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Abstract

We describe a trainable computer vision system en-
abling the automated analysis of complex mouse behaviors.
We also collect and manually annotate a very large video
database used for training and testing the system. Our sys-
tem performs on par with human scoring, as measured from
the ground-truth manual annotations. Our video-based
software should complement existing sensor based auto-
mated approaches and help develop an adaptable, compre-
hensive, high-throughput, fine-grained, automated analysis
of mouse behavior.

1. Introduction
Automated quantitative analysis of mouse behavior will

play a significant role in comprehensive phenotypic analysis
- both on the small scale of detailed characterization of indi-
vidual gene mutants and on the large scale of assigning gene
functions across the entire mouse genome [1]. One key ben-
efit of automating behavioral analysis arises from inherent
limitations of human assessment: namely cost, time, and re-
producibility. Although automation in and of itself is not a
panacea for neurobehavioral experiments, it allows for ad-
dressing an entirely new set of questions about mouse be-
havior such as conducting experiments on time scales that
are orders of magnitude larger than traditionally assayed.

Most previous automated systems [3, 5] rely on the use
of sensors like infrared beams or tracking techniques to
monitor behavior. These approaches are limited in the com-
plexity of the behavior that they can measure. While such
systems can be used effectively to monitor locomotor activ-
ity and perform operant conditioning, they cannot be used
to study home-cage behaviors such as grooming, hanging,
and smaller movements (termed ”micro-movements” be-
low). Visual analysis is a potentially powerful complement
to these sensor-based approaches for the recognition of such
fine animal behaviors.

A few computer-vision systems for the recognition of
mice behaviors have been recently described (a commer-

cial system CleverSys, Inc, and [2, 7]). They have not been
tested yet in a real-world lab setting using long uninter-
rupted video sequences which contain potentially ambigu-
ous behaviors.

In this paper, we describe a trainable, general-purpose,
automated and potentially high-throughput system for the
behavioral analysis of mice in their home-cage.

2. System overview

Our system consists of two stages: (1) a feature com-
putation stage, and (2) a classification stage. In the feature
computation stage, a 310 dimensional feature descriptor is
computed for each frame of an input sequence based on the
motion and the position of the mouse. In the classification
stage, a classifier is trained from the feature descriptors and
labels of video sequences. The outputs are a sequence of
labels, one for each frame of the sequence. The system is
illustrated in Figure 1.

2.1. Feature computation stage

The feature computation stage takes as input a video se-
quence and outputs for each frame a feature vector of 310
dimensions. This comes from the concatenation of 300 mo-
tion features and 10 position- and velocity-based features,
which are normalized separately before concatenation. A
background subtraction procedure is first applied to an input
video to compute a foreground mask for pixels belonging to
the animal based on the instantaneous location of the animal
in the cage (Figure 1(A)). The background subtraction pro-
cedure is adapted from our previous work for the recogni-
tion of human actions [4]. A bounding box centering on the
animal is derived from the foreground mask (Figure 1(B)).
Two types of features are then computed: position- and
velocity-based features as well as motion features. Position-
and velocity-based features are computed directly from the
foreground mask (Figure 1(C)), and motion-features are
computed on the bounding-box within a hierarchical archi-
tecture (Figure 1(D)).
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Figure 1. Overview of the proposed system for recognizing the
home-cage behavior of mice. The system consists of a feature
computation stage (A-F) and a classification stage (G). See text
for detail.

Motion features The use of motion features is taken from
our previous work, which models the organization of the
dorsal stream (motion pathway) in the visual cortex and
was applied for the recognition of human actions [4]. The
model computes features for the space-time volume center-
ing at every frame of an input video sequence via a hierar-
chy of processing stages, whereby features become increas-
ingly complex and invariant with respect to 2D transforma-
tions as they move up the hierarchy. In the S1/C1 stage,
motion signals are extracted from an input video sequence
(Figure 1(E)). In the S2/C2 stage, feature vectors are com-
puted from the similarity between the motion present in the
current sequence and that in the training sequences (Figure
1(F)). The S1 stage consists of an array of spatio-temporal
filters (9 pixels × 9 pixels × 9 frames) tuned to 4 motion
directions equally spaced between 00 and 3600. An input
gray-value sequence is convolved with each of the four fil-
ters, resulting in four S1 maps centering at each frame. In

the C1 stage, a C1 map is obtained by computing a local
maximum over an 8× 8 grid at every 4 pixels of a S1 map.
The S2 stage matches the C1 maps of the current frame with
300 stored templates that were extracted from training se-
quences (see below). At every position of the C1 map, we
perform a template matching (normalized dot product) be-
tween each of the 300 templates and the C1 patch, with the
same size as the template and centering at the current po-
sition. This stage generates 300 S2 maps for each frame.
The C2 stage computes a global maximum (scalar) of each
S2 map. Finally, we obtain a 300-dimensional C2 feature
vector for each frame.

