
 

 

A Detection Algorithm Based on Matrix 
Factorization for Live Mitochondria in Fluorescent 

Microscopic Images 
[Extended Abstract] 

Abstract--With the development of biomedicine, detection of 

mitochondria in fluorescence microscopic images is an important 

method to explore the nature of life phenomena. However, 

limited by fluorescence microscopy, two parts which are the 

shadow of cytoplasm and live mitochondria are contained in 

general microscopic images. For this reason, the signal-to-noise 

ratio (SNR) of the live mitochondria time sequence images drops 

rapidly and background complexity increases greatly, which 

can’t satisfy the requirements of traditional particle detection 

algorithm. We present a new detection algorithm for live 

mitochondria in fluorescent microscopic images in this paper. In 

order to realize this method rapidly, we use augmented 

Lagrange multiplier algorithm. Shadow of cytoplasm is removed 

by this algorithm effectively, and mitochondria can be detected 

in fluorescent microscopic images accurately. Therefore, the 

proposed algorithm provides an efficient and accurate tool to 

detect mitochondria in live cells. 

Keywords--mitochondria; matrix factorization; optimization 

problem; augmented Lagrange multiplier algorithm 

I. INTRODUCTION 

With the development of fluorescence microscopic 
imaging technology, fluorescent microscopy becomes one of 
the most important tools in the biomedical science to study 
apoptosis of cells and explore the nature of life phenomena 
recently. In 2006, Conradt[1] published a paper which showed 
the mitochondria transfer had an influence on cell regulation 
mechanism. Thus detection of mitochondria in biological 
fluorescence microscopic image sequences is a research 
hotspot in the area of biomedical image processing. 

Limited by fluorescence microscopy, the signal-to-noise 
ratio (SNR) of microscopic images can’t satisfy requirements 
of the traditional detection algorithms. Fluorescent biological 
images often present background unevenly, and mitochondria 
particles are of small size and have no obvious boundaries. 
These particles are labeled by green fluorescent protein (GFP) 
and attached to axon, which have an inhomogeneous grey 
level distribution[2]. So it is difficult to develop an algorithm 
that can detect mitochondria in fluorescent microscopic 
images. The main difficulties are shown as below: 

 1) Lack of reliable features: Good features that we use to 
distinguish objects of interest from others are critical in 
designing object tracking algorithms. Common features in 
images include color, edges, intensity and so on. However, 
mitochondria are of small size and influenced by an uneven 
background in microscopic images. So, we are short of 
reliable features to detect mitochondria in images. 

2) Influence of background interference: Because the 
fluorescence microscopic imaging technology is not 
consummate, the signal-to-noise ratio (SNR) of the live 
mitochondria time sequence images is generally low. 

Interfered by cytoplasm shadow, image background 
complexity is very high. Microscopic images can’t meet the 
requirements of traditional particle detection algorithm. 

Automatic detection of mitochondria in live cells is a very 
challenging task, a large number of methods have been 
proposed to complete this task over the past decades. Olivo[3] 
proposed a multi-resolution algorithm for the detection of 

particles, which is based on à trous wavelet transform. This 

algorithm can obtain accurate results when the SNR of the 
microscopic image is high. But with the decrease of the SNR 
and increase of background complexity, the performance of 
the algorithm drops rapidly. Jiang[4] used a machine learning 
method, which is based on Haar features, and it can detect a 
part of fast moving target particles in images. 

Baraniuk[5] and Donoho[6] introduced a new technique 
called compressive sensing, which has been widely used in 
the field of signal processing and image processing. This 
theory which makes full use of the characteristic that most 
signals are sparse in reality and reduces the sampling rate 
greatly on the premise of reconstructing original signals 
accurately which goes beyond the classic Nyquist-Shannon 
sampling theorem. Matrix factorization theory which is based 
on the theory of compressed sensing is proposed, and we can 
use this theory to decompose a high dimensional signal into a 
low-rank component and a sparse component. This step 
provides great help to further processing of signals. 

We present an effective automatic detection algorithm 
which is based on matrix factorization method for live 
mitochondria in fluorescent microscopic time sequence 
images. Because microscopic image sequence has many 
similarities between frame and frame, we put every frame of 
the image sequence into a matrix whose rank is 1. According 
to this property, the matrix can be decomposed by ℓ1 
optimization, and the inhomogeneous grey level distribution 
of background in every frame and mitochondria are viewed as 
the low-rank component and the sparse component 
respectively. In this way, we get images which contain 
nothing but live mitochondria and separated mitochondria 
from cytoplasm effectively. The new images have higher SNR 
and lower background complexity, which meet the 
requirements of general particle detection algorithm to detect 
live mitochondria accurately. 

