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1. Introduction and Overview

A variety of animal species carry permanent markings on
their coats, be that for the purpose of survival-boosting cam-
ouflage §, 14] or signalling b, 8]. In many cases, these
prominently visible surface patterns are composed of spots
and stripes, which are suspected to originate from reaction-
diffusion (RD) systems first described Byring [15]. As a
consequence of this deterministic, yet chaotic formation pro-
cess, resulting markings often differ significantly from indi-
vidual to individual while following a wider theme typical
for a species11]. Figurel illustrates the extent of observ-
able coat variations in two sample species: African penguins
and plains zebras.

In this paper we describe minutiae detection in Turing
patterns based on the detection of phase curls. The tech-
nigue compactly captures individuality of RD patterns by
robustly localising and typing sparse phase singularities.
The foundations of the approach are discussed in detail and
we give theoretical and experimental evidence for a generic
applicability as a tool for individual animal identification.
Finally, we briefly discuss real-world applications that have
utilised the technique and can provide extended evaluations.

Figure 1: Coats of African Penguins and Plains ZebrasThe
images show two species that develop highly individual markings
while following a species-wide, visual theme. Note the unique dis-
tributions of line bifurcations on the zebras and of chest spots on
the penguins.

2. Properties of Turing-patterned Coats

In order to expose common properties of animal patterns
evolving under reaction-diffusion, we first investigate a
generic model of animal skin described by a spatiotemporal,
two-channel image functiob : (x,t) — (a,b) that maps
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Figure 2: Evolution of a Reaction-Diffusion System. Time
series of a reaction-diffusion system simulation on a closed
128 x 128 domainI. Note a transition towards equally sized
spots, where the dominant spatial frequerfcgnd its harmonics
induce concentric rings in the Fourier spectrumparameters:

Ja = klba gy = kaa® —ksb+ke,y =1,8 = 10,k1 =
0.05, k2 = 0.045, k3 = kg = 0, ks = 0.0004, ks = 0.2)

from a positionx on a surface patch and a timef obser-
vation to two local morphogeheconcentrations: and b.
These concentrations are interpreted as facilitators of
pigmentation. As outlined biylurray [11], the dynamics of
such RD systems can be described by the combined effects
of morphogene specific reaction kinetigs : (a,b) — a

and g, : (a,b) — b, plus continuously changing state
diffusion governed byFick’s Second Law{6], yielding

a partial differential form:
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where~ is a scale parameter arddis the diffusion ratio.
Figure 2 visualises an evolution of non-trivial patterns in
such a system. According touring’s [15] fundamental
finding, non-trivial patterns can evolve on this domdin
if and only if the system converges for — oo towards
a steady state in the absence of diffusion and diverges in
its presence. Using linear stability analydidurray [10]
condenses this into four inequations:
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dga dga 2
76d9a+ddgbb,B7 ddi.; Ciigbb:| ()
da db

where B is the Jacobian and’ holds a measure for the
diffusion-balanced strength of reaction genetics. These con-
straints circumscribe a compact subspace in the domain of
free parameters; thEuring Spacevisualised in Figureé.

1Turing [15 employs the term ‘morphogenesmprphesform, ge-
nea=generation) for the chemicals involved in pattern formation.
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Figure 3: Visualisation of the Turing Space. The image shows
locally occurring patterns superimposed on the pattern-supporting
subspace (Turing Space) of the parameter spg8inulation via
Gray-Scott kineticsql, specifically that isg, = k1(1 — a) + ab? and

gy = b(k1 + ko) — ab? under a diffusion ratio of=4]
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Notice that spot or line patterns in this domain show two
system-intrinsic properties:

1) There is a specifiband f of spatial frequenciethat
is amplified in Turing patterns. As derived ii]], this
dominant band can be described quantitatively as:

vL1/(867%) < f? < vLa/(867°) ®)

where theL,,, = F £ \/F? —44|B| represent the two
zero crossings of the quadratic dispersion relation. Note that
the band is clearly visible in the Fourier spectrum (Figgjre
and that, despite disproportional growth effeafter pattern
fixation (see Figurd), the band remains widely intact over
local regions. Thus, features of Turing patterns are confined
in spectral bands around a locally dominant frequefigcy
known a priori. This property significantly limits the search
space for any practical extraction of local features caused
by reaction-diffusion.
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Figure 4: Growth-related Differences in Zebra Species.
Growth after pattern lay-down promotes locally variable dominant
pattern frequencieg, while topological variance is strongest in re-
gions at body junctions during lay-down (red) and rapid growth
areas (yellow) compared to regions of relative homogeneity (blue).
However, in both cases there exists a locally dominant pattern fre-
quency for every location on the cofitnages based on work i []]

