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Figure 1.1: The Tripedalia Cystophora viewed from the side where Rh marks the
location of one rhopalium

body seen in fig 1.1. In this thesis there are 15 different film sequences to be analyzed,

each with different box jellyfishes, light conditions and artefacts, forcing the solution to

be more of a generic detection-algorithm. The method used to find the pacemakers in

the film sequences is divided into three steps; detecting, clustering and selection which

will be described thoroughly later in the thesis. The aim of this master’s thesis is to:

• find all the rhopalia in every film sequence.

• focus on evaluating different detection-methods since this is the crucial step.

• doing the above in almost-realtime.

1.4 The jellyfish - Tripedalia cystophora

Tripedalia cystophora is a roughly 1 cm sized box jellyfish whose habitat is in the

mangrove swamps. It preys on small copepods that swarm between the roots of the

mangrove trees. The copepods gather in light shafts created by the canopy above. The

box jellyfish uses its visual system to detect those light shafts but it cannot see the

copepods themselves. The interesting part in this thesis is their visual systems which

is distributed at four sensory organs, the rhopalia. Each rhopalium is carrying six eyes

were three of them are looking upwards and the other three looking downwards. The

ones looking downwards are also directed inwards towards the bell which results in the

box jellyfish to “look through” its own bell. This unique visual system enable the box

jellyfish to display visually guided behaviours that appear remarkable for such “simple”

box jellyfish.

Fig. 1. Left: The box jellyfish tripedalia cystophora is only a couple of mm
large and almost completely transparent. Right: A close-up of the rhopalia
from one frame recorded in the experimental setup.

Abstract—In this paper we investigate a system for tracking

the motion of box jellyfish tripedalia cystophora in a special test

setup. The goal is to measure the motor response of the animal

given certain visual stimuli. The approach is based on tracking

the special sensory structures – the rhopalia – of the box jellyfish

from high-speed video sequences. We have focused on a real-

time system with simple building blocks in our system. However,

using a combination of simple intensity based detection and model

based tracking we achieve promising tracking results with up to

95% accuracy.

I. INTRODUCTION

Box jellyfish, or cubomedusae, have very special visual
systems, [1], [2]. The visual system is based on four identical
sensory structures, which are called rhopalia. Each rhopalia
consists of six different eyes: the upper and lower lens eyes,
the pit eyes, and the slit eyes [3]–[8]. The lens eyes have
image-forming optics and resemble vertebrate and cephalopod
eyes [9]–[11].

The role of vision in box jellyfish is known to involve
phototaxis, obstacle avoidance, control of swim-pulse rate and
advanced visually guided behaviour [12]–[14]. Most known
species of box jellyfish are found in shallow water habitats
where obstacles are abundant [15]. Medusae of the stud-
ied species, T. cystophora, live between the prop roots in
Caribbean mangrove swamps [16], [17]. They stay close to
the surface [16] where they prey on a phototactic copepod that
gathers in high densities in the light shafts formed by openings
in the mangrove canopy. The medusae are not found in the
open lagoons, where they risk starvation [12]. The overall goal
of this project is to learn more about the visual system and
the neural processes involved. One interesting problem is the
study of the connection between visual stimuli presented to
the animals and the motor response of the animal. However,
tracking free-swimming jellyfish poses a very demanding
tracking problem. Instead we look at a special experimental
setup where the animals are tethered whilst they are submitted
to different light stimuli. The goal is then to track how the
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black and 255 being white. This condenses the pixel to have one value between 0 and

255. The 15 film sequences has a lot of features in common but still each film sequence

differentiates from the others in one or more aspects. Depending how the jellyfish is set

up the light and shadows form differently which will make each film sequence different

from the each other. These differences can be observed in fig 1.3 below.

Figure 1.3: Example of how different the film sequences can be.

Even though great measure has been done in order to minimize artefacts in the film

sequences the difference between them can be quite large. Some of the film sequences

are brighter, making it easier to find the rhopalia while some are darker and thus making

it hard to distinguish the rhopalia from the background (figure 1.4 and 1.5). An artefact

that is visible in all film sequences is a smudge on the camera lens that looks like an

elongated rhopalium (A in figure 1.6). The large resemblance between the smudge and

Fig. 2. Example input frames from a number of different sequences. Notice
the high variance in lighting conditions. In some frames the rhopalia are barely
discernible and in many frames there are structures that have an appearance
very similar to the rhopalia.

animals direct themselves, i.e. how they would like to move. In
order to do this, an initial goal which we discuss in this paper
is how to track the four rhopalia. These appear as four dark
discs, situated on the perimeter of the bell, see figure 2. There
have been a number of previous studies on motor response
from controlled visual stimuli, see e.g. [18], [19].

