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Abstract

Given the contradictory recent reports on whether
there is a decline of insect pollinators, there is a clear
need to develop more sophisticated monitoring systems
in order to assess the quantity and variety of pollina-
tors in a given environment. In this work, we explore
an approach to the stability/plasticity dilemma to con-
struct bumblebees tracklets, where the detector provides
a stable, learned off-line, model of the object being
sought, while an adaptable tracker keeps a record of
both the object and the background to fill up the gaps in
case of a detector miss. Through our experiments, we
showed how the performance of the detector alone was
enhanced with the addition of tracking.

1 Introduction

Shortly after the fall of 2006, there were worrisome
reports[1] of a rapid and widespread decline of man-
aged honey bee (Apis mellifera L.) colonies. This event
was nicknamed Colony Collapse Disorder (CCD) [2]
and its main trait was a rapid loss of adult worker bees.
The fact is that human’s food supply depends heavily
on a few insect pollinators and a handful of plants. This
is particularly troubling because within this fragile sce-
nario there are currently frequent reports about declin-
ing populations of bumblebees[3] as well as observed
migration of pathogens between pollinators[4].

Clearly, there is a need to develop monitoring sys-
tems to help assess the quantity and variety of polli-
nators in a given environment. Currently, this task is
mostly performed using either direct observation [5] or
offline video monitoring[6, 7]. Recently, [8] proposed
a bumblebee detection algorithm based on the use of a
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Viola-Jones classifier[9]. Although the use of the al-
gorithm represented a step forward in terms of the im-
plementation of automatic analysis tools, this document
presents a scheme where the combined use of detection
and tracking improves the overall system performance.

In the next section we survey the literature on the
topics of insect detection and tracking, with special em-
phasis on the work that has been done on computer vi-
sion strategies to monitor bees in general. Then, in §3
we explore how one can approach the plasticity-stability
dilemma with the use of a classifier to initiate track-
ers and a discriminative tracker to fill the gaps between
detection misses. Afterwards, in §4 we further detail
how the detector and tracker are combined. Then, in §5
we show some experimental results to characterize the
detector-tracker combination performance. Finally, we
conclude the paper by discussing our results and plot-
ting some possible directions of research.

2 Review of the Literature

Given its importance, the area of insect detection has
been a very active research field. Some methods are es-
pecially suitable for the cases where the insects do not
move, including the one developed by Xiao et al. [10]
who presented a method to analyze butterflies. They
make use of spectral regression to reduce the high di-
mension of the space used for classification. At their
end, Huang et al. [11] proposed a method that extracts
SURF descriptors of insect images. Similarly, Gao et al.
[12] presented a method for the identification of insect
species. They propose using Hu’s invariants to extract
the features of dragonfly wings.

In our case, we are interested on analyzing fly-
ing bumblebees while they are functioning as pollina-
tors, as they approach flowers. In this context, some
strategies applied for determining insect behavior in-
clude the following. In [13], Kahn et al. use Eigen-
tracking, i.e., Principal Component Analysis, to track
bees using a particle filter[14]. Along these lines,
Tsukamoto et al.[15] proposed a particle filter for a
variable-appearance object that allowed to successfully
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Figure 1. Bumblebee detection and tracking. In (a)-
(c), we show three examples of bumblebee detection.
Then in (d)-(f) we illustrate the tracklet described by
the bumblebee. Our method to combine detection and
tracking methods improves the performance over the
detection alone.

track blinking fireflies in the dark. Specifically related
to bees, Veeraraghavan et al. [16] proposed a model to
track dancing bees in a hive.

