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Abstract
This paper presents an analysis of patterns of error in the

triangulation of 3D points from stereo camera systems that
are used in field work to study the behavior of bats in flight.
A measure of the error present in a 3D reconstruction is pro-
posed. A method for empirically testing the performance of
a particular stereo camera configuration through a software
simulation is presented. Randomly generated 3D calibration
points are projected onto the image planes of simulated cam-
eras, and autocalibration is performed using the direct linear
transform (DLT) method. The accuracy of the computed 3D
reconstruction is determined by computing the proposed mea-
sure of geometric error over a grid of reference scene points.
A series of experiments are performed with this simulator to
evaluate the accuracy of 3D reconstruction with various cam-
era placements and under differing levels of noise. Results of
these experiments are used to motivate suggestions for the de-
sign and calibration procedure of stereo vision systems used
in ecology field work.

1. Introduction

A multi-camera tracking system [7, 8] has been de-
veloped that has been used by field biologists to mon-
itor the behavior of wildlife. The system is targeted to
track bats and birds within multi-camera views and ana-
lyze the flight behavior of large groups. Flight trajecto-
ries of individuals of these groups are reconstructed in
three dimensions. The flight trajectory data computed
by the system can be used to enhance understanding of
the group behavior of animal populations, with appli-
cations to behavioral ecology, biological engineering,
and conservation. Our system has been used to reveal
flight characteristics and group structure of a colony of
Brazilian free-tailed bats (Tadarida brasiliensis) [6].

Obtaining the flight trajectory data requires the im-
plementation of algorithms capable of tracking flying
bats or birds given calibrated multi-camera views of
groups possibly containing hundreds or thousands of
such individuals. Multi-view, multi-target tracking is
a difficult problem in general as data association must
be performed across time and across all camera views
[7]. Since many targets must be tracked simultane-

Figure 1: Sample stereo setups of cameras recording multi-
view data of bat colonies in Texas.

ously within dense groups, occlusions between individ-
uals occur frequently. The similar appearance of indi-
vidual bats or birds within these groups also limits the
extent to which appearance information can be lever-
aged to perform data association.

The approach by Wu et al. [7] uses deferred-logic,
computing an initial solution to the spatio-temporal as-
sociation problem at each time step, and subsequently
improving the solution by considering the stability of
associations across multiple time steps. The success of
this method relies on accurate triangulation of 3D points
in order to perform the data association. The methods
proposed in this paper for estimating the reconstruction
error in a multi-camera setup will enable more accurate
trajectories to be generated by allowing reasonable es-
timates for the error in point reconstruction to be incor-
porated into the tracking algorithms. We will also pro-
vide strategies to position cameras in such a way as to
minimize this error in future data collection. Common
camera calibration methods [2] are applicable to small
calibration volumes that are close to the cameras and do
not easily scale to wild-animal monitoring where a cam-
era setup has a baseline of several meters and where the
targets of interest are hundreds of meters away. Here,
a small numerical issue or noise during calibration re-
sults in significant reconstruction errors. In this paper,
we adopt a wand-based self-calibration method that is
easy to implement in the field. We analyze its perfor-
mance with different camera configurations.

2 Geometric Error Measure

We propose the following measure of the geometric
error present in a reconstructed scene. Assume a set
of reference scene points with known 3D coordinates,



S = {s1, s2, ...sn}, is given. For each si ∈ S, let N(si)
be those points immediately neighboring s i in the ref-
erence scene. In our simulation experiment, reference
points form an evenly spaced 3D grid and the neigh-
boring points are the six closest neighbors on the grid.
Each of the reference points si ∈ S has a corresponding
point ri ∈ R, where ri is determined by reconstructing
the position of si from its imaged coordinates. We de-
fine the geometric error for a point ri ∈ R to be

Ei = 1/|N(si)|
∑

sj∈N(si)

|‖si − sj‖ − ‖ri − rj‖|. (1)

That is, Ei is a measure of the discrepancy in the Eu-
clidean distance between neighboring reference points
si and sj and their corresponding reconstructed points
ri and rj . We then define the geometric error for the
whole scene reconstruction to be

E = 1/n

n∑

i=1

Ei, (2)

the mean of the error for each reconstructed reference
point. This definition of the error provides a measure
of the local spatial integrity of the reconstructed scene
with respect to the reference scene. It is convenient in
that its value is easily human-interpretable. When cal-
culated over a set of evenly spaced reference points, the
geometric error provides the expectation of the error in
world coordinates over measured distances in the recon-
structed scene. In contrast to the commonly-used error
measure ‖si − ri‖, our geometric measure is translation
and rotation invariant. It focuses on the overall spatial
integrity. That is, if the reconstructed points and their
corresponding reference points only differ in a global
translation and rotation transformation, the reconstruc-
tion error could be very large but the geometric error
will be small. The latter is a desired property because a
rigid transformation does not affect many data analysis
tasks, such as estimation of the speed of the bats and
their relative distances.