II. EXPERIMENTAL SETUP

In this study we used in total 33 animals, with sizes ranging
from 0.43 to 0.89 cm. The animals were tethered by the top
of the bell during the experiments, using a glass pipette with
gentle suction, and placed in a Plexiglas tank with inside
dimensions of 5 × 5 × 5 cm. The vertical walls of the tank
were covered with diffusing paper and a neutral density filter.
Each vertical wall was illuminated from the outside by four
blue-green LEDs. The diffuser was used to make a plane light
source, while the neutral density filter was used to increase
the contrast between lit and dark panels and switching one
or more panels off was used as the behavioural trigger. The
colour of the LEDs matched the maximum spectral sensitivity
of the animals and had a peak emission at 500 nm. During
the experiments a box was placed over the set-up in order to
eliminate visual cues coming from outside. Image sequences



!"#"$#%&'(

$)*+#",%'-(

#,.$/%'-(

%0(

120(

130(

140(14056(

Fig. 3. An overview of the system. For each input frame Ii we run the
detection algorithm. This produces a number of tentative points Xdi. This
set of points is then sent to the clustering algorithm, which then outputs a
smaller number of refined positions Xci. These points are fed into the tracking
algorithm, alongside the four point positions from the previous frame, Xti−1.
The final output is then the four detected points Xti.

were recorded with a high-speed camera operated at 150
frames per second. The dataset consists of 15 video sequences,
each with around 100 greyscale frames. Each greyscale frame
has a resolution of 800 × 864 pixels. Depending on how
the jellyfish is set up, the light and shadows form differently
which will make the video sequences different from each other,
see figure 2. Even though great measure has been done in
order to minimize artefacts in the film sequences the difference
between them can be quite large. Some of the film sequences
are brighter, making it easier to find the rhopalia while some
are darker and thus making it hard to distinguish the rhopalia
from the background. The tethering of the animal is also visible
in all sequences. This tether-shadow causes problem when
the jellyfish is contracting and the rhopalia is moving over
the tether-shadow. Since the box jellyfish is moving in every
video sequence some parts of the jellyfish are moving in and
out of focus. The physical nature of the jellyfish, i.e. being
transparent, also affects the appearance and causes refraction
on the surroundings.

The rhopalia in each frame in each video sequence has
been manually annotated in order to perform evaluation and
testing of algorithms.

III. SYSTEM OVERVIEW

In this section we will describe our system. Since the focus
is on real-time, the chosen building blocks are quite simple in
nature, especially the first steps. In figure 3 an overview of
the system is shown. We have divided it into three parts. For
every frame i, a first detection step – which only uses the local
intensity distribution around a point – produces a large number
of detections, Xdi. These points are then clustered into a set
of points Xci, in order to remove multiple detections, as well
as for improved positional accuracy in the detected points.
Finally these clustered positions are sent to the tracking step,
which also gets as input the previous frame’s four detected
points, Xti−1. The output is the four detected points Xti. In
the following subsections we will describe the different steps
in more detail.

A. Detection

The rhopalia appear as dark discs on a brighter background
in the images that are quite consistent in size and appearance in
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Figure 2.2: Original picture.

Figure 2.3: The detections.

One idea could be to create an algorithm that checks that each pixel inside a circle

is less than a specific value, meaning darker, and in the same manner checks some number

of pixels outside the circle if they are greater than a certain value, meaning brighter.

This will probably result in a time consuming algorithm with not that good accuracy.

The problem with this algorithm is that there are a lot of points inside the circle, about

500 pixels, that need to be checked which takes a lot of time and by comparing to fix

values we won’t account for the film sequences with darker or brighter light settings.