2) Turing patterns often exhibiquasi-randomly dis-
tributed minutiae pointamore specifically line bifurcations,
line endings and isles. As visualised in Fig@esingulari-
ties can be categorised into distinct minutiae types. Amongst
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Figure 5: Types of Minutiae in Turing Patterns. Occurrences

in areas of high morphogene concentration (H-type shown as
white) and in areas of low concentration (L-type shown as black).
Singularities are often accompanied by singularities of opposite
type at a distance around the dominant frequeficfindicated

as red discs). Three categories can be observedtifdrcations
where stripes fork, 2)erminationswhere lines end, and 33les
where two terminations have fused into a (symmetrical) spot.

construct a visually characteristic fingerprint for Turing-
patterned animals.

3. Phase Curl Detection

As described, the RD structure of the patterns dictates
confining the visual search for minutiae to a spectral band
around a locally dominant frequengy and a strictly local
context within the gradient direction field. Starting with a
model for the latter, leD; represent the low-pass filtered
gradient direction field of the input signkl
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wheresx denotes convolution and; is a Gaussian low-pass
kernel suppressing the redundant spectrumIochbove
the locally dominant frequencyy, which is calculated
dynamically over local windows in order to adjust for
differences in local pattern scale in zebra (see Figiae
Vector differentiationVO, of this field will yield phase
singularities at zero crossings as, for instance, shown by
Bray and Wiksw¢1]. However, due to its derivative nature
the operatorV is sensitive to noise. Since minutiae are
surrounded by prominent partial curls of phase as illustrated
for an isle-type minutiae landmark in FiguBb, we suggest
utilising the entire structural context o®; around a
candidate locatiom to probe for minutiae.
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Figure 6: Dominant Frequency Field and Gradient Direction

other properties, these locations constitute sources or sinks gjgjq. (Ieft) Coat pattern patch of a plains zebras and dominant

of the local gradient direction field rendering the direction of
the gradient structurally indeterministic, i.e. they are phase
singularities. Morphologically, they resemble pixels of the
skeletonised signal that do not have exactly two neighbours.
Building upon these two properties outlined, we will
now describe a generic minutiae detector able robustly to

frequency field holding the strongest local frequerfeyat differ-

ent locationsx of the texture (where the wavelengih = 1/f«

is shown in pixels). This fieldfx is homogenous in African
penguins.(right) A spatial phase singularity marks extreme point
at the centre of an isle feature; the surrounding curl of gradient
directionsO;



Curl Detection. In order to test the context of a loca-
tion x for a phase curl, a set oh phase histograma, is
constructed by probing the structure of gradient directions
in disc-shaped neighbourhoods. An accumulator agfay
then gathers evidence frotix-distances between each

bin histogram and the even phase distribution (representing

an ideal curl). Formally, the calculation af(x) can be

denoted as: P -
~ ~ mea'n
o , i IDxl\e (5)
a)=1- 3" |w; Yy (h() —=2)
j=1 i=1

bin residual

where DJ is a disc-shaped neighbourhood aroundf ra-
diusj/(2fxm), h.(i) represents the value of th#& bin and
|D%|/n =13"" hi(i) is the mean bin value of thg” his-
togram,|.| represents the set cardinality, anglis a weight-
ing and normalisation terfrthat favours close-by evidence
and ensures that(x) € (0,1). A single bin value is cal-

culated as the number of neighbourhood locations that have

their gradient direction falling into the band captured by bin
i, that ishi, (i) = HdeDﬂ li=1+4 29

This detector is theoretically sound, but basic threshold-
ing of the detector output in real-world examples can pro-
duce missing minutiae in cases where the ‘single dominant
local frequency’ constraint degenerates around bifurcations
(illustrated in Figurey).