Learning the dictionary of motion templates In order
to train a set of motion templates that are useful for dis-
criminating between behavior categories, we manually col-
lected a set of 4, 200 clips with the best and most exem-
plary instances of each behavior (each clip contains one
single behavior). This set contains different mice (differ-
ing in coat color, size, gender, etc) recorded over 12 sep-
arate day or night sessions. We first draw 12, 000 motion
templates, each as a patch of a random C1 map computed
from the clips. These templates are of sizes n × n pixels
(n = 4, 8, 12). We then do a feature selection as in [4],
retaining the most representative 300 motion templates.

Position- and velocity-based feature computation In
addition to the motion features, we compute an additional
set of features derived from the instantaneous location of the
animal in the cage (Figure 1(C)). We perform a background
subtraction technique to obtain a foreground bounding box
centering at the animal. For a static camera as used here, the
background can be well approximated by a median frame
in which each pixel value is the median value across all the
frames at the same pixel location. Position- and velocity-
based measurements are estimated for each frame based on
the 2D coordinates (x, y) of the bounding box. These in-
clude the position and the aspect ratio of the bounding box
(indicating whether the animal is in a horizontal or verti-
cal posture), the distance of the animal from the feeder as
well as the instantaneous velocity and acceleration. The 10
position- and velocity-based features are illustrated in Fig-
ure 1(C).

2.2. Classification stage

Existing systems for the recognition of mouse behavior
focus on recognizing highly-exemplary instances of behav-
iors present in short clips (less than 100 frames). Perform-
ing a reliable phenotyping of an animal requires more than
the mere detection of stereotypical non-ambiguous behav-
iors. In particular, the proposed system aims at classify-
ing every frame of a video sequence even for those frames



drink eat groom hang micro-movement rear rest walk

Figure 2. Snapshots taken from representative videos for the eight home-cage behaviors of interest.

whose underlying actions are difficult to categorize. For
this challenging task, the temporal context of a specific be-
havior is an essential source of information for learning an
accurate model of the behavior. In order to learn the tem-
poral context, we use a Hidden Markov Support Vector Ma-
chine(SVMHMM) [6], which is an extension of the SVM
for sequential tagging.

SVMHMM combines the advantage of SVM and HMM
by discriminatively training models that are similar to hid-
den Markov models. Here we use a first-order transition
model. Given an input sequence X = (x1 . . .xT ) of
feature vectors, the model predicts a sequence of labels
y = (y1 . . . yT ) according to the following linear discrimi-
nant function:

y = argmaxy

T∑
t=1

[xt ·wyt
+ wtr(yt−1, yt)] (1)

xt is the motion + position feature described above for
the t-th frame of a video sequence, and yt is the label (one
behavior of interest) for the t-th frame. wyt

is an emis-
sion weight vector for the label yt and wtr is a transition
weight vector for the transition between the label yt−1 and
yt. These weight vectors are learned from 11 labeled videos
(see Sec. 3.1 for training videos, and [6] for the training pro-
cedure). Each training video is split into non-overlapping 1
minute segments, each as a training example X.

In the classification stage, the SVMHMM model takes
as input a sequence of feature vectors of an input video and
outputs a predicted label for each frame (Figure 1(G)). The
resulting time sequence of labels can be further used to con-
struct ethograms of the animal behavior. For example, the
right panel of Figure 1(H) shows the ethogram of an animal
for 24 hours, and the left panel provides a zoom-in version
corresponding to the first 30 minutes of recording.