In the film sequences with different light settings many false positives will emerge as

well. This forces our detection algorithm to have more breadth thus not only finding

the rhopalia but false positives as well. So the goal here is to create a detection method

which minimizes the false positives but still manages to find all the rhopalia and does

this within reasonable time, i.e minimize the amount of data to check.
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Fig. 5. A typical detection result is shown. Since there are many rhopalia-like
structures in the images we get a large number of false positives, but these
will be eliminated in the following clustering and tracking steps.

the images. See figure 4 for a close-up view. For this reason
we have tested a number of template based approaches for
detection. The template is based on the assumption that we
have a number of pixels near the rhopalia that are dark. Further
outside the rhopalia we should have pixels that are brighter.
Figure 4 shows some example templates that we have tried. For
speed we have adopted quite sparse templates. Top row shows
pixels that should be inside the rhopalia, and hence should be
darker. Bottom row shows the pixels that are assumed to be
outside the rhopalia. For each point Xi(j) in the input image
Ii, we can then define a number of inside and outside points,
Ωin(j) and Ωout(j). Examples of these point sets can be seen
in figure 4. We have looked at two types of measures, one
absolute and one relative. For the absolute measure we define
a threshold for the inner pixels, tin and one for the outer pixels,
tout. We then count the number of inside and outside pixels
that fulfil the constraints, i.e.

Nabs(j) =
�

Γ(Ωin(j) ≤ tin)+
�

Γ(Ωout(j) ≥ tout), (1)

where Γ(x) = 1 if x is true and zero otherwise, and

Xdi = {Xi(j)|Nabs(j) > Ndet}, (2)

where Ndet is some bound.

For the relative measure we randomly compare n inside
and outside pixels, and count how many of the inside pixels
are darker than the outside pixels. So if we let R(Ω) denote
a function that randomly chooses a point from the set Ω we
have,

Nrel(j) =
n�

k=1

Γ(R(Ωin(j)) < R(Ωout(j)), (3)

and
Xdi = {Xi(j)|Nrel(j) > Ndet}. (4)

We have evaluated our whole system in order to find templates
that generate enough possible detections, i.e. that in most
cases at least generates the four correct points, but that do
not generate excessive amounts of false positives. In figure 5
a typical detection result is shown. Since there are many
rhopalia-like structures in the images we get a large number
of false positives, but these will be eliminated in the following
clustering and tracking steps.

B. Clustering

We take a scale space approach for clustering the detec-
tions; by smoothing the input image Ii isotropically with a
Gaussian kernel we get a low scale version Ism. We then
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(c) Inside pattern 1. (d) Inside pattern 2.

(e) Inside pattern 3. (f) Outside pattern 1.

(g) Outside pattern 2. (h) Outside pattern 3.

(i) Outside pattern 4.

Figure 3.5: The different patterns used in detection method 5.
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Fig. 4. A number of templates for the detection step. Top row shows pixels that should be inside the rhopalia, and hence should be darker. Bottom row shows
the pixels that are assumed to be outside the rhopalia.

find all local minima Xloc of Ism. The reason for this is the
appearance of the rhopalia as dark spots in the images. We
then calculate how many detections we have within a vicinity
of each Xloc,

Nloc(j) =
Nd�

k=1

Γ(||Xloc(j)−Xd(k)||2 < �cluster), (5)

and if there are a minimum number Nmin of detections, then
we add this local minimum to our clustered points Xci,

Xci = {Xloc(j)|Nloc(j) ≥ Nmin}. (6)

This gives a fast, accurate and quite robust way of clustering
the detections. See figure 6b for an example result of the
clustering.

C. Tracking

For the tracking step we have looked at a number of simple
algorithms. The input consists of the four points from the
previous frame, Xti−1 and a number of possible candidate
points Xci. In our model we could also look at the scenario
where the general statistical distribution of the four points is
given in some form. Arguably the most simple tracking is
just choosing as new points, the four closest points from the
candidate points to the points from the previous frame, i.e.

Xti(j) = arg min
Xci(k)

||Xti−1(j)−Xci(k)||2, j = 1, . . . , 4.

(7)

We have also looked at learning an affine shape model of
the four points. In this case we can fix a canonical coordinate
system by placing the first three points at (0, 0), (0, 1) and
(1, 0). The final points will then be placed at some point Xa.
Using a large number of ground truth positions we can estimate
the mean Xm and covariance matrix Σ for Xa. This gives us a
way of finding the four points that statistically most resemble
a four-point configuration, given affine deformations. For all

possible subsets of four points Yi of Xdi we change coordinate
system so that the first three points are at (0, 0), (0, 1) and
(1, 0) and the fourth point at Ya. If there are n such subsets
we find the best subset by

kopt = argmin
k

(Ya(k)−Xm)TΣ−1(Ya(k)−Xm), (8)

and
Xti = Yi(kopt). (9)

For both equation (7) and (8) we can choose Xti = Xti−1

if the optimal value is to large, i.e. if the best clustered points
are too far away from the previous frame’s points we choose
the previous frame’s point positions for the new frame. See
figure 6c for an example result of the tracking.