II. MITOCHONDRIAL DETECTION MODEL BASED ON 

MATRIX FACTORIZATION 

The images that are used in this article are the 
mitochondrial fluorescence microscopic sequences with 
drosophila neuronal axons, in which mitochondria are labeled 
by GFP. Dynamic characteristics of mitochondria of 
drosophila neuronal axons were studied in exploring the 



 

 

pathogenesis of amyotrophic lateral sclerosis (ALS) has 
achieved important results in article[7]. The SNR of these 
images declines and background complexity augments since 
axon cells contain cytoplasm shadow. All of these make it 
very difficult to detect mitochondria in images. However, 
when we observe the image sequence, we find that there are 
many similarities of cytoplasm shadow between frames. 
Moreover, according to Pilling’s research[8], 57% of 
mitochondria are stationary, and only 43% of mitochondria 
are dynamic.  

Therefore, we suppose each frame 𝑫i can be decomposed 
into cytoplasm shadow in neural axon cells and mitochondria 
labeled by GFP, which can be denoted by 𝑨  and 𝑬 
respectively. Model can be formulated as: 

𝑫 = 𝑨+ 𝑬                  (1) 

We stack each frame 𝑫i as a column of a matrix 𝑫, 
whose rank is 1. After we decompose 𝑫, mitochondria 𝑬 has 
only a few elements which are not zero, which means that 𝑬 
is sparse. Cytoplasm shadow in one frame of image sequence 
is very similar to that in other frames, so cytoplasm shadow 𝑨 
can be taken a low–rank matrix. In order to decompose (1) 
exactly, the objective function can be set to rank(𝑨) +
𝜆‖𝑬‖0, and the problem is transformed into an optimization 
problem. Candès[9] called the optimization problem was 
Robust PCA(RPCA). The matrix 𝑫 can be decomposed into 
a low-rank matrix  𝑨 and a sparse matrix 𝑬 by solving the 
optimization problem, so we can achieve the goal that live 
mitochondria are separated from shadow of cytoplasm. 

III.  ALGORITHM 

Matrix recovery[10] (MR) is dubbed as Robust PCA or 
sparse matrix with low-rank matrix factorization as well. This 
is a curious phenomenon that we can identify elements of a 
matrix which are “polluted” seriously and reconstruct original 
matrix at the same time. (In fact, we are interested in all of 
those “polluted” elements which are mitochondria in live 
cells.) We suppose the original matrix is a low-rank matrix 
and polluted elements are sparse. Hence matrix recovery can 
be expressed by the optimization problem: 

min rank(𝑿) + 𝜆‖𝑬‖0 

subject to 𝑨 + 𝑬 = 𝑫             (2) 

where ‖∙‖0  represents ℓ0 -norm of a matrix, and 𝜆  is a 
positive weighting parameter for noise. However, this formula 
is combinatorially complex and intractable to solve, so the 
complexity of computing is exponential. In order to reduce 
the complexity of computing, we relax it by replacing 
ℓ0 -norm with ℓ1 -norm, which means that ℓ1 -norm and 
nuclear norm have been shown to be surrogates for ℓ0-norm 
and rank of the matrix. The original problem can be 

transformed as： 

min ‖𝑿‖∗ + 𝜆‖𝑬‖1 

subject to 𝑨 + 𝑬 = 𝑫            (3) 

Here, ‖∙‖∗ and ‖∙‖1 are nuclear norm and ℓ1-norm of a 

matrix respectively. ‖∙‖∗  is denoted as ‖𝑿‖∗ = ∑ 𝜎𝑖(𝑿)
𝑟
𝑖<1 , 

and 𝜎𝑖(𝑿) is the ith singular value of the matrix 𝑿. ‖∙‖1 is 
defined as ‖𝑿‖1 = ∑ 𝑬𝑖,𝑗