4. Type and Topology Constraints

The detecton(x) registers both types (represented as L-
type=black=-1 and H-type=white%) of landmarks as dis-
tinct maxima. A robust disambiguation between minima and
maxima can be achieved by multiplication with a bandpass-
sensitive blob respondg, e.g. using a DoG kernel respond-
ing to the dominant bangi.

Type Detection. A specific typeT € {1,—1} of
landmarks (e.g. all L-type features) can then be recognised
via a combined detector functiap (x):

¢r(®) —TIs(x)) a(x). (6)

Figure 8 illustrates resulting images from an application
of ¢,.(x). The fusion fixes several shortcomings of its con-
stituents: the ‘intensity-blindness’ of the curl detector is bal-
anced and the poor disambiguation performance of DoG be-
tween line endings and line segments due to the radial sym-
metry of the kernel is eliminated.

Topological Constraint. Finally, based on the observa-
tion that minutiae in zebras occur in L-H-type combinations,
a topologically-aware detectarr(x) that can deal with
degenerated bifurcations can be constructed as:

tT (X) = CT( ) (CfT(i)) (7)

2Bin weighting useav; = (MW)2 where the normalisation
J

_ T+1
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maxg.

constantM

ﬁ balances the importance weights whereas the

= |Df(| @ describe the maximal cumulative residual of a his-
togram (i.e. all gradients irin‘ aim at the same direction). For the imple-
mentation, free parameters were chosen tabe \x/2 (no. of different
neighbourhoods) and = 8 (no. of different histogram bins to resolve
phase).
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Figure 7: Curl Detection by Histogramming. (top) Schematic
illustration of the curl detector(middle) The image shows a
visualisation of the accumulator arrayx) built from (bottom)the
underlying, original zebra texturE(x) with strong curl maxima
superimposed. Note that a number of bifurcation features depart in
their properties from the dominant frequency assumption, i.e. the
width of contributing stripes varies greatly. As a result, features
are missing or misplaced. For instance, the three black bifurcations
at the body centre are not detected whilst their counterparts (i.e.
white stripe terminations) are found. Topological pairing con-
siderations help overcome the problem of degenerated bifurcations.

whereDy is a disc-shaped neighbourhdaatoundx of ra-
dius(1 +¢€)/ fx.

The technique is robust with respect to noise (see
Figure9 for experimental evidence on penguins). Figlife
depicts example applications of the typed detector to animal
identification from wildlife photographs of African pen-
guins and to plains zebras (using the topological extension).

5. Applications

The technique described has become part of several real-
world animal identification systems including the African
penguin recognition project (www.SpotThePenguin.com),
which provides automated identification of individual
African penguins directly in their habitatl?]. Another
technique for robustly comparing extracted minutiae land-
marks for individual animal identification is, for instance,
published and evaluated i3][ A review of the latest ap-
proaches to using extracted landmarks for individual iden-
tification against population databases is givenZh Re-
cently, a first cross-disciplinary paper of a stumbmparing

3The parametee is empirically set t00.5; it embodies the degree of
natural deviation of pattern elements frgm
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Figure 9: Repeatability of Spot Detection under Noise.The [15] A. M. Turing. The chemical basis of morphogenesis. In

graph shows experimental results conducted on 50 penguin chest Sc:tcﬁg%h;:;' T_Ir_i';ssgt'grz g;g;; Tg%’g' Society of London

patterns filmed in gooq lighting CF)ndI'[IOI.’lS. In order to determlne [16] A. M. Van Tienhoven,)./]. E. Den Hartog, R. A. Reijns, and
the robustness to noise, Gaussian noise was added at different

o V. M. Peddemors. A computer-aided program for pattern-
levels and the percentage of accurately detected spots (repeatability matching of natural marks on the spotted raggedtooth shark

rate) as well as the rate of falsely identified landmarks (imposter carcharias taurusApplied Ecology44:273-280, 2007.
rate) were measured.
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manual field identification against fully automated penguin
identification using the approach (see Figd@ top) has
been published in1]2], outlining options for a potentially
fully automated population monitoring of African penguins.

6. Conclusion

In this paper, we have presented a technique for minu-
tiae extraction that, underpinned by the theoretical anal-
ysis given, is readily applicable to characterising Turing- §
patterned animal coats. The procedure yields sparse, typed
sets of minutiae configurations that are characteristic of in-
dividual animals as used in animal ID projec® 13, 16],
which currently rely on manual landmark identification.
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