In this research, we observed bumblebees and flow-
ers as they are placed in a large cage. Our long term
objective is to characterize the interaction between pol-
linators and flowers, such that the actions of the for-
mer leads the latter to become fruit. To that end, in
[8], we developed a Viola-Jones classifier [9] to detect
bumblebees. However, the use of detection alone results
in fragmented tracklets [17], i.e., a chronological set of
observations, that makes difficult the analysis of trajec-
tories. In [18] the problem of tracking is surveyed and a
prime problem is identified as the construction of adapt-
able models to avoid drifting. In this work, we explore
an approach to the stability/plasticity dilemma[19] to
construct bumblebees tracklets. Thus, while the detec-
tor provides a stable, learned off-line, model of the ob-
ject being sought, an adaptable tracker keeps a record
of both the object and the background to fill up the gaps
in case of a detector miss. Although perhaps more so-
phisticated methods could be applied, we study the use
of the Gu and Tomasi[20] tracker because of its high
performance, fast execution, and available code.

3 Detection and Tracking Components

Here, we describe the previously reported experience
with the use of a Viola-Jones classifier for bumblebee
detection and also review the Gu-Tomasi tracker.

The popularity of the Viola-Jones classifier [9] is
based on its speed, simplicity, effectiveness, and, more
recently, the availability of efficient implementations.

Algorithm 1 Combining tracking and detection
Input: A steady flow of images {Ik}
Output: A set of tracklets T

T ← /0 {algorithm’s output}
S ← /0 {internal tracklets register}
k← 0 {current frame index }
loop

Update tracklets in S using the Gu-Tomasi tracker
{The state of the tracklet is track}
Mark every τ ∈S as unvisited
D ← Detect bumblebees in Ik using the Viola-
Jones classifier
if D ̸= /0 then

for d ∈ D do
if d

∩
(τ ∈S ) ̸= /0 then

mark τ as visited {The state of the tracklet
is collapse}

else
create a tracklet τ and add it to S {The
state of the tracklet is birth}

end if
end for

end if
for unvisited τ ∈S do

if τ has been tracked for more than ς frames
without a detection then

S ←S − t {Remove tracklet from the inter-
nal list. The state of the tracklet is dead}
T ←T

∪
t {Add tracklet to the output list}

end if
end for
k← k+1 {Process the next image}

end loop

In [8] a bumblebee detection based on the Viola-Jones
classifier algorithm was presented. In that work, a series
of classifiers was constructed and tested that show that
with an 18 stage classifier it is possible to obtain a false
positive rate of less than 0.01% while showing a true
positive rate of around 85%. Given this performance,
the resulting tracklets are fragmented. Thus, the aim of
a tracker will be to profit from the temporal coherence
provided by the image sequence.

In [20], Gu and Tomasi define a tracking algorithm
that represents each image with a set of features, up-
dates a bag of features that is used to represent the
object of interest using nearest-neighbor classification
[21], and looks for its position in the next frame us-
ing Efficient Subwindow Search [22]. The method uses
SIFT descriptors [23] to create an appearance model.
Each image is represented with a set of Scale-invariant
Feature Transform (SIFT) key points V (I) = {(xi,vi)},



for i = 1, . . . ,n. Here xi ∈R2 is the set of positions, and
vi ∈ Rd is the set of SIFT features. Once a detection
occurs, a window W is defined. To represent the set of
key point descriptors of I within the window W , it is
defined as Θ(W ; I). Considering B ⊂ Rd as the back-
ground model, Gu and Tomasi propose to update the
object model Ok ⊂ Rd using the previous object model
Ok−1 and the current window Wk as:

Ok← Ok−1∪Fλ [Θ(Wk; Ik),Ok−1,B], (1)

where Fλ enriches the features set of the current model
incorporating good ones and filtering out bad ones.

4 Combining Detection and Tracking

The tracker developed by Gu and Tomasi[20] has the
ability to adapt well to fast changing object appearance
while the Viola-Jones classifier[9] has the potential to
provide support in case of drifting. Therefore, we com-
bine the two methods into a single unified framework
that results in a highly flexible and adaptable method
for detection and tracking.

