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Abstract—As farms are getting bigger with more animals,
less manual supervision and attention can be given the animals
on both group and individual level. In order not to jeopardize
animal welfare, automated supervision is in some way already
in use. Function and control of ventilation is already in use in
modern pig stables, e.g. by the use of sensors for temperature,
relative humidity and malfunction connected to alarm. However,
by measuring continuously directly on the pigs, more information
and more possibilities to adjust production inputs would be
possible. In this work, the focus is on a key image processing
algorithm aiding such a continuous system - segmentation of pigs
in images from video. The proposed solution utilizes extended
state-of-the-art features in combination with a structured predic-
tion framework based on a logistic regression solver using elastic
net regularization. Objective results on manually segmented
images indicate that the proposed solution, based on learning,
performs better than approaches suggested in recent publications
addressing pig segmentation in video.

I. INTRODUCTION

Health is one pillar of good animal welfare [1]. Thus,
prevention and control of diseases and parasites are widely
regarded as fundamental to animal welfare [2]. Provision and
control of environment is also crucial as animals cannot choose
the optimal environment in confined situations. The thermal
environment is utterly important for pigs as they lack sweat
glands. The pig wants to wet the body during hot weather in
order to produce some cooling evaporation and if they cannot
do this, their welfare is at stake and they may even die. The
control and steering of climate by ventilation is thus of utterly
importance. Farmed animals are in the hands of humans and
it is our responsibility to provide adequate environment and
prevent disease, find it quickly and to treat affected animals.

Precision Livestock Farming (PLF) is defined as a continu-
ous monitoring of farm animals by sensors where the informa-
tion is processed and compared with predictions and actions
[3]. This will help farmers to monitor and reveal deviations
from the predicted “normal” behaviour. The use of PLF can
thus be a tool to prevent losses in animal production, improve
profitability and minimise adverse environmental impact and
at the same time promote animal welfare [4]. The use of image
analysis technology, in PLF context, to monitor animals, has
been used recently with some success [5], [6]. To come further
in the practical use of the technology, there is a growing need
for computer vision and machine learning approaching these
challenges [4]. The focus of this paper is to address image
segmentation of pigs in a pen, in order to bring PLF closer to
its objectives.
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Fig. 1: (A) Top-down view of pigs in a pen. (B) Manually marked
region of interest.

The purpose of image segmentation is to partition an image
in meaningful information for a specific application. Works
on image segmentation in a general context, typically explore
various learning methods. These learning methods involve
various forms of structured prediction, in order to achieve state
of the art image segmentation results [7], [8], [9], [10].

In this work, we approach the specific task of segmenting
pigs in a pen by proposing a framework using a structured
prediction approach using several image features. This method
is further compared and evaluated on manually annotated
frames from video.

II. EQUIPMENT AND VIDEO DATA

Pigs in a pen located at the pig husbandry site of Odarslöv
in Sweden was the main recording site. Nine pigs in a pen
were filmed in a top down view by an Axis M-3006 camera
producing a 640× 480 color mjpeg video, see Fig 1A. A
manually marked Region Of Interest (ROI) capturing the pen
was used, see Fig 1B.

III. OTSU’S GRAY-SCALE APPROACH

Recent works in the task of pig segmentation in pens for
various analysis have utilized Otsu’s method on gray-scale
images [5], [6], [11]. Hence, as a baseline a comparison to this
methods is employed. It should be noted that Otsu’s method
might work very well in various situations. In fact, it has been
successfully applied in some scenarios [5], [6]. These scenarios
involves fairly dark background and bright target (i.e. pig)
pixels. However, in more uncontrolled scenarios, as the one
addressed in this paper, we found it to fall somewhat short for
practical use, see Fig. 4C. This observation lead us to pursue
and investigate a learning based methodology to overcome
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Fig. 2: Channel features used. From left to right and top to bottom
are LUV color space (channel 1-3), gradient magnitude (channel 4),
six oriented gradients (channel 5-10), max-min filter result (channel
11) and soft Otsu (channel 12).

some the the issues using Otsu’s method on gray-scale images
for this task.

IV. CHANNEL FEATURES AND SIMPLIFIED STRUCTURED
PREDICTION APPROACH

In this section, the proposed framework for segmentation is
presented. In general, the framework follows a typical two step
pattern recognition approach; feature extraction and classifica-
tion. What follows is the description of the proposed solution
using extended state-of-the-art features and the framework for
a structured prediction classifier based on logistic regression.

A. Channel Features

State-of-the-art channel features from pedestrian detec-
tion are used as the base [12], [13]. Ten feature channels
corresponding to LUV color space (3 channels), normalized
gradient magnitude (1 channel) and oriented gradients (6
channels) are used, see the first ten channels in Fig. 2. The
channels, denoted C, can be seen as an M×N ×D cube with
M being rows, N columns and D the number of channels. For
example, C1,2,3 is the pixel at row one and column two for
channel three (V in LUV color space).

These ten channel features are extended with two additional
channels. The first channel extension is a max-min filter
operating on a 3 × 3 patch from the gray-scale image Li, j
(=Ci, j,1) by finding the difference between maximum and
minimum in the patch

Ci, j,11 = max
k=i−1,i,i+1
l= j−1, j, j+1

Lk,l − min
k=i−1,i,i+1
l= j−1, j, j+1

Lk,l ,∀i, j. (1)

This filter captures small local variations, and complements
the gradient magnitude with finer edge information, see chan-
nel eleven in Fig. 2.

