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Abstract—We present a mouse behavior classification method
using a recurrent neural network with the long short-term
memory (LSTM) model. The experimental hardware used to
collect the data is a custom mouse cage with four stereo-camera
pairs in each wall. Using as input the different videos, our
computational method employs a so-called end-to-end learning
approach: visual features from pre-trained convolutional neural
networks are extracted from each image frame, and used to train
a customized LSTM-based model in weakly-supervised fashion,
to recognize different behaviors of the mouse in the videos. Future
extensions of the system will incorporate 3D feature information
from the stereo cameras and online classification functionality.

I. INTRODUCTION

Mice and other rodents are a common animal model in
biology and biomedical research. For example, mice are
widely used to identify behavioral symptoms in models of
human neurological diseases. Since behavior recognition is
used to gauge responses of mice to external stimuli and assess
readiness for procedures, it has extended applications in animal
training and other research tasks, as well as pharmaceutical
testing. However, manual behavior assessment of multiple
rodents over extended periods of time is laborious, tedious, and
error-prone even when performed by an expert. This prompts
a need for better automation of behavioral assessment, robust
to differences between the animal subjects.

In previous work, Jhuang et al. [1] applied background
subtraction to the footage of a typical mouse cage made
out of translucent plastic taken from a single vantage point.
They traind an SVM to classify motion features based on
optical flow. Together with position and velocity-based fea-
tures, these were used to train a SVMHMM (Hidden Markov
Model Support Vector Machine) to classify every frame of
a video sequence into a behaviour of interest with reason-
able reliability, 78.3%, on their entire dataset. The result of
classification was compared with the commercially-available
software HomeCageScan 2.0 (CleverSys Inc.).

Giancardo, et al. [2] present a framework for behavior
recognition of multiple mice in a group setting. They extract
spatiotemporal features from a position tracker, employing
mouse heat signatures, to classify behavior phenotypes with
random forests. Their results were recorded for different
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combinations of interaction types between various numbers
of mice and were compared against human annotators.

More recently, Hong et al. [3] extract a set of 26 basic
spatiotemporal features from each frame recorded with a single
RGB-D camera positioned above the mouse cage. The features
were used to train several models, each for detection of a
single social behavior of the mice, using SVM, adaboost, and
random forests. The latter approach yielded the best result.
The technique was highly accurate on sequences longer than
one second.

In this report we present a framework targeting recognition
of both complex and basic mouse behaviors. We show that
this framework can be used to classify behaviors which involve
detailed motion as well as behaviors which only last a fraction
of a second.

II. EXTENDABLE HARDWARE SETUP

For this study, we assembled a custom cage (Figure 1) with
camera nests to gather the data. Each of the four walls has
a camera nest housing a custom stereo camera, to allow the
system to be extended to multiple views. Multiple cameras
are used to ensure the mouse is in view by at least three of
the cameras at all times. The cameras have lenses with 120°
horizontal angular FOV. The lenses were manually refocused

Fig. 1. Custom cage with camera nests.



to 30 centimeters, which constrained the overall depth-of-field,
but allowed to keep a large part of the cage in focus. The
1920x1080 resolution of the cameras allows for acquisition
of the mouse in high-enough detail regardless of its position,
while the 60 hz frame rate allows to capture the mouse fast
enough to gain enough information even about very short
behaviour sequences. In fact, many sequences within our data
span for less than one or only several seconds.

Both synchronization of video streams and analysis of
behavior data are currently done in post-processing. We expect
that real-time processing that is planned for future work will
require different cameras, which will be streaming video to
several machines synchronized to a single time server.

III. CLASSIFICATION FRAMEWORK

Our classification framework relies on two machine-learning
mechanisms. Pre-trained VGG features are extracted from
each frame of monocular video input. These features are then
used as input to an LSTM recurrent neural network. Training
of the LSTM model only requires the labels of the behavior
in video sub-sequences.

A. VGG feature extraction

In a preprocessing step, the independent multimodal back-
ground subtraction (IMBS) algorithm[4] is used to segment out
the mouse. The VGG model[5] is then applied to per-frame
bounding boxes with the masked mouse to extract a 4096-
entry-long vectors of features that are significant for basic
vision tasks. The VGG features are applied via the widely-
used Caffe deep learning framework[6].

B. LSTM setup

We use an LSTM [7] setup to classify behavior sequences.
Our model is made with custom code implemented in python
using the Theano library[8]. The model uses an embedding
weight layer to reduce the input sequence dimensions to
the LSTM layer dimensions, uses a standard LSTM with
its own sets of input-unit weight, hidden-layer weight, and
bias matrices, a time-propagating cell unit (the “memory”
of the model), input, output, and forget gates. Within each
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Fig. 2. Data flow used for behavior classification.

training batch, feature vector sequences are normalized to
the maximum length by employing a mask that truncates
the effect of padded-on “empty” entries at the end of each
sequence. Output of the LSTM is then fed into a standard
linear perception layer, consisting of a weight and a bias
matrix. During training, the prediction errors back-propagate
through the entire model using the ADADELTA learning-rate
optimizer[9] and standard L2 regularization, updating all the
mentioned weight and bias matrices. The dropout techinique
[10] is also used on training predictions to limit overfitting.

IV. EXPERIMENT RESULTS

The current preliminary experiment was run on 40 minutes
of monocular video of a single mouse. The video data consists
of 270 consecutive sequences of per-frame VGG feature
vectors of length 4096. Each sequence was annotated by a
single trained observer with one of four behaviors: crawling,
grooming, rearing, and scratching. The class distribution of
sequences in the dataset was (in same order): 60%, 13.7%,
24.8%, and 1.5%. Crawling is the prevalent behavior in the
data set, both in terms of sequence count and duration.
Grooming is characterised by the mouse standing up on its
rear paws and brushing its snout with its front paws from the
ears down to the nose, and is important for identifying when
the mouse is calm, for instance, to understand whether it is
ready for training. Other behaviors chosen also have significant
implications for various biology studies.

The set of sequences was randomized and separated into
a training, validation, and test sample sets (60%, 20%, and
20% of the data, respectively). The validation portion, as in
typical machine learning experiments, is used to prevent over-
fitting. The model obtained optimum performance on the test
set after 100 epochs of training, producing errors of 3.08%,
14.81%, and 7.4% on the training, validation, and testing sets
respectively. Confusion matrix for the test set classification in
Figure 3 shows how well the model handles each behavior. The
”scratching” behavior is currently severely underrepresented in
the data, hence our model does not perform well on it.

V. CONCLUDING REMARKS AND FUTURE WORK

The current result has shown that the LSTM model, in com-
bination with learned features, can be effective in automated
behavior classification of fast-moving animals.

We are continuing this line of research by incorporating
data from multiple (four) views around the mouse into the
classification, devising a real-time classification scheme which
uses a stabilization threshold to estimate the correct behavior
category at an arbitrary point in time, and, eventually, inte-
grating the 3D data stream from stereo to classify more fine-
grained behaviors. We will also attempt to estimate skeletal
poses of the mice over time.

The dataset will be expanded to include more subjects (dif-
ferent mice, multiple mice at once), labeled by multiple human
observers, and made publicly available to other researchers.
We will also publish the code of our LSTM model for other
researchers’ convenience as an open-source package.
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Fig. 3. Confusion matrix for test classification results.
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