3 Simulator Design
We developed a software system to test proposed cam-
era setups and evaluate the expected accuracy of a re-
sulting reconstruction. This system takes as input the
intrinsic parameters and proposed configurations of two
cameras and simulates the calibration workflow by

1. randomly generating 3D calibration points in a
sphere of interest around a specified target point1,

2. projecting the calibration points onto the image
planes of the two virtual cameras,

1Throughout this paper, the target refers to the calibration object,
not the scene points to be reconstructed during testing.

3. using these points as input to the DLT method [2]
to perform autocalibration of the camera setup,

4. evaluating the reconstruction accuracy by comput-
ing the geometric error over a set of evenly spaced
reference points.

The reconstruction accuracy, E, is evaluated by cal-
culating the geometric error between a set of evenly-
spaced reference scene points that fill the view volume.
Each of these reference points is projected onto the vir-
tual cameras, and a corresponding reconstructed point
is triangulated in the scene using the parameters com-
puted in the autocalibration step.

The two simulated cameras use a pinhole model,
where each camera is parametrized by its focal length f
in millimeters, sensor size in millimeters, and resolu-
tion in pixels. Lens effects such as radial distortion and
decentering are not taken into account

The simulator implements a method of autocalibra-
tion of a stereo camera configuration using the DLT
method to solve for the intrinsic and extrinsic camera
parameters at the same time [2]. The specific proce-
dure for calibration involves imaging a wand of known
length w at various locations in the scene. For each im-
aged location, the two endpoints p1 and p2 of the wand
map to points c1,L and c2,L, respectively, on the image
plane of the “left” camera, and c1,R and c2,R on the
image plane of the “right” camera. The corresponding
points c1,L and c1,R, and c2,L and c2,R are then local-
ized at each imaged position from all viewpoints and
given as input to the DLT method. This results in a
reconstruction of the scene up to scale, which can be
determined by scaling the reconstructed volume so that
triangulated positions for the wand endpoints are con-
sistent with known wand length w.

4 Experiments
To narrow the scope of the analysis to camera setups
that resemble those commonly seen in practice, we de-
signed experiments with the following limiting assump-
tions (which are are also representative of those made in
the literature [1, 4, 5]):

1. Use two cameras (“left” and “right”) with identical
intrinsic parameters.

2. Position the cameras equal distance from a pre-
defined target point in the scene.

3. Orient the cameras such that their optical axes in-
tersect at the target point.

In the simulated experiments presented, a series of 3D
calibration points were generated uniformly at random
within a sphere of radius r around target scene point t,
which defines the region of interest in the scene. These
calibration points were used as input to the DLT method



to calibrate the camera setup. For each of these calibra-
tion points, a small random perturbation whose standard
deviation is 3 pixels was added to the projected loca-
tion on the image plane of each of the cameras to simu-
late localization error present in real-world applications.
After performing autocalibration of the simulated cam-
era setup, the accuracy of the resulting reconstruction
was determined by computing the geometric error, E i,
over a grid of uniformly spaced reference points that fill
the overlapping fields of view of the two cameras.

4.1 Selection of Camera Parameters
An experiment was designed to empirically deter-

mine the optimal distance between cameras given a pre-
determined distance to the calibration object. The dis-
tance d from the camera to the object and the baseline b
between cameras were varied, and multiple trial simu-
lations performed for each combination. Identical cam-
eras with focal length f=50 mm, diagonal sensor size
of 35 mm and pixel resolution 1600×1200 pixels were
used. In each trial, unique wand calibration points were
generated in a region of interest around target point t
with r=7 m. Autocalibration was performed using the
wand-based self-calibration method. The resulting re-
construction was evaluated by computing the geometric
error over a grid of reference scene points spaced 3 m
apart. The trend shown in Fig. 2 indicates that as the dis-
tance d increases, the baseline b required to maintain ac-
curate resolution increases nonlinearly within a range.
The geometric error throughout the reconstructed scene,
E, will be reduced as both b and d increase (Fig. 3).

4.2 Tolerance to Calibration Noise
An experiment was designed to determine the tolerance
of the DLT autocalibration method to errors in the lo-
cation of calibration points on image planes. It is com-
mon for the location of a calibration object to be manu-
ally annotated in images from multiple viewpoints, and
thus there is a potential for errors to be introduced by
labeling the location of a reference object at a small
offset from its true projected position. Multiple simu-
lations were run with identical camera setups (parame-
ters as above) but increasing magnitude of noise in cal-
ibration point location. For each trial, a value ep was
fixed, and the location of each calibration point on both
imaged planes was offset from its true location by ep

pixel-widths in a random direction. The value of ep was
tested on the range [0,20] pixels, and multiple simula-
tions were run for each value of ep. For each trial, the
geometric error E in reconstruction resulting from the
autocalibration was determined.

