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Abstract

Rodent behavior analysis is a extremely important
task for pre-clinical testing of new drugs and neuro-
degenerative diseases. Some of the underlying mech-
anisms regulating natural interactions among multiple
animals require long term interaction, which implies
the usage of automated, objective and systematic video
analysis system. However, current video analysis sys-
tems are limited by idiosyncratic features of the 2D
video technology, and requiring a great number of pa-
rameters. This early stage work focuses on the first
step of a depth-based tracking system, offering some
methods to robustly perform rodent segmentation in a
controlled environment, fully exploiting its geometrical
properties, providing a qualitative overview of the re-
sults attained so far.

1 Introduction

The use of rodents in controlled environments has
proven to be extremely useful for pre-clinical trials,
since it allows the systematic repetition of a test en-
vironment to assess an initial hypothesis. Fully au-
tomated video analysis allows a more objective and
quicker behavioral analysis compared to visual inspec-
tion [2]. Some systems are commercially available,
like the Ethovision XT developed by Noldus Informa-
tion Technology; and Viewpoint VideoTrack, using top-
view video analysis as the underlying base of the sys-
tem. One of the crucial steps of these types of systems
consists of the rodents blob extraction, providing the
precise region corresponding to the rodent. Although
this might seem a simple task, it is prone to a substantial
level of error. Due to the intrinsic features of video cam-
eras, the methods developed upon them are very sensi-
tive to illumination changes, and require a high color
contrast between the background and foreground (gen-
erally implying the usage of dark cage floors and white

animals, or vice-versa). These limitations are magni-
fied at later stages of the behavioral analysis pipeline,
since the positions and pose of the animals in the scene
are limited to a 2D horizontal plane. Moreover, given
that in common scenarios, rodents often have the same
fur color, the correct differentiation of the animals is ex-
tremely difficult during close contact, when using solely
the overlapping 2D silhouette.

The introduction of affordable indoor consumer
depth camera sensors like the Microsoft Kinect 2 1 or
the Creative 3DSenZ 2, have spawned a wide range
of novel applications in problem domains that previ-
ously were not easily tackled (e.g human pose infer-
ence; scene understanding; hand gesture recognition)
Their core underlying technique is based on the Time-
of-flight principle [7], which illuminates the scene with
a modulated light source, observing the reflected light
thereafter. From the phase shift between illumination
and reflection, the distances are calculated for every
pixel, and the depth map is extracted. The cameras use
a near-infrared LED light (≈ 850nm) which is invisi-
ble to human’s and rodent’s eyes. These cameras have
some important properties namely, robustness to illumi-
nation changes and the ability to operate in completely
dark environments. This makes them very interesting
for animal behavior analysis, in particular for rodents,
in confined environments. This paper presents the first
known contribution, to our best knowledge, that uses
this particular type of camera from a top-view perspec-
tive, in this stage focusing solely on the segmentation
problem, which is one of the core steps of a tracking
system.

This work is structured as follows: Section 2 ana-
lyzes some of the related work in this area. Section 3
shows the data acquisition and techniques used. Sec-
tion 4 discusses some of the results obtained. Finally
Section 5 explores some of the current limitations and

1Kinect2: http://www.microsoft.com/en-us/kinectforwindows/
23dSenZ: http://us.creative.com/p/web-cameras/creative-senz3d
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offers some lines of development.

2 Related Work

Computerized video analysis provides a valuable
technique to detect and extract various types behaviors
in a much quicker and more systematic fashion than
behavioral analysis based on visual inspection. How-
ever, common techniques based in standard video anal-
ysis present considerable drawbacks inherited by the in-
trinsic limitations of the data representation attained in
those cameras. More specifically, in the rodents case
study, when analyzing social behavior among multiple
individuals, the most common and difficult problem are
occlusions that might occur during those interactions.
This clearly hampers the understanding of the animal’s
pose and the understanding of complex interaction be-
havior [1, 5, 11].

In [8] some of these limitations are tackled by get-
ting a comprehensive physical representation of the an-
imals, using 3D information of the scene instead of the
classical 2D information provided by the standard video
devices. This is achieved by using depth sensor technol-
ogy, in this case the MS Kinect, that provides 3D infor-
mation by measuring distances from the device towards
the scene it is capturing, by measuring the deformations
that the interest object causes over a projected infrared
pattern. However, the device only provides partial 3D
information of the captured objects, since it is perspec-
tive dependent. So, to get a full object reconstruction of
the rats, the authors have used a set of 4 Kinect cameras
surrounding the cage, obtaining a full 3D hull represen-
tation of the rats. Also, this layout diminishes the pos-
sible occlusions on the scene. The complexity of this
setup required in order to build a closed hull - the base
of the tracking system - makes it difficult to apply in a
real application.

Other approaches [6, 12] also considered the usage
of 3D information. In the first, the 3D information was
achieved by using multiple cameras to achieve voxel re-
construction, an approach with a considerable computa-
tional overhead, and with a low level of spacial resolu-
tion. In the latter, 3D information was obtained using
depth sensor devices, but the degree of information ex-
tracted was rather limited, so it could only infer simple
behaviors from a single rodent.

Although standard video analysis techniques still
play a major role in commercial and academic behav-
ioral analysis systems, it is clear that a new trend, based
on depth sensor technology is currently emerging.

