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Abstract

This work presents an automated, marker-based
tracking system for monitoring the subsurface locomo-
tion strategies of burrowing animals, in particular small
reptiles. High speed x-ray imaging was used to visual-
ize movement of a subject within a controlled granular
environment. Given the images, the system returns the
trajectories of markers placed on the subject’s body and
limbs. Unlike existing methods that require unique cor-
respondences between markers in subsequent images,
the proposed method is designed to handle false positive
marker detections arising from the noise inherent to x-
ray imaging. A Bayesian approach to trajectory estima-
tion using linear models with Gaussian noise leads to a
combined Kuhn-Munkres algorithm and Kalman filter-
ing formulation. This is the first step towards a robust,
marker-based tracking system for articulated subjects
undergoing locomotion in noisy environments.

1. Introduction

Recent efforts studying reptiles like the sand-diving
and swimming sandfish [2, 9] seek to understand how
the interaction between the animal and its environment
produce subsurface locomotion. Identifying the inter-
action mechanisms for modeling purposes requires ex-
tensive investigation [10]. Accurate model estimation is
contingent on the ability to extract the motion trajecto-
ries of the animal’s body while fully submerged in the
media. The difficulty in studying the subsurface loco-
motion of these animals arises from the opaque granular
media, which renders traditional visible light imaging
acquisition techniques useless.

Subsurface imaging is aided by the use of high speed
x-ray technology [3, 6]. Through the strategic place-
ment of high density markers on the subject of inter-
est, trajectories of certain body landmarks can be ex-
tracted. To be of practical utility however, automated
methods for trajectory extraction are necessary. Exam-

ples of automated marker-based tracking algorithms for
x-ray imaging include [1, 4]. The X-Ray Reconstruc-
tion of moving Morphology (XROMM) algorithm has
been sucessfully used for motion analysis [1, 5]. It is
a template-based approach that requires one-to-one cor-
respondences between detected markers across frames.
The technique in [4] uses active appearance models to
learn a low-dimensional representation of the subject’s
shape. Such representations require a priori training
and a kinematic model that truly has a low-dimensional
parametric representation. In the present study, imaging
noise associated with the x-ray process produces a one-
to-many marker correspondence problem, and the rep-
tile motion has many degrees of freedom, meaning that
these approaches are not suitable for the present needs.
This paper presents an automated computer vision
system for robustly tracking landmarks placed on an ar-
ticulated, burrowing animal. The system uses blob de-
tection to identify candidate markers, and assumes a 2D
motion model for the markers. A recursive Bayesian
estimation strategy for tracking leads to a combined
Kuhn-Munkres algorithm and Kalman filtering method
for estimating the marker trajectories. The combined
approach results in a correspondence cost function that
incorporates the filtered states into the costs.

2 Image Acquisition

Animals moved in a container filled with approxi-
matley spherical glass bead (diameter, d ~ 0.3mm or
3mm, and density, p = 2.5_%3), which was placed be-
tween the x-ray source and image intensifier to produce
top view (or dorsal) images of animal burial. The media
was approximately 10 cm deep. Further information on
the methods and techniques can be found in [9].

X-ray recordings of the animals observed entry and
movement through the granular medium. Figure 1
shows an extracted image with a sandfish submerged
in coarse media. The contrast between the animal’s
body and the environment is too low to admit tracking
of the body. Thus lead markers (1 mm in diameter) are
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Figure 1. Masking the marker detections
for shovel-nosed snhake.

placed along the spine of the animal (and also on the
legs if appropriate) to enhance the contrast and facilitate
tracking. As seen in Figure 1, these markers stand out
as dark regions in contrast to the surrounding environ-
ment. Under ideal circumstances the markers maintain
sufficient contrast for tracking of subsurface locomotion
throughout the image acquisition. However, in less than
ideal circumstances there are important impediments to
tracking. Digital radiography has quantum noise and
sensor noise. Further, the coarseness of the media im-
pacts the imaging contrast and texture, while the barrier
generates occlusions. In these cases, markers can dis-
appear and some image regions can have marker-like
visual characteristics.

