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Abstract

This paper describes a strategy for counting the
bumblebees entering and leaving a beehive, where the
order of the conditions of being at the doors or fly-
ing around them is what decides on one action or an-
other. The former condition is detected with a Support
Vector Machine (SVM) classifier, and the latter with a
Bayesian tracker. We describe experiments to charac-
terize the performance of the method proposed.

1 Introduction

It is estimated that by 2050 the world will have to
produce 70% more food than now does [1]. Possi-
bly due to factors such as the incentive of raising food
prices, the reduction on water supplies, and an increase
of soil erosion, intensive cultivation practices, such as
the use of greenhouses, have been expanding[2], as well
as the use of insect pollinators[3]. Therefore, there is
a pressing need to build fast, reliable, economical and
easy to deploy monitoring systems to assess the insects
performance during the pollination process.

In this research, we aim to develop a bumblebee
counting system for a portable beehive based on the use
of computer vision techniques. We approach this as the
problem of detecting within a tracklet the condition of
a bumblebee being at the door or moving close to the
door. In our model, when the former condition precedes
the latter, we count a departure; while the contrary im-
plies an arrival. We have developed a SVM classifier to
detect bumblebees at the doors and we use a Bayesian
tracker to follow the bumblebees activity outside the
door. We explore previous work in§2; detail some of
the techniques used in§3; and present results obtained
with the model described in§4. Finally, we conclude
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Figure 1. Beehive used in our research.

summarizing this research and suggesting directions for
future work.

2 Related Work

The early detection of certain types of pests may lead
to the prevention of crop damage in greenhouses. In
[4], Martin and Moisan have presented a system which
has the goal to detecting white flies and aphids. They
apply a condition dependent,e.g., sunny, cloudy, mid-
day, or dusk, background model for detection. For in-
sect classification and counting, they have translated ex-
pert knowledge into a dedicated language. Then, the
insect behavior analysis is carried out with state dia-
grams where the transition is governed by events such
as change in position or direction. Later, Bechar and
Moisan [5] extended that work and developed an on-
line pest counting algorithm. The feature they use to
describe the insects is the ordered sequence of intensity
values within their detected bounding box. Color im-
ages and Gabor features were later proposed by Kumar
et al.[6] to train SVM classifiers.

Using a different beehive than the one reported in
this article, Campbellet al.[7] proposed a system to
count the numbers of bees at the entrance of the bee-
hive. They used a background model to detect bees
and fitted an elliptical shape to the detected bees. In
addition, they used motion models (including loitering,
crawling, flying out, and flying in) to describe various



(a) A bumblebee at the tun-
nel.

(b) Gradient around the
area of interest. The inten-
sity image is shown in in-
verted gray scale.
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(c) Weighted HOG for (a).

(d) Weighted HOG for an
empty opening. Note the
change of scale with re-
spect to (c).

Figure 2. Bumblebee detection. The his-
togram of oriented gradient (HOG) is used
to characterize the beehive doors and to
detect bumblebees via a SVM classifier.

activities of the bees activities. Their tracking strategy
consists on maximizing the sum of weighted edges in
a bipartite graph. Other methods for counting bees in-
clude the use of capacitance-based sensors[8] and in-
frared sensors[9].

3 Approach Description

Our beehive is a 29[cm] wide, 21[cm] tall, and
26[cm] deep cardboard box (see Fig. 1). For our pur-
poses, the salient features of the beehive are its two cir-
cular doors that are used by the bumblebees to enter or
to leave. The beehive has a mechanism that prevents
a bumblebee from entering through the exit or leaving
through the entrance. Thus the beehive design simpli-
fies the analysis of the bumblebees as it forces some be-
haviors. For example, a bumblebee that enters through
the exit will invariably get out.

In our approach, we describe departure events as a
set of observationsT i

d , for i = 1, . . . ,m, of the bumble-
bee at the door, followed by a departing trajectoryT i

o ,
for i = 1, . . . ,n. Contrariwise, an arrival event consists
of an arriving trajectoryT i

o , for i = 1, . . . , p, followed
by a set of observations of the bumblebee at the door
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(a) Bumblebee departing.
(b) Position versus time for
(a).
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(c) Bumblebee arriving.
(d) Position versus time for
(c).