3. Material and Methods

3.1 Overview

Our system has the goal to provide reliable and ac-
curate tracking positional data, and serve as the core
base for a richer and robust behavioral analysis sys-
tem, that can overcome some of current limitations of
2D video technology. We propose a new approach that
can take the best from the new depth camera technolo-
gies while preserving the top-view hardware setup used
by some commercial applications. This way, future de-
velopments are not totally disruptive and allow a feasi-
ble application to real scenarios it offers the best trade-
off between representative quality data where the cage’s
physical geometric properties can be used to leverage a
robust rodent segmentation.

3.2 3D Data Acquisition

In order to develop this new techniques, a novel ro-
dent depth dataset had to be recorded since there is none
in the public domain. Therefore, a recording framework
had to be designed both in hardware and software in
order to collect a representative sample of rats in con-
trolled environments (see Figure 1). For the dataset ac-
quisition the Creative 3D SenZ camera was used, along-
side with the Intel Perceptual Computing framework 3

and the Point Cloud Library [10] for storage and data
analysis.

(a) Top-unit on Noldus Pheno-
typer 4500.

(b) Top-unit on Noldus Pheno-
typer 9000.

Figure 1. Data acquisition setup.

3https://software.intel.com/en-us/vcsource/tools/perceptual-
computing-sdk
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Figure 2. Point cloud sample extracted us-
ing Creative 3D Senz depth camera on the
PT4500 from a top-view perspective.

Figure 3. Point cloud sample extracted us-
ing Creative 3D Senz depth camera on the
PT4500 from a top-view perspective and
then rotated to a profile view.

3.3 RANSAC Overview

During the experiment, the rodents are recorded in a
controlled environment, more precisely within a Pheno-
Typer cage (PT4500 and PT9000) 4 cage, with a known
geometry. This prior knowledge can be used to exploit
the spatial information provided by the depth camera.

In this cage setup it is known that the scene is com-
posed of a planar floor and walls. This way, knowing the
plane model coefficients, all the cloud points that do not
fall within the considered plane boundaries are consid-
ered outliers to the model. The points non-compliant to
the planar geometric primitive are considered belonging
to the rodents point cloud data (in our setup, no shelters
were considered).

In order to perform this model plane estimation, the
algorithm must be robust to a significant proportion of
outliers within the unorganized cloud data.

In the literature, traditional regression methods [3, 9]

4http://www.noldus.com/phenotyper - Noldus

are not robust to the presence of data outliers or fail
in the presence of multiple models. These limita-
tions are surpassed by the RANdom SAmple Consen-
sus (RANSAC) algorithm [4]. This algorithm con-
sists of general purpose parameter estimation, spe-
cially designed to cope with a large proportion of out-
liers. RANSAC is a sampling techniques that generates
candidate solutions by randomly selecting a minimum
number of observations (data points). Unlike standard
sampling techniques using as much of the data as pos-
sible to obtain an initial solution and then proceed to
prune outliers, RANSAC considers the smallest sam-
pling set possible and then proceeds to enlarge this set
with model consistent data points.

3.4 Rodent Blob Extraction

After applying the RANSAC algorithm to the point
cloud on the previous step, the plane model coefficients
are obtained, and by this the cloud points belonging to
floor plane (inliers) can be selected. All the remaining
model outliers, represent point data that do not belong
to the plane and must belong to the rodents. With this
method we get the rodents blob areas by fully exploring
the capabilities provided by the depth sensors.

4 Results

In Figures 4 and 5 we demonstrate graphically the
results obtained with our method - on the left the full
original point cloud; on the right, the resulting rodent
segmentation. Initially it is applied an outlier removal
filter, followed by a Pass through filter, to delimit our
3D region of interest, followed by the RANSAC method
that provides us the plane model (red colored) and the
extracted rodents blobs (green colored). The obtained
result show the quality of the method in dealing with
outliers when computing the plane’s equation, which is
a crucial step to obtain a reliable rodent segmentation.

5 Concluding Remarks

In this paper we present current and ongoing work
towards a rodent tracking system for controlled cage en-
vironments, capable of fully exploiting the capabilities
of affordable depth cameras it performs a data stream
analysis that uses the static geometric properties of the
environment as a hint for a robust blob detection.

Some limitations were identified, namely the usage
of small rodents with black fur reduce the precision of
the data acquired by the depth camera, since most of
the IR light projected by the camera is absorbed in this

http://www.noldus.com/phenotyper


Figure 4. Left: Original point cloud data.
Right: Plane(red) and rodents(green) seg-
mentation.

Figure 5. Rotated point cloud.

case. Moreover, a better data precision was achieved us-
ing white (non-reflective) floor in the cage, which ren-
ders this setup unusable in conjunction with common
video analysis systems, since they rely on high contrast
between the animal and the floor color.

In future work we will focus on the most difficult
scenarios such as animal overlapping in complex so-
cial interaction. This case is remarkably difficult in 2D
video analysis setups since both animals are extremely
similar both in terms of texture and color. Consider-
ing our point cloud data, this task can be simplified
by searching the discontinuities created along the body
overlaps, both in terms of depth and surface normals.
This would be an intermediate step for a more advanced
multiple rodent tracking system.

Nevertheless, this affordable technology enables the
system to harness the potential provided by three di-
mensional scene data. This aspect combined with the
well known physical layout constraints, provides in-
valuable prior knowledge that could and should be used
to the system’s advantage.
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