𝑛
𝑖,𝑗 , which is the sum of the absolute 

values of matrix entries, and 𝑬𝑖,𝑗is the element of the matrix 

𝑬. This is a convex optimization problem whose size of 
dimension is very large. It is critical to solve this problem 
quickly, so we propose augmented Lagrange multiplier 
algorithm to solve (3). Augmented Lagrange multiplier 
algorithm of matrix factorization method is described as:  

𝐿(𝑨, 𝑬, 𝒀, 𝜇) = ‖𝑨‖∗ + 𝜆‖𝑬‖1 + 〈𝒀,𝑫 − 𝑨 − 𝑬〉 +

𝜇

2
‖𝑫 − 𝑨 − 𝑬‖𝐹

2              (4) 

where ‖∙‖F is Frobenius norm. In order to minimize (4), we 
update 𝑨 and 𝑬 alternately. First of all, we obtain 𝑨 to 
minimize L(∙) by fixing 𝑬 and 𝒀. Then, we obtain 𝑬 to 
minimize L(∙) by fixing 𝑨 and 𝒀 at the same way. In this 
way, the problem is solved to get the optimal solution. 

When we update 𝑨, the formula is: 

argmin𝑨‖𝑨‖∗ +
𝜇

2
‖𝑫 − 𝑨 − 𝑬 + 𝜇;1𝑌‖𝐹

2 = 𝑫𝜇−1(𝑫 −

𝑬 + 𝜇;1𝒀)        (5) 

When we update E, the formula is: 

argmin𝑨‖𝑬‖1 +
𝜇

2
‖𝑫 − 𝑨 − 𝑬 + 𝜇;1𝒀‖𝐹

2 = 𝑆𝜆
𝜇

(𝑫 −

𝑬 + 𝜇;1𝒀)          (6) 

According to (5) and (6), the solutions will be updated 
until the original problem is converged. Actually, there is no 
need to calculate exact solutions of sub-problem in each step. 
We update 𝑨 and 𝑬 to obtain an approximate solution of the 
sup-problem only once, and it is enough to make the 
algorithm converge quickly and acquire the optimal solution. 
This algorithm is called augmented Lagrange multiplier 
algorithm. Here, 𝑫(∙)  represents singular value 
decomposition, which is expressed by 𝑠𝑣𝑑(∙) in algorithm. 
The soft-thresholding scalar operator 𝑺(∙) is defined as: 

𝑺ε(𝑥) = {
𝑠𝑖𝑔𝑛(𝑥)(|𝑥| − 𝜀) |𝑥| > 𝜀

0                                  otherwise
     (7) 

In the algorithm, λ is balance parameter determines the 
proportion of mitochondria separated from cytoplasm. We 
make λ=1600 according to resolution of the images. ρ is 
accelerating factor, the value range of which is from 0 to 1. 
When ρ=0.7, the algorithm gets the fastest convergence 

speed in the experiments. Initial value 𝜇0 can be set as any 
value greater than 1 which is set as 2 in experiments. 

The detail of augmented Lagrange multiplier algorithm 
can be expressed as follows: 

Algorithm 1: Augmented Lagrange multiplier algorithm 

Input：𝒀0，𝑬0 = 0，𝜇0=2， = 0，𝜆=1600 

While not converged do 
( , 𝑺,  ) = 𝑠𝑣𝑑(𝑫 − 𝑬𝑘 − 𝜇𝑘

;1𝒀𝑘) 
𝑨 :1 =  𝑺  − [𝑺] 

  

𝑬𝑘:1 = 𝑺 𝜇 
−1[𝑫 − 𝑬𝑘 + 𝜇𝑘

;1𝒀𝑘] 

𝒀𝑘:1 = 𝒀𝑘 + 𝜇𝑘(𝑫 − 𝑨𝑘:1 − 𝑬𝑘:1) 
𝜇𝑘 =  𝜇𝑘;1 
k=k+1 
end while 



 

 

IV.  EXPERIMENTAL RESULTS  

A. Image acquisition 

The images that are used in this paper are the 
mitochondrial fluorescence microscopic sequences with 
drosophila neuronal axons, which contain 60 frames. Each 
frame of this sequence has resolution 997*801. We stack each 
frame as a column of our matrix 𝐃 ∈ 𝐑60×798597. This matrix 
can meet the matrix factorization requirement that rank of the 
matrix is 1. 