Figure 3. Counting bumblebees. A depar-
ture will consists of a several detections
at the door followed by a departing trajec-
tory. Contrariwise, an arriving trajectory
followed by detections at the door is con-
sidered an arrival. The dashed (blue line)
and the continuous (red line) shows the
vertical and horizontal position in pixels.

T i
d , for i = 1, . . . ,q. In what follows, we describe how

we monitor the beehive, detect bumblebees at the doors,
and track them outside the beehive.

3.1 Beehive Registration

The beehive may be subject to motion due to wind,
vibration, or occasional manipulation. To avoid disrup-
tion of the automatic analysis, it is convenient to dy-
namically monitor its position. The more important fea-
tures of the beehive are its two openings that serve as
the entrance and the exit for the beehive. For our bee-
hive, these two openings have a circular and high con-
trast structure, which can be modeled by(x̄k, ȳk, rk)S ,
where(x̄, ȳ), andr are the center and radius of the cir-
cular structure, respectively, andS can be eitherleft
orright corresponding to a frontal image viewpoint.

To detect the circles, we use the implementation
of the Hough transform developed by David Younget
al.[10]. Afterwards, the positions of the two doors
(x̄k+1, ȳk+1, rk+1)S ← (x̄k, ȳk, rk)S + (∆x̄k,∆ȳk,∆rk)S
are updated using robust estimation with a Kalman
filter[11].



3.2 Bumblebee Detection

There are two distinct situations in which a bumble-
bee needs to be detected: one is when it is at either of
the beehive doors and the other is when it is close to the
doors.

The area corresponding to the doors is mostly dark.
It is only when a bumblebee shows up that some con-
trast appears. Under these conditions, it very difficult
to perform a detailed bumblebee body analysis. In our
approach, we are satisfied with a yes or no answer to
the question of whether there is a bumblebee visible at
the door. Therefore, we train a SVM [12] using a de-
scriptor based on the weighted value of the histogram
of oriented gradient (HOG) as follow.

Let R← (x̄, ȳ, r) be the current descriptor for the ge-
ometry of a door opening. The gradient on that area
∇IR = (θR ,MR) is composed of vectors with an ori-
entationθR and a magnitudeMR . A 9-bins weighted
histogramz = h(θR ,MR) is constructed. The corre-
sponding weight is directly related to the magnitude of
the gradient at the position of a certain orientation. Dur-
ing training, a set ofa positive{zP

k} andb negative{zN
k }

samples are used to train a SVM classifier. Then, during
operation, a similarly computed HOG-feature is given
to the classifier to determine if a bumblebee is (yes) or
is not (no) at the door.

To detect the bumblebees flying around the doors,
we use a layered background model [13] to detect the
foreground pixels that correspond to moving objects.

3.3 Tracklet Construction

It is frequently difficult to track bumblebees because
of their relatively high flying speed, which equals a
large displacement, in pixel terms, from frame to frame.
Nonetheless, for our application, the important tracks
are the ones occurring close to the doors, where we must
distinguish between a trajectory is heading toward the
door or is heading the opposite direction.

In [14], Javedet al. defined a Bayesian inference
framework to track objects across disjoint views. In
what follow, we apply that paradigm to the construction
of bumblebee tracklets. Let{O j ,1, . . . ,O j ,mj } be the set
of observations made at framej, where eachO j ,b cor-
responds to a particular bumblebee. In our case, each
observationO j ,b includes its location at a given moment
during its trajectoryO j ,b(st).

Similarly to Javedet al.[14], let k j+1,d
j ,b define the hy-

pothesis thatO j ,b andO j+1,d corresponds to the same
bumblebee. A tracklet is formed when we find the set
of correspondencesK = {k j+1,d

j ,b } such thatk j+1,d
j ,b ∈K if

- and only if -O j ,b andO j+1,d corresponds to the same

bumblebee. Assuming independence between observa-
tions, the following expression holds

P(K |O) = ∏
k j+1,d

j,b ∈K

Pj , j+1

(

k j+1,d
j ,b |O j ,b,O j+1,d

)

,

which expresses the conditional probability of a certain
correspondencek j+1,d

j ,b , given the observationsO j ,b, and
O j+1,d. From Bayes theorem, it follows that