We have not yet focused on the tracking, and more complex
motion models are of course possible and quite easy to
implement into the framework, such as e.g. Kalman filters [20]
or Particle filters [21].

IV. EXPERIMENTAL RESULTS

In total we have in our test setup 1469 frames, and we
have manually marked the true coordinates of the rhopalia in
each frame. We have tested our system on the video sequences
and compared it to ground truth in the following way. For the
detection accuracy we count for each of the four rhopalia in
the images if there are N or more detections within a circle
with radius of 10 pixels around the true coordinate. We have
used N = 10 and N = 20. For the cluster accuracy we have
counted the percentage of rhopalia that have a cluster within a
circle of 10 pixels around the correct coordinate, and likewise
for the tracking accuracy we count the percentage of rhopalia
with a tracked point within 10 pixels. We do this for all the
1469 frames, with four rhopalia in each frame. We have mainly
tested different detection parameters and settings. In figure 7
the resulting accuracy percentages can be seen. We see that
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Figure 2.4: The detections.

Figure 2.5: The clusters formed from the detections.

2.3 Clustering step

Here the goal is to reduce the amount of detections to a much smaller amounts of clusters.

This particular clustering method first smoothen the image by using Gaussian blur [3]

to get rid of all noise and then correlating the detections together with the local minima

in the blurred image. The reason for correlating the detections with the local minima

is because a rhopalium should present itself as a dark spot in the blurred image, i.e a

local minima. And if there are three or more detections in five pixels distance from a

local minima it will be marked as a cluster. The resulting cluster from detections can

be seen in figure 2.5
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Figure 2.6: The clusters.

Figure 2.7: The final four coordinates.

2.4 Tracking step

The tracking step is the step where the final four coordinates are chosen from the clusters

which can be seen in figure 2.6 and 2.7. The first input to the tracking algorithm in each

film sequence is the ground truth for the first image. In the next picture the previous

tracked coordinates is used as the ground truth and the closest clusters within 20 pixels

will be the next tracked coordinates. There is a flaw having this sort of algorithm,

which takes the previous tracked coordinates as input. It will produce false positives

when no detections are found because this means that the tracked positions will be static

until close by detections and clusters are found. This will mean that, even though no

detections are found, the rhopalia will eventually overlap with with the static tracked

coordinates and be marked as found.

Fig. 6. The figure shows the output of the three steps of our system for an example input image. Left all the detected points are shown in red. These are fed
into the clustering which outputs the resulting yellow clustered points in the middle. Finally the tracking outputs the four points to the right, depicted in green.
Chapter 5. Results 24
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(a) ≥ 10 detections accuracy.
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(b) ≥ 20 detections accuracy.
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(c) Cluster accuracy.
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(d) Tracked accuracy.

Figure 5.1: Mean number of detection in relation to the different accuracies. These
four diagrams present the number of detections related to the accuracy. The difference

between those measures is how it’s calculated which can be seen in 4.1.

0 500 1000 1500 2000 2500 3000
0

10

20

30

40

50

60

70

80

90

100

 1 

 2 

 3 

 4 

5

Mean number of detections

M
e

a
n

 c
lu

st
e

r 
a

cc
u

ra
cy

 (
%

)

Figure 5.2: Mean cluster accuracy in relation to mean number of detections. The
mean cluster accuracy within each detection method with outliers removed.

Fig. 7. Evaluation of a number of different detection parameters and
settings. The accuracy for the different steps in the system is shown. The
best performing systems have a tracking accuracy of 95%.

the best performing systems have a tracking accuracy of 95%.

V. CONCLUSIONS

We have in this paper investigated how a system for
detection of the special eyes – the rhopalia – of box jellyfish
can be constructed. We have shown that using a low-level
detection method in combination with clustering and tracking
we can get very good performance on a varying dataset. The
system can be run in real-time. The basic idea is that the system
should be used in order to learn more about the visual system
and neural processes of box jellyfish. The next step would be
to, from the tracking of the rhopalia, measure the motion of
the whole bell of the jellyfish in order to measure the motor
response of the animal given certain visual stimuli.
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