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Abstract
Bats are among a variety of animals that researchers

are analyzing with computer-vision methods. The fo-
cus of our work is on using shape analysis to estimate
the wing beat of individual bats. Our proposed sys-
tem works with thermal infrared video of bats flying in
their natural environment where field conditions make
it challenging to record high-quality data. We present
wing beat estimates for 20 different bats during their
emergence from a cave.

1. Introduction
There is growing interest in the automated analysis

of videos of insects, birds, and a host of other flying
animals using computer-vision methods. Bats are of
interest to researchers in biology and engineering [3].
To date, vision-based techniques have been applied to
tracking bats [11], and analyzing their kinematics [2, 8],
behaviors [6], and flight trajectories [10]. We propose
here a method to extract the wing beat of individual bats
by analyzing their shape. Having an estimate of the
wing beat frequency of a bat species may improve our
ability to design algorithms for detection and tracking
of bats in video data, much like periodicity estimation
has done for video analysis of pedestrians [4, 5].

Existing vision-based approaches that estimate the
wing beat of individual bats typically do so by placing
the bats in laboratory spaces and setting up visible-light
cameras with high frame rates to record the flying bats
in close proximity. Our system can extract the wing
beat of individual bats as they fly in their natural envi-
ronments. Field conditions are more challenging than
laboratory conditions because we cannot guide the di-
rection of flight of the bats, our infrared cameras are
relatively far from the bats yielding less pixels per bat,
and bats stay in the field of view for a short amount of
time (< 1.5 s).

The video data used in this work show Brazilian free-
tailed bats (Tadarida brasiliensis) as they emerge from
a cave in Texas, recorded with a thermal infrared cam-
era. Our FLIR SC8000 camera records 14-bit video at
a resolution of 1024×1024 pixels with a frame rate of
131.5 frames per second. A representative frame from
our infrared data is seen in Figure 1 (top) and segmented
bats are shown underneath (Figure 1 (bottom)).

Figure 1: Frame of infrared video showing Brazilian
free-tailed bats emerging from a cave (top) and the same
frame segmented (bottom). An average bat shown here
has a projected area of 30×30 pixels.

2. Approach
An overview of our system, which is made up of

three stages, is shown in Figure 2. The main goal of
the first stage is to extract the sequence of shapes gener-
ated by an individual bat as it is observed flying through
the field of view of the camera in our video data. We use
the word “shape” to mean the binary connected compo-
nent associated with a bat as produced by our segmenta-
tion algorithm. The sequence of shapes combined with
the 2D trajectory of the bat (obtained by a 2D tracker)
forms a signal which we refer to as a “shape-time sig-
nal.” Example shape-time signals are shown in Fig-
ure 3b. The other component of the first stage of our
system involves manually choosing shapes that serve as
prototypes for unique 3D bat poses.

The second stage is the main part of our system
which operates on individual shape-time signals. The
goal is to assign a label corresponding to a discrete pose
to each shape in the shape-time signal. To assign the
best label to a given shape, the algorithm computes a
distance between the shape and each prototype shape.
To make these assignments more robust to noise, our
system estimates where the wings of the bat are in rela-
tion to the body. The end result is that each shape in the
shape-time signal is assigned a set of scores indicating
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Figure 2: Overview of our 3 stage system. The goal of
stage 1 is to generate shape-time signals and prototype shapes.
Stage 2 takes as input a shape-time signal and uses shape anal-
ysis to assign scores to each shape indicating how well they
match different poses. Stage 3 processes these scores and de-
termines which shapes play a key role in estimating the wing
beat. Then, time intervals, associated with the repetition of
key shapes, are used by the FFT implementation to estimate
wing beat.

how well the shape matches each discrete pose.
The third stage processes the scores and defines

which shapes in the shape-time signal are key for the
estimation of wing beat. Then, time intervals, which are
associated with the repetition of key shapes, are passed
along to a Fast Fourier Transform (FFT) implementa-
tion that yields the final wing beat estimate. Stages 2
and 3 must be executed once for each bat (shape-time
signal).