3 Marker Tracking

The proposed tracking solution is decomposed into
two phases, the detection phase and the association
phase. By design the association phase also incorpo-
rates filtering of the estimated marker trajectories.

3.1 Marker Detection

The lead markers on the subject have a roughly cir-
cular appearance in the x-ray images. These markers
are detected using a blob detection algorithm [8] rely-
ing on high responses from a circular filter convolved
with the x-ray image I. The circular filter is the Lapla-
cian of Gaussian (LoG) filter,

r(z,y) = AG, * I. €))

where A is the Laplacian operator and G, is the Gaus-
sian kernel with standard deviation ¢ (also known as the
scale of the filter). The highest response r for a marker
is produced at the scale best matching the marker radius.

Thus, given an initial frame with manually tagged
markers, unique blob detection kernels are designed to
detect the markers of the subject, leading to a filter
bank of LoG filters. The output of the convolutions are
thresholded and the centroid of every disjoint detection
region is classified as a candidate marker. As mentioned
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(a) Mask boundary (b) Detections

Figure 2. Masking the marker detections
for shovel-nosed snhake.

earlier, this approach also leads to false positives in the
detection process, and can also lead to missed detec-
tions when the contrast between the surrounding media
and the marker drops significantly. To reduce the quan-
tity of false positives, a target mask region is utilized.
Given the current estimate of the subject’s markers, a
mask is generated by considering only those image co-
ordinates that are within a specified distance to any one
marker. Figure 2(a) shows the image with the mask
region, while Figure 2(b) shows all marker detections.
The magenta square detections lie outside of the mask
and are rejected, while the red circular detections lying
within the region are accepted for further processing.
The blue crosses are the true marker locations.

3.2 Correspondence Matching

To successfully generate the frame-to-frame marker
associations, a correspondence matching algorithm is
needed. Following a Bayesian approach [?], the corre-
spondence can be found by maximizing the probability
associated with all possible candidate correspondences
given the past detections and the current detection. As-
suming a Markov process, the probability optimization
is reducible to a recursive estimation procedure. Let
the n marker states at time k be denoted by z;(k) for
i € §:={1,...,n} which form the set X'(k), and like-
wise the m detected candidate marker positions be de-
noted by y;(k) for j € D := {1,...,m} which form
the set J(k). Assuming the markers are independently
identically distributed, the probability to maximize is

arg max HP Ya(k,i) (k)|xi(k))P(xi(k)|z:(k — 1)),
a(k,),X (k) i1
(2)

where a(k, -) : S — D is the marker to detected marker
correspondence function at time k. The optimization is
over the correspondence function and the marker states.

Kalman Filter Model. For simplicity, first consider
the case of an individual single marker, labeled by i,
with the correct correspondence. Assume that the dy-
namics of each marker are linear time-invariant with



Gaussian uncertainty, plus that the (correspendence)
measurement has Gaussian uncertainy,

xl(k) = Al‘z(k‘ — 1) + wi(k}), (3)

yz(k) = C.Tl(k') + Ui(k),
Both the state equation and the observation equation
are affected by white stationary noise defined by w; ~
N(0,Q) and v; ~ N(0, R), respectively. The Bayesian
procedure of equation (2) leads to a Kalman filter [?]
for the marker trajectory for these given state equations.
The Kalman filter first involves a prediction step,

z; (k) = Az;(k —1)
P~ (k)= AP;(k—1)AT +Q

K2

“

where ; (k) and P, (k) are the predicted state and co-
variance obtained by propogating the previous estimate
through the uncertain dynamics of (3). Then, given cur-
rent measurement y; (k), there is a correction step,

nl) = a7 () + K(u(k) = Ca () o
(k) = (1 - KC)P; (k)

where the Kalman gain K is defined as:
K = P (k)CT(CP7(k)CT + R)™'.  (6)

Given that the distributions are all Gaussian, the
Kalman filter process maximizes a probability, as per
(2), that is Gaussian. In this case maximization of the
probability is equivalent to minimization of the negative
log of the probability, as given by the cost function

ci(k) = llyi(k) = Cxy (k)13 (1) 9

where W(k,i) = (KT (P (k) K + (1 —
CK)TR™(1 - CK))~\, and |[z|]2, = (2T M~'z).