3. Experiments and results
3.1. Video dataset

Currently, the only public dataset for mouse behavior is
a set of clips and is limited in the scope [2]. Each clip is no
longer than 1 minute in length and contains one single ac-
tion. In order to train and test our system on a real-world lab
setting where mice behaviors are continuously observed and
scored over hours or even days, we collected a dataset, full

database. This set contains 12 continuously labeled videos:
each frame is labeled with a behavior of interest. Each video
is 30 − 60 minutes in length, resulting in a total of over 10
hours of data. These videos contain different mice recorded
at different times. We annotate 8 types of common mouse
behaviors:

• drinking: the mouse’s mouth being juxtaposed to the
tip of the drinking spout

• eating: the mouse reaches and acquires food from the
food bin

• grooming: the fore- or hind-limbs sweeps across the
face or torso, typically as the animal is reared up

• hanging: grasping of the wire bars with the fore-
limbs and/or hind-limbs with at least two limbs off the
ground

• micro-movements: small movements of the animal’s
head or limbs

• rearing: an upright posture and forelimbs off the
ground

• resting: inactivity or nearly complete stillness

• walking: ambulation

These behaviors are shown in Figure 2.

3.2. Data Annotation

The videos were annotated using a freeware subtitle edit-
ing tool, Subtitle Workshop from UroWorks. A team of 8
investigators (’Annotators group 1’) was trained to annotate
mouse home cage behaviors. Two annotators of the ’Anno-
tators group 1’ further performed a secondary screening on
these annotations to correct mistakes and make sure the an-
notation style is consistent throughout the whole database.
In order to evaluate the agreement between two independent
labelers, we consider a small subset of the full database, de-
noted as doubly annotated subset. It consists of many short
video segments which are randomly selected from the full
database. Each segment is 5−10 minutes long and they add
up to a total of about 1.6 hours of dataset. The doubly an-
notated subset has a second set of annotations made by the
’Annotators group 2’, consisting of 4 annotators randomly
selected from the ’Annotators group 1’.



3.3. Training and Testing the system

The evaluation as shown in Table 1 was obtained using
a leave-one-out cross-validation procedure, i.e., training the
system on all but one of the videos and test on the left out
video; repeating this procedure (n=12) times for all videos.
The system accuracy is computed as: (total # frames cor-
rectly predicted by the system)/(total # frames) and the
human-to-human agreement as: (total # frames correctly
labeled by ’Annotators group 2’)/(total # frames). Here a
prediction or label is considered ’correct’ if/when it matches
the annotations by the ’Annotators group 1’.

3.4. Comparison with a commercial software and
with human performance

Using the annotations of the ’Annotators group 1’ as
ground truth, we compared the performance of the system
against a commercial software HCS (HomeCageScan 2.0,
CleverSys, Inc) for mouse home cage behavior classifica-
tion and against human manual scoring (’Annotators group
2’). Table 1 shows the comparison. Overall we found that
our system achieves 76.6% agreement with human labelers
(’Annotators group 1’) on the doubly annotated subset, a
result significantly higher than the HCS and on par with hu-
mans (’Annotators group 2’). For the full database, we only
compared the system against the HCS, and our system also
outperforms the HCS by 17%. Two online videos demon-
strating the automatic scoring of the system are at http:
//techtv.mit.edu/videos/5561 and http://
techtv.mit.edu/videos/5562.

Our system HCS Human
(’Ann. group 2’)

doubly annotated set 76.6% 60.9% 71.6%
full databse 77.6% 61.0%

Table 1. Accuracy of our system, human annotators and
HomeCageScan 2.0 CleverSys system.

3.5. Discussion

A common source of disagreement between human an-
notators and between humans and the system is the precise
boundary between 2 actions (when one action starts and the
other ends). Furthermore, some of our behaviors of inter-
est can be very short (10-20ms), thus making it hard to al-
low for longer tolerances in the precise locations of these
boundaries. The disagreement also comes from the ambi-
guity of actions themselves. For example, a mouse standing
against the back side of a cage (rearing) looks very simi-
lar to a mouse reaching for the food bin (eating). In both
cases, the head of the mouse appears to touch the food bin
as seen from the front side of the cage. Small movements
of an animal’s limbs (micro-movement) are sometimes as-
sociated with a slow movement of the whole body, blurring

the boundary between walking and micro-movements. The
videos at http://techtv.mit.edu/videos/5563
and http://techtv.mit.edu/videos/5564 show
annotations from two humans simultaneously and illustrate
the confusions described above. We believe that errors from
the system result from inconsistencies in the annotations
produced by multiple annotators and the inherent ambiguity
between certain actions.

4. Conclusion
We have applied a biological model of motion processing

in the dorsal stream to the recognition of human and animal
actions. It has also been suggested that analysis of shape in
the ventral stream of the visual cortex may also be impor-
tant for the recognition of actions. Future work will extend
the present approach to integrate shape/contour, motion and
sensor information. Another important future direction is to
extend the study of single mouse behavior to multiple mice
behaviors and social behaviors.
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