Consider a sequence of images {Ik}. Let us as-
sume that at frame I j, m bumblebees are detected by
the Viola-Jones classifier inside the window Di

j, for i =
1, . . . ,m. For each detection Di

j, a Gu-Tomasi tracking
process, in the form of tracklet τs, is started. As the se-
quence advances, the Gu-Tomasi tracker estimates new
locations for the object of interest T i′

j+l , for l = 0, . . . ,ς .
Note that at the first detection corresponds to the first
position of the tracklet, i.e., Di

j = T i′
j . In our case ς is

the maximum number of frames that a bumblebee can
be tracked without a detection. Whenever a detection
does not occur for the last ς observations, the tracker
gives up, these ς observations in the tracklet τs are dis-
carded, and the tracklet τs is added to the tracklets set
T . Thus, each tracklet τi = {O1

i , . . . ,O
r
i} has observa-

tions that could come from either the Viola-Jones clas-
sifier Di

j or the Gu-Tomasi tracker T i′
j . The tracklet can

be in any of the following four states. (1) birth: A
tracklet τs is born when its first detection Di

k occurs; (2)
track: This happens when a detection does not occur
and the position of the tracklet endpoint T i′

j+l is defined
by the Gu-Tomasi tracker; (3) collapse: Both detection
Di

j and tracking T i′
j occur for the same bumblebee; and

(4) death: This occurs when after ς frames there have
been no detections for the tracklet. The algorithm 1 de-
tails the above description.

5 Results and Discussion

To compare the relative performance of detection
plus tracking versus the detection only, we implemented

the algorithm described. As described in [8] and us-
ing their database of images, a set of Viola-Jones classi-
fiers, with different number of stages, were trained us-
ing 1,237 positive samples and 1,000 negative samples.
Afterwards, the different classifiers were tested with a
sequence of 4,000 images containing five bumblebees
visiting a flower. The sequence contained 1,668 posi-
tive samples and 2,332 negative samples. Among the
different classifiers, the 18 stages classifier was chosen
because it gave a high positive rate (0.85) and a low
false positive rate (0.004). Some figures illustrating the
detection of bumblebees using this classifier are shown
in Fig. 1(a)-(c). The same sequence of 4,000 frames
later used to test the detection plus tracking strategy and
compares it with the detection-only algorithm. There
are two details to consider in our implementation. On
one hand, the tracking process gives up whenever the
detector does not return a positive result in five con-
secutive frames. Therefore, the last five frames of the
tracklet are dropped and do not accumulate false posi-
tives. Also, whenever the tracklet consisted of only the
initial detection (presumably a false positive) and five
consecutive frames without detection, the whole track-
let was dropped without accumulating in the count of
false positives. A summary of the results is provided in
the Table 1. We illustrate the tracklets generated with
several examples obtained from the sequence of images
used for experimentation in Fig. 1 (d)-(f). The code was
programmed using MATLAB mex files and Microsoft
Visual C++. We used an Intel core i3 machine, with
each core running at 2.13 GHz. The average process-
ing time for the detection was 0.01 s/frame, while the
tracking stage added an additional 0.05 s/frame.

Conclusion

In this paper, we describe an effective strategy to add
temporal constraints via tracking to a bumblebee detec-
tor. From our experiments, we have shown how the per-
formance of the detector alone was enhanced with the
addition of tracking. Furthermore, the additional infor-
mation provided via tracking could prove to be most
helpful in tasks such as behavior assessment or in the
determination of the relationship between flowers and
insect pollinators. As an example, given the position
of the flowers, which could possibly be estimated with
a method such as the one described in [24], we could
determine the quality of the pollination process and the
health of a bumblebee colony by measuring how often a
flower is visited and how long a bumblebee stays in the
flower.

With a True Positive Rate of 0.96 and a False Positive
Rate of 0.001, our results seem very promising. In the



Table 1. A comparison between the elements of the
confusion matrix in the decision process to detect bum-
blebees.

Detection
Detection plus

Tracking
True Positives 1,426 1,617
False Negatives 253 62
False Positives 6 1
True Positive Rate 0.85 0.96
False Positive Rate 0.004 0.001

near future, we plan to continue our experiments with
longer image sequences and a more diverse variety of
flowers with the objective of assessing more precisely
the performance of our detection plus tracking strategy.
Additionally, we plan to develop systems to study the
interaction between insect pollinators and flowers, thus
extending the capabilities of current monitoring meth-
ods.
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