Pj , j+1

(

k j+1,d
j ,b |O j ,b,O j+1,d

)

=
Pj , j+1

(

O j ,b,O j+1,d | k
j+1,d
j ,b

)

Pj , j+1

(

k j+1,d
j ,b

)

Pj , j+1
(

O j ,b,O j+1,d
) . (1)

Using the above equation, the expression to maximize
corresponds to

Pj , j+1

(

O j ,b,O j+1,d | k
j+1,d
j ,b

)

= Pj , j+1

(

O j ,b(st),O j+1,d(st) | k j+1,d
j ,b

)

= e−‖x j−x j+1‖/α , (2)

wherex j is the bumblebee position at framej andα is
an empirical constant. The solution corresponds to the
hypothesisK′ in the solution spaceΣ that maximizes

K′ = argmax
K∈Σ

P(K |O). (3)

The trajectory is the result of combining iteratively
the associated observations with the use of a Kalman
filter[11]. An illustration of a tracklet is presented in
Fig. 3.

3.4 Counting Bumblebees

A trackletT is defined over a period of time(ti , t f ).
Furthermore, we distinguish two types of tracklets,
those at the doorsTd, extracted using the SVM detector,
and those in the area aroundTo, result of the Bayesian
tracker. For every tracklet at the doorTd = (td

i , t
d
f ),

we verify if there is a trackletTo = (to
i , t

o
f ) during the

same period of time. That is, we check whether the
condition(td

f > to
i )∧ (t

o
f > t f

i ) holds true. For a bum-
blebee detected at anyone of the doors, we do not re-
ally know with certainty where it is located within the
door’s opening. Therefore, we define an area of influ-
ence around the door as the pointsx = (x,y) inside the
circle (x− x)2+(y− y)2≤ r2.

To count the number of bumblebees entering and
leaving, we combine theTd andTo tracklets whenever
there is time and space overlap for the end points ofTo,



to create trackletT f . Then, an arrival is added when-
ever the first point of the tracklet is outside a door’s area
and the endpoint is inside the door’s area. On the other
hand, a departure is detected when, for the trackletT f ,
the first point is within the door’s area and the final point
is outside that area. All other tracklets are discarded.

4 Experimental Results

To test the method just described, we captured a se-
quence of 326,000 color images at a resolution of 640
columns and 480 rows, in about three hours. The se-
quence was captured and stored on a hard disk while
all the processing is completed offline using MATLAB
programs.

To train the SVM classifier, we used 950 positive
and 1048 negative samples. After testing with 400
additional images, we obtained a true positive rate of
99.16% and a false positive rate of 0.56%.

During the sequence, there were 65,470 images with
92,142 bumblebee detections. We eliminated tracklets
with fewer than 4 observations, which left 8,041 statis-
tically probable tracklets. After combining the trajecto-
ries and filtering out the tracklets that did not meet the
space-time overlapping conditions detailed in§3.4, 95
tracklets remained. To compare the output of the sys-
tem with ground truth, we reviewed manually the track-
lets occurring in the sequence and compared these with
the ones being detected. The number of bumblebees ar-
riving was 55 (versus 55 actually arriving), and depart-
ing was 35 (versus 52 actually departing). There were
14 tracklets that departed and arrived at the same door
(versus 20 in the sequence). And there were 9 tracklets
that departed from one door and arrived at the other one
(versus 11 in the sequence).

Conclusion

In this article, we present a system to count the num-
ber of bumblebees entering and leaving a beehive. We
have shown that the beehive used in this work leads to a
particularly suitable computer vision system, in which
the problem is reduced to the construction and interpre-
tation of a tracklet. The construction of the tracklet is
based on the combined use of a SVM classifier for the
bumblebees at either of two door, complemented with a
Bayesian tracker for the bumblebees flying around the
doors. The overall performance of the counting system
is satisfactory.

In the future, we are planning to extend our obser-
vations for longer periods of time, incorporating data
about ambient temperature, humidity, and brightness,

such that an entrance and departure rate may be as-
sessed as normal or abnormal. Also, it may be useful to
implement the algorithms in a mobile platform, which
will provide a portable and flexible beehive monitoring
system.
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