Filtered Marker Correspondences. Suppose that all
marker states ¢ € {1, ...,n} are to be considered as well
as all currently detected markers j € {1,...,m}. The
Bayesian filtering problem of equation (2) takes a more
complex form, since n states should be estimated from
m possible associations. Optimization now requires
finding both the associations and the filtered states. Us-
ing (7), a candidate correspondence between marker ¢
and detected marker j has the cost

cig = llyi(k) = Cxy ()1 .- (8)

The association function o must reflect the set of
one-to-one correspondences maximizing (2), or equiva-
lently minimizing the sum of (8) over all i € S where

j = a(i), e.g. > ;cqCia@)- The Kuhn-Munkres al-
gorithm provides an efficient approach to identifying
the optimal solution to the association problem [11]. It
solves the dual problem of ensuring optimal assignment
of the maximum number of correspondence matches
with the minimum effective net cost for the assignments
made. The algorithm structures the problem using a
cost matrix C' := [¢; ; |, where ¢; ; is the cost of as-
signing marker ¢ € S to candidate marker j € D. The
Kuhn-Munkres algorithm is an established solution to
the assignment problem given a feasible cost matrix.

4 Experiments

The algorithm was run on three different reptiles,
the sandfish (Fig. 3), the shovel-nosed snake (Fig. 4),
and the ocellated skink (Fig. 5), Nevertheless, the setup
presented can be used for the study of any small, ar-
ticulated burrowing animals. Due to space considera-
tions, one experimental results per animal will be given,
with the selection being a more challenging sequence
for each animal. Given that the closest methods [1, 4]
are not suited to track these sequences, comparison is
made with an approach that first generates correspon-
dences then filters the results in order to show the im-
portance of coupling the correspondence and filtering
more tightly. Each sequence was manually initialized
on an initial frame where every marker was visible, and
a second-order, constant velocity model was used for
the Kalman filter. Ground truth was obtained by manu-
ally annotating 20 evenly space frames per sequence.

The tracking results, Figs. 3-5, refer to the proposed
method as Filtered Association (FA) and the compari-
son method as Associate-Then-Filter (ATF). Subfigure
(a) shows a sample x-ray image and marker positions
for each animal (Figs. 3-5) and subfigure (b) shows the
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Figure 3. Sandfish tracking.
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Figure 4. Shovel-nosed snhake tracking.

trajectory for select markers (head, tail, and one limb if
applicable). Subfigure (c) plots the root mean square er-
ror plus the maximum and minimum errors per marker
for both FA and ATF. The importance of coupling the
overall procedure more tightly can be seen in Figure
5(d), which plots the correspondence correctness for
Marker 10 versus time. The top graph of Figure 5(d)
shows that the ATF method generates incorrect corre-
spondences that cannot be corrected over time while the
(coupled) FA method does not lead to long-term incor-
rect correspondences. The large error for Marker 12 in
Figure 3(c) is due to long-term marker disappearance.
Subfigures 3(c)-5(c) show that the proposed approach
is accurate to a pixel when the marker is visible.

5 Conclusion

This paper presented an algorithm for automated
marker-based tracking of articulated animals in noisy
environments. The algorithm admits tracking of bur-
rowing animals imaged using high speed x-ray. A
Bayesian-based optimal estimation formulation pro-
vides for robust correspondences given false marker de-
tections. The method successfully tracked three articu-
lated reptiles: the sandfish, the ocellated skink, and the
shovel-nosed snake.
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