B. Analysis in microscopic image 

We adopt the method proposed in this paper to process 60 
frames of fluorescence microscopic image sequences. Three 
frames are selected from processed frames randomly, and 
results are shown in Figure 1. Figure 1(a) shows three frames 
from original microscopic sequence; 1(b) and 1(c) show the 
corresponding low-rank matrix and sparse matrix respectively. 
Figure 1(b) includes cytoplasm shadow which causes 
interference on mitochondrial detection, and there is not any 
mitochondrion in the shadow. In another way, Figure 1(c) 
contains nothing but live mitochondria, which we are 
interested in and want to detect. Compared with Figure 1(a), 
shadow of cytoplasm has been removed basically, and only a 
few shadow which is the endpoint of drosophila neuronal 
axons remains in Figure 1(c). Moreover, the remaining part 
can’t interfere with particles detection in images. In this way, 
we separate mitochondria from the cytoplasm shadow 
successfully, and obtain higher SNR and lower background 
complexity of each frame. The frame can satisfy the 
requirements of general particle detection algorithm. Selection 
of balance parameter λ is very important in the method since 

it determines the proportions of sparse component and 
low-rank component in results. Table I shows the parameters 
are used in the experiment.  

In this paper, we use isotropic undecimated wavelet 
transform (IUWT) algorithm to detect mitochondria in 
original microscopic images and in processed microscopic 
images by matrix factorization respectively; and results are 
shown in Figure 2(a) and Figure 2(b) respectively. At the 
same time, mitochondria are detected by spot-enhancing filter 
algorithm[11] in original microscopic images which are 
marked in Figure 2(c) as well. The IUWT algorithm can 
obtain exact results when the SNR of images is very high, but 
the performance of this method drops quite rapidly when the 
SNR decreases and background complexity increases. 
Comparing yellow rectangular regions in 2(a) with 2(b), we 
notice that owning to the interference of cytoplasm shadow, a 
few mitochondria are detected in yellow rectangular region of 
2(a), and a lot of mitochondria can’t be detected exactly. In 
another way, when the same image is processed by the 
method which is proposed in this article, the number of 
mitochondria which are detected in yellow rectangular region 
of 2(b) increases significantly, and the positions of 
mitochondria are more accurate. We cannot fail to notice the 
face that the number of mitochondria which are detected by 
spot-enhancing filter algorithm in green rectangular regions of 
Figure 2(c) is less than in Figure 2(b). Some mitochondria 
which are get together in an area are difficult to be detected in 
2(c). The number of mitochondria are detected in 2(a) is about 
300, in 2(b) is about 430, in 2(c) is about 340. Therefore, it is 
more effective and accurate to detect mitochondria in 
microscopic images which are processed by matrix 
factorization method rather than in original microscopic 
images directly. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.1  Results of matrix factorization method 



 

 

（a）Detection results of the original images by IUWT 
algorithm

（b）Detection results of the processed images by IUWT 
algorithm

（c）Detection results of the original images by spot-
enhancing filter algorithm

Fig.2  Comparison of mitochondria particle detection results (a) Detection results of the original images by IUWT algorithm. (b) 

Detection results of the processed images IUWT algorithm. (c) Detection results of the original images by spot enhancing filter 

algorithm. 

TABLE I PARAMETERS OF AUGMENTED LAGRANGE 
MULTIPLIER ALGORITHM 

Parameter Parameter value 

Balance parameter   1600 

Accelerating factor   0.7 

Initial value    2 

V.  CONCLUSION AND OUTLOOK 

We present matrix factorization method based on 
augmented Lagrange multiplier algorithm to separate 
mitochondria from the cytoplasm shadow in microscopic 
images, improve the SNR of the image, and reduce the 
background complexity. Then general particle detection 
algorithm can detect live mitochondria in processed 
fluorescent microscopic images rapidly and accurately. This 
method provides an efficient analysis tool for further studies 
on mitochondria in live cells.  

Currently, automatic tracking of trajectory of live 
mitochondria in fluorescence microscopic images is a 
research hotspot and difficulty in the field of biomedicine as 
well. Tracking live mitochondria will lead to obtain some 
movement parameters such as movement velocity and 
acceleration to research their dynamic characteristic. Particle 
dynamics based on tracking fluorescent microscopic particles 
provides strong research method on some researches like 
exploring the mechanism of neural activity and the happening 
of cancer. However, automatic detection is the basis of 

automatic tracking of mitochondria. Therefore, our next goal 
is tracking mitochondria in live cells. 
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