 2, 4, 5 are shown in figure 4. By looking at this
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Figure 4. Tip of the tail prediction
figure, one can notice that the quality of prediction de-
grades with increasing ¢. In addition, predictions start
at frame 40 due to the fact that derivative estimation is
accomplished over a sample of 40 observations.

Finally, note that our predictor ensures robustness to
noise measurements, ease of implementation and low
cost computation. This same prediction can be applied
on the six 3D motion parameters instead of the tip of the
tail’s 2D coordinates. However, it is important to note
that in the above computations the signal is supposed to
be analytic which is a strong assumption.

Other predictors : We have studied other predic-
tors, such as kinematic and dynamic model based pre-
dictor. A study of the dragonfly’s anatomy was essen-
tial, where physical properties of the dragonfly such as
its body parts masses as well as their dimensions were
gathered. However, those parameters can significantly
fluctuate between different dragonflies depending on
their environment and their diets. As for the muscle
forces applied over the articulations they can be mod-
eled as a combination of spring and damper [3]. We
lacked many parameters such as the stiffness gain, the
tonic stiffness, and the damping coefficient of the mus-
cles before being able to use this model. Finally, as for
modeling the aerodynamic forces we have two possibil-
ities: the first considering a steady state aerodynamics
assumption as in [4] or unsteady aerodynamics. The
first provides ease of computations but lacks in accu-
racy. The second is still not well developed.

Another predictor is under investigation: a statistical
modeling of the dragonfly’s behavior. In fact, given the
number of available image sequences, this study is in-
teresting to perform. can tackle this problem differently,
i.e. taking the behavior model the biologists support and
trying to validate this model by using it as a predictor.

3 Conclusion

We have presented in this article an approach to
tracking foraging dragonflies on video sequences. It
is a combination of a 2D image alignment (for its low

computational cost) and a 3D model based approach
(for its accuracy). However, this approach faces some
challenges, such as the presence of an additional tex-
ture component due to the pseudopupil phenomenon. A
condition for our technique to converge is to find an ac-
curate model taking into consideration the 3D geometry
as well as the diffuse, specular and pseudopupil compo-
nents. Meanwhile, it has been validated over synthetic
sequences showing a moving reflective sphere.

Dealing with the rapid motion of the dragonfly,
which yields frame to frame displacements of more than
10 pixels, is also a challenge. We endeavor to tackle
this problem with the aid of predictors of which Tay-
lor’s transform has been investigated and validated over
the signal representing the 2D position of the tip of
the dragonfly’s tail manually extracted from one of the
available sequences. Further studies are to be applied so
as to acquire a kinematic and dynamic model as well as
a statistical behavior model. An essential step is yet to
be accomplished in order to validate the whole approach
over real images which is modeling the scene i.e. geo-
metric and texture model of the dragonfly as well as the
camera and the lighting parameters.
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