Our results indicate that the DLT calibration method
is tolerant of consistent noise in the location of calibra-
tion points up to a 6 pixel offset, as the magnitude of the

Figure 2: Best Baseline. Results of simulated experiments
with varying quantities for baseline b and distance-to-target d.
For each value of d, the baseline b that resulted in the lowest
geometric error E in the reconstruction is shown.

Figure 3: Error in Best Reconstruction. Results of simu-
lated experiments with varying quantities for b and d. For
each value of d, the lowest geometric error E observed for
any baseline b is shown.

geometric error remains relatively constant through this
range. With larger offsets, the calibration procedure of-
ten fails to converge on a configuration that models the
simulated camera setup, and the geometric error of the
resulting reconstruction increases.

4.3 Variation of Accuracy Within Volume

It is interesting to examine how the local error E i varies
spatially over the reconstructed volume. A particular
camera setup might result in a scene reconstruction with
high accuracy in a given region of interest, but low ac-
curacy in other regions. This would result in a high ge-
ometric error E over the whole view volume, but could
still provide useful 3D data for a specific application.

We generated two examples of the variation of ac-
curacy over a reconstructed volume using two identical
sets of camera parameters (Figure 4). The first simula-
tion was run with parameters d =25 m and b =5 m ,
while the second was with d =35 m and b =8 m. Note
that both are representative of the best camera configu-
ration for a specific target distance from Figure 2.

Figure 4 shows the variation in geometric error spa-



Figure 4: Error Pattern over Reconstructed Space. Geomet-
ric error Ei averaged over columns of the reference point grid
where d = 25 m and b = 5 m (left) and d = 35 m and
b = 8 m (right). Color represents magnitude of Ei. The error
increases at the fringes of the scene and is slightly asymmet-
ric due to the autocalibration algorithm arbitrarily selecting
the right camera as a reference.

tially distributed throughout the reconstructed volume,
where the error displayed is averaged over columns of
the grid of reference points. It further illuminates the
results shown in Figure 3 in that the camera setup with
larger values for b and d results in not only greater over-
all reconstruction accuracy, but also more uniform ac-
curacy over the reconstructed space.

5 Discussion
From our experiments, we can draw certain conclusions
about best-practices for the configuration of stereo cam-
era setups. The relationship shown in Figure 2 suggests
that the best choice of camera baseline length increases
nonlinearly with the distance from the cameras to the
target scene point. It is also clear by the results shown
in Figure 3 that the overall accuracy of 3D reconstruc-
tion increases as both baseline length and distance to
target increase. These relationships can be leveraged
to narrow the range of possible camera locations for a
given application. In practice it is often the case that
the distance between the imaging location and the re-
gion of interest is predetermined by the working envi-
ronment. Thus the relationship in Figure 2 can be used
to select an appropriate baseline length between cam-
eras for a given application. However, it is important
to note that the specific baseline length for optimal re-
construction may change with the internal camera pa-
rameters and reconstruction method. That is, for the
particular set of assumptions outlined in the simulated
experiments, Figure 2 provides the baseline length that
is optimal for a specific distance to the scene target. Un-
der different assumptions - eg, different focal lengths or
different method of reconstruction - the specific value
for the optimal baseline length may change.
The results (Sect. 4.2) indicate that a small amount of of
noise in the location of calibration points can cause the
DLT method to fail to converge on camera parameters

that accurately model the true configuration. This high-
lights that care must be taken in localizing calibration
points. This knowledge should be incorporated into the
calibration workflow by selecting a physical calibration
object with visibly distinguishable markers that map to
as small a region on the image planes as possible while
still being consistently visible in all views.
The patterns in Figure 4 suggest that reconstruction ac-
curacy is consistently highest in the region of the image
closest to where calibration data were obtained. Thus,
in practice, care should be taken to obtain calibration
points as close to the region of interest of the scene as
possible. Since the accuracy of reconstruction deterio-
rates as the distance from the region of calibration data
increases, it is also desirable to obtain calibration data
from as broad a region of the scene as possible to avoid
significant non-uniformity in accuracy of reconstructed
points from different locations in the scene. If possi-
ble, it is desirable to obtain calibration data from points
throughout the view volume, but it is particularly impor-
tant to do so in the region where greatest reconstruction
accuracy is required.
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