2.1 Segmentation and Tracking

Segmentation of bats from infrared video is per-
formed by modeling the distribution of background in-
tensities at each pixel as a Gaussian. The mean and
variance of the Gaussian are updated over time and any
intensity value outside some fixed number of standard
deviations from the mean (15) is considered a bat. Mor-
phological operations are used to fill holes and delete
single pixel components. A sample segmentation is
shown in Figure 1 (bottom). Using segmented video
frames, a Kalman filter tracks the 2D image coordinates
of bats and at the same time saves their shapes for fur-
ther analysis. The collection of shapes stored for an in-
dividual bat is the shape-time signal we defined earlier.

(a)

(b)

Figure 3: (a) From left to right, three prototype shapes that
represent three unique 3D poses: wings above the body nearly
completing the upstroke (‘up’), wings below the body nearly
completing the downstroke (‘down’), and wings in a neutral
position, level with the body, and spread out (‘neutral’). All
three shapes are of bats headed in a direction perpendicular to
the optical axis of the camera. (b) Three examples of shape-
time signals. For visualization purposes, the projections of
each bat are spaced out horizontally so the full shape is seen.
Each bat is flying from right to left in the field of view of the
camera and the numbers underneath a bat indicate the frame
number in which it was imaged.

Three example shape-time signals are shown in Figure
3b. In this work, we do not deal with occlusions, so only
bats that stay unoccluded are used in our analysis.

2.2 Prototype Shapes and Intuition
We motivate defining prototype shapes by observing

that some 2D projected shapes of bats relay more in-
formation about the 3D pose of a bat than others. We
make the assumption that, for a fixed camera setup,
certain 2D projected shapes map to unique 3D poses.
Shapes that satisfy this property will be defined as the
prototype shapes because they model unique 3D poses.
Now it follows that the repeated occurrence of a pro-
totype shape in a shape-time signal is equivalent to the
repeated occurrence of a unique 3D pose. Since each
shape has a time stamp, based on the frame it came
from, the periodicity of a 3D pose can be estimated.
Using this central idea, our system can compute the
wing beat for individual bats. In our work, we man-
ually selected prototype shapes from already acquired
automatic segmentations of bats. As an example, three
prototype shapes are shown in Figure 3a.

2.3 Shape Comparison
Our system compares every shape in the input shape-

time signal to every prototype shape using the shape



context descriptor [1] and the Hungarian algorithm [9].
The shape context descriptor is a log-polar histogram
that is computed for points along the contour of a shape.
The histogram at a point is computed by finding the rel-
ative distance and angle to other contour points. All the
histograms taken together yield a shape descriptor that
is invariant to translation, scale, and rotation (with some
added work). Next, the Hungarian algorithm produces
a correspondence between points on the first shape with
those on the second. If one shape has more points
than the other, “dummy points” are added to the smaller
shape. The cost of matching point i in shape 1 to point j
in shape 2 is the χ2 distance between their histograms.
If one of the points being matched is a dummy point,
then a dummy cost can be used (e.g. 0.5). The final
distance is obtained by summing the costs of all corre-
sponding points.

2.4 Wing Position Relative to Body

The choice of using a rotationally invariant shape de-
scriptor makes it difficult to disambiguate shapes that
are similar under rotation such as ‘up’ and ‘down’ (Fig-
ure 3a). To resolve this, our system estimates where the
wings of a bat are in relation to the position of its body.
We observed that the 2D position of the bat changes
smoothly across time, which allows us to approximate
where the body of the bat is by fitting a polynomial to
the shape-time signal. Figure 4 shows part of a shape-
time signal with the fitted polynomial. To help differen-
tiate ‘up’ from ‘down,’ four features are extracted from
the shape: area Aa above the polynomial, area Ab be-
low the polynomial, the furthest point Da on the shape
above the polynomial, and the furthest point Db below
the polynomial. Then the ratio W = (AaDa)/(AbDb)
indicates whether the shape is more likely to be ‘up’
(large ratio), ‘down’ (small ratio), or ‘neutral’ (ratio ≈
1).

Figure 4: A fifth-order polynomial (red) is fit to the shape-
time signal to approximate the location of the body of the bat.

2.5 Pose Scores

Our system classifies each shape in a shape-time sig-
nal as one of the prototype shapes (representing unique
3D poses) or ‘neither’ (the label given when no pro-
totype shape is a good match). For this classification
shape distances (Section 2.3) are combined with the ra-
tio W (Section 2.4) to assign a set of scores indicating
how similar the shape is to each class. Shape distances
are converted to scores by normalizing the distance to

each prototype and subtracting the scores from 1 to re-
flect similarity. A fixed score is given for ‘neither,’ and
the scores are renormalized. The ratioW is converted to
a set of scores by observing that a large ratio indicates a
larger score for ‘up,’ and a smaller score for everything
else. Similar reasoning is applied for small ratios, and
ratios close to 1. The final set of scores is an average of
these two component scores, and they sum to 1.

