Pose Estimation of Free-Flying Fruit Flies

Omri Ben-Dov and Tsevi Beatus

School of Computer Science and Engineering The Institute of Life Sciences The Hebrew University of Jerusalem, Israel

ICPR-VAIB, January 2021

Our goal is to understand the mechanisms of insect flight and implement them in robotic systems

VERATION COLUMNEL SIGNER & LANGE IN TEGERITY & VIES VERATION COLUMNEL SIGNER US AMONY AGRIVAL (BEIRAL SIGNER, & LANGE

Experimental setup

3 cameras, 20,000 frames/sec at 1280x800 Automated trigger and saving 100's of ms / 15-20GB per flight event 100's of events per day

Parameters of interest

3	+	3	+	2X3	=	12
Body position		Body rotation		Wing rotation		parameters
parameters		parameters		parameters		

Common approaches

Manual

- Extremely laborious
- Human error

Hull reconstruction

- Projecting images into 3D ightarrow 3D point cloud hull
- Susceptible to wing occulsions
- Difficult to extract wing deformation and body roll

Model-based

- Generate a 3D model from kinematic paramters
- Project the model and fit it to the data images

Hull reconstruction

Model

Loss function - single camera

Optimization process

Multi-view loss function

- Weighted mean of the 3 single-camera losses
- Each weight is determined by the un-occluded area of the wings

Initial condition

- Taken as the result of the previous frame
- First frame: determined manually using GUI

Loss optimization

- Constrained, gradient-free optimization
- Parameters constraints are determined from typical kinematics
- Optimization algorithm: Use either interior-point or active set

Setting initial parameters and model scaling

0.965

1.025

1.0525

1.5473

0.35

-0.055

0.595

24

9.6667

Center mass X			-14.5539	Body length	
4			•	4	
Center mass Y			-3.9332	Body diameter	
<u> </u>			•	4	
Center mass Z			0.29584	Wing span	
4			•	4	
Yaw			103.6552	Wing width	
4			•	4	
Pitch			46.8398	Magnet length	
4			•	4	
Roll			-0.96346	Magnet X	
4			•	•	
Left Theta	5.5485	Right Theta	6.8084	Magnet Y	
<u> </u>	×	1	+	4	
Left Phi	39.033	Right Phi	40.2263	Magnet Z	
I	÷	4	+	•	
Left Psi	55.7878	Right Psi	51.8352	Magnet pitch	
▲	*	-	•		
Root X			-0.037868	Magnet yaw	
4			•	·	
Root Y			-0.064664		
4			•		
Root Z			0.141		

Semi-automatic fitting

Fitting result: The basic 12-parameter model fails

Loss variance also reflect fit errors

Identified problem 1: The wing root is not a fixed point

12-DOF model is not realistic enough

Solution: add 3 parameters for relative and symmetric root position

Identified problem 2: The wing is not a rigid plate

Solution: Add a twist parameter per wing.

Twist the bottom half of the wing

Twist increases from the tip towards the root

Identified problem 3: Loss function is degenerate in ψ

- Different ψ values ightarrow similar local minima
- Difficult to distinguish visually
- Optimization might get trapped in the wrong minimum in the following frames

Solution: Use temporal information

- If a "jump" is detected in ψ or loss:
- Multiple random starts (MRS)
- Re-fit previous frames if necessary

 Φ (degrees)

Results: Roll perturbation

Results: Complex perturbation

Results are noisy due to the fly's legs and model degeneracy

Summary: Work in progress

- New 17-DOF model with wing deformation and root position
- Identified ψ degeneracy (MRS/refitting)
- Simple to adapt to other insect models
- Problems identified:
 - Fly legs interfere with fitting (e.g. overlap with model wing)
 - Runtime: 2sec/frame, refitting and MRS increase to 20sec/frame on average
- Proposed solutions
 - Remove legs from raw images
 - A more realistic 3D model (grayscale)
 - Combine with other methods such as hull reconstruction / deep learning

Funded by:

תוכנית עמיתי עזריאלי The Azrieli Fellows Program