The second channel exploits Otsu’s method, this since it
has been used previously with some success. Rather than using
a hard threshold decision from the method as the channel,
a modification is applied. The modification enables a softer

Fig. 3: Examples of two, of a total A corresponding to the area,
learning problems building up the structured output. Left is input
and right is output. Yellow position indicate a vector of size D (the
channels) and white indicate a single output value which will be a
probability from logistic regression.

decision by finding the two means, µ f g and µbg, and standard
deviations,σ f g and σbg, for foreground and background pixels
given by Otsu’s threshold. Then, this soft Otsu channel is found
as

Ci, j,12 =
f (Li, j,µ f g,σ f g)

f (Li, j,µ f g,σ f g)+ f
(
Li, j,µbg,σbg

) ,∀i, j (2)

where

f (x,µ,σ) =
1

σ
√

2π
e
− (x−µ)2

2σ2 (3)

is the normal distribution, see channel twelve in Fig. 2.

B. Structured Prediction

The approach utilized here involves learning using struc-
tured prediction. That is, given i= 1,2, . . . ,N training examples
xi ∈R

Dx and the associated structured output yi ∈R
Dy a model,

given an input x, should be able to predict the structured output
y. Note that the training input can be seen as a matrix of size
N ×Dx and, similarly, the output as a matrix of size N ×Dy.
The input here is a circular area, of A positions, containing the
channel features at each position (i.e. Dx =A ·D) and the output
is the same circular area with probabilities at each position (i.e.
Dy = A), see Fig. 3.

The structured prediction performed here is that individual
components in y are treated independently. That is, the problem
is simplified by treating it by Dy individual learning problems
(learning from input matrix x to each row of output matrix
y). Each of these learning problems will use an elastic net
regularized logistic regression as mapping, se next subsection.
Thus, for a given pixel in the input image, the local circular
area of the feature channels will be calculated, see Fig. 3 left,
and Dy classifiers will results in a structured output, see Fig. 3



right. Hence, this procedure is performed for every pixel (pixel
by pixel) in the ROI and will result in Dy probabilities from
the logistic regression at each pixel. The final result, at each
pixel, will then be found as the mean of these probabilities.

1) Elastic Net Regularized Logistic Regression: Given i =
1,2, . . . ,N training samples xi ∈ R

D, in form of features for
an area, and the associated class labels yi ∈ {−1,+1}, where
+1 indicate target and −1 background, the goal is to design
a classifier by optimization of an objective function. Note
that yi here is taken as a single row from the main output
matrix y. The main objective function used here is the logistic
loss function, L(w,b), defined as the negative average log-
likelihood

L(w,b) =− 1
N

logL(w,b), (4)

where L(w,b) = ∏N
i=1

1

1+e
−yi(wT xi+b)

, w is a weight vector and

b a bias [14]. This can be reformulated as

L(w,b) =
1
N

N

∑
i=1

log
(

1+ e−yi(wT xi+b)
)
. (5)

Adding an L1-norm (lasso) regularization term

R1(w) = ‖w‖1 =
D

∑
j=1

|wj| (6)

and a squared L2-norm (ridge) regularization term

R2(w) = ‖w‖2
2 =

D

∑
j=1

w2
j (7)

together with regularization parameters λ1 and λ2, the objective
function to minimize using elastic net (combined lasso and
ridge) regularization is

J(w,b) = L(w,b)+λ1R1(w)+λ2R2(w). (8)

Further details regarding solving this optimization can be
found in the work by Nilsson [14].

V. EXPERIMENTS AND EVALUATION

In order to get objective results, ten frames, taken spread
out over the time of recording, were manually segmented. To
speed up this manual segmentation, an interactive segmentation
solution proposed by Gulshan et al. was used [15]. The manual
segmentation results in a mask to be used as the desired output,
see Fig. 4B.

Training and testing of the proposed system, using A = 97
(area size) and D = 12 (channels) implying Dx = 1164 and
Dy = 97, was performed using a five-fold cross validation over
the ten images. Each training was performed by using 25% of
the image pixels from the ROI by random sampling to avoid
exceeding RAM memory.

Otsu, in its basic form, is a single threshold and thereby
a single operation point in Receive Operation Characteristic
(ROC) space [16]. In order to compare ROC curves, and
associated Area Under Curve (AUC), the soft Otsu, see Eq. (2),
is employed. Results using Otsu and the proposed method
using five-fold cross validation can be found in Fig. 5 and
Table I.
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Fig. 4: (A) ROI of image. (B) Manual segmentation. (C) Otsu
segmentation. (D) Proposed segmentation with probability result.
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Fig. 5: Receive Operation Characteristic (ROC) curve for the proposed
method, soft Otsu and the operation point for Otsu.

VI. CONCLUSION

A learning based framework using several features and a
structured prediction approach has been proposed and pre-
sented for image segmentation of pigs in a pen. The system
showed improved segmentation results compared to Otsu’s
method which has previously been proposed, and applied in
practice, for pig segmentation in video. The method showed a
0.08 improvement in AUC (0.97 vs 0.89) when evaluating it on
ten manually segmented images taken from video. Future work
involves adding temporal information, for example by adding
channel(s) with information from previous frames, in the
framework to get better temporal coherence. Furthermore, it is
desirable to further collect more data to investigate and com-



Method AUC TPR at Otsu FPR FPR at Otsu TPR

Proposed 0.97 0.97 0.02
Soft Otsu 0.89 0.82 0.23

TABLE I: Area Under Curve (AUC) for proposed method, soft Otsu
and the operating point for Otsu.

pare how methods, the two explained herein as well as adopt-
ing other techniques from recent computer vision research in
segmentation, to see how variations such as other sites, longer
videos, lightning conditions, etc effects performance. The
segmentation framework presented is fairly generic. Creating
new training data and investigating its applicability on other
animals in the agriculture area is a natural next step.
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