2.6 Wing Beat Estimation

The last stage of our system uses the previously com-
puted scores to classify each shape in the shape-time
signal, and subsequently produce a wing beat estimate.
Each shape is assigned the class for which it has the
highest score, and only shapes scoring high enough
(≥ 0.3 is a ‘confident’ score) are used for the wing beat
estimate. Next, our system finds repetition of poses that
are close together in time, which occurs because bats
maintain the same general pose for several consecutive
frames. To remove these redundant measurements, our
system selects a key shape to represent the group. Once
key shapes are extracted for the whole shape-time sig-
nal, they can be organized based on the pose they rep-
resent. Key shapes of the same pose, along with their
time stamps, form a time signal which exactly specifies
how frequently a pose repeats. All time signals, one for
each pose, are summed and sent to an FFT implemen-
tation. The result is a frequency spectrum where the
fundamental frequency is the wing beat estimate.

3. Preliminary Experimental Results

In our experiments, we tracked and analyzed the
movement of 20 different bats from an infrared video
sequence consisting of 1,000 frames (7.6 s). The short-
est track lasted 26 frames and the longest 146 frames
(0.19 s and 1.1 s respectively). The prototype shapes
used are the same three from Figure 3a (‘up’, ‘down’,
and ‘neutral’). For shape comparison we subsample the
contour of the larger shape until the number of con-
tour points is roughly equal to that of the smaller shape.
Any remaining difference in the number of points is
filled with dummy points. The shape context histogram
contained 12 angle bins (uniformly across 360o) and 5
distance bins (log-uniform from 0 to 2). The FFT is
computed at 1,024 points, where the sampling rate is
the frame rate of our cameras (131.5 frames per sec-
ond). The fundamental frequency extracted from the
frequency spectrum was taken to be the highest peak
with a positive frequency immediately following 0 Hz.
Using our system, we obtained wing beat estimates for
20 bats. We compared them with “ground truth” wing
beat estimates obtained from the results of manually
performed shape matching (Table 1).



Table 1: Automatic wing beat estimates for 20 bats and
manually obtained wing beat estimates. Their mean µ
and standard deviation σ are also provided.

Id: Wing Beat (Hz) Id: Wing Beat (Hz)
Autom. Manual Autom. Manual

1 10.6 10.8 11 9.3 9.4
2 10.0 9.8 12 9.5 9.8
3 10.4 10.3 13 10.0 10.9
4 10.9 9.8 14 9.2 9.9
5 9.7 9.9 15 9.7 9.4
6 10.5 11.7 16 11.3 11.2
7 13.1 10.9 17 8.7 9.4
8 10.0 9.0 18 6.0 11.4
9 18.7 10.2 19 10.0 10.5

10 13.1 9.9 20 10.2 9.6
Autom.: µ = 10.5, σ = 2.4 Man.: µ = 10.2, σ = 0.7

4. Discussion and Conclusion
The main contribution of our paper is a method for

isolating key shapes of bats in flight and using them to
estimate wing beat frequencies. Our work relied on us-
ing the shape context descriptor along with the Hungar-
ian algorithm to compare shapes. This choice necessi-
tated that our system estimates the position of the wings
of the bats relative to their bodies.

Sources of error in the current system include noisy
segmentations, noisy correspondences from the Hun-
garian algorithm, and incorrect localization of the body
of the bats. Wing beat estimates of bats 7, 9, 10, and 18
may be inaccurate due to too few observed wing beat
cycles (≤ 2).

To the best of our knowledge, our system is the
first to estimate the wing beat of bats in the wild us-
ing computer-vision methods on thermal infrared video
data. Our wing beat estimates differ from the manually
obtained ones by 1.4 Hz on average and they fall within
or are near the range of 10-15 Hz which is the wing
beat frequency range reported in the biology literature
for Brazilian free-tailed bats [7]. Future work includes:
evaluation of system performance using different shape
distance measures, learning which prototype shapes are
best suited for a particular camera view and bat flight
trajectory, and performing a quantitative analysis on the
mapping between 2D shapes and 3D poses.
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