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A Walk through a Digital Savanna: Aerial Wildlife
Detection with Synthetic Data

Benjamin Kellenberger, Derek van de Ven, Devis Tuia*

Abstract

We investigate the applicability of computer-rendered training data for aerial wildlife detection using deep
learning. To this end, we generate rendered images and ground truth from the AirSim-W environment and mix
it with real drone images and labels to train a RetinaNet detector for detecting mammals in the African savanna.
Despite the visual dissimilarity between both data sources, our model is able to detect the animals with high recall
and good precision, which results in significantly less investments required into creating ground truth labels.

I. INTRODUCTION

The loss rate of terrestrial vertebrate mammal species has been increasing for the last few decades1, due
to land degradation (1), poaching (2), and other causes. A crucial requirement for wildlife conservation
in this context is the ability to monitor endangered species populations over large areas, such as wildlife
reserves. Unmanned Aerial Vehicles (UAVs) that can be programmed to remotely and safely acquire aerial
images over comparably vast areas are increasingly used for this purpose (3). UAVs bear the promise of
non-laborious wildlife censuses, especially if combined with image analysis through Computer Vision
(CV) methodologies, such as the popular Convolutional Neural Networks (CNNs; (4)). However, despite
recent efforts and unprecedented accuracies of CNNs for this task (5; 6) said models still require a wealth
of training images. First tools to support the annotation process are appearing (7), but still a large part
of the images has to be annotated tediously by hand. Unless the need for manually created training data
declines, the usefulness of CNNs for such large-scale tasks thus remains limited.

In this work, we attempt to address this problem by resorting to computer-rendered images over a
simulated environment to substitute as much of the hand-labelled training data as possible. Using synthetic
data for CV model training has been proposed for scenarios where real training data is hard or impossible
to obtain, e.g. for accident scenarios for training self-driving cars (8), but also to reduce annotation efforts
required (9), as in our case. In this initial study, we employ AirSim-W (10), which contains a simulated
environment of the African savanna, and use it to create training imagery to train a deep CNN for the task
of wildlife detection from a UAV perspective. We assess the amount of UAV-derived training data that
can be substituted with rendered images so that we are still able to train a CNN-based wildlife detector
to satisfying accuracy.
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Fig. 1. Rendered image from the AirSim-W environment (a), with segmentation ground truth (b). Since we are interested in individual
animals, we discarded non-animal ground truth and used mathematical morphology to separate connected segmentation masks (c and d).

II. DATA GENERATION AND PREPARATION

a) Rendered data: in a first step, we acquired rendered images from AirSim-W, simulating a UAV
flight path that starts from the centre of the virtual African savanna environment, then proceeds to a
random point within a 1000 × 1000 metres square around the centre via a diagonal path, with picture
taken every 3-5 metres, at altitudes of 20m to 60m above ground in 10m steps. This resulted in 5000
images with accompanying segmentation maps of wildlife (Figure 1).

In order to obtain bounding boxes required for object detection, we processed the segmentation ground
truth as follows: we first discarded all non-animal label classes, leaving us with animal and background
pixels. This occasionally resulted in two animals’ masks being connected to each other, when the indi-
viduals were standing close-by (Figure 1 (c)). To resolve this issue, we eroded the masks with a 3 × 3

square kernel, assigned instance codes to the now separated masks, and dilated them again. This allowed
us to trivially infer bounding boxes based on minimum bounding rectangles. The total data set contained
4562 animals.

b) Real data: we resorted to the Kuzikus dataset (11)2, which consists of 654 UAV images of size
4000×3000 pixels and a ground resolution of 4 to 8cm. We split the images into 8000 selected patches of
size 800× 600, containing a total of 1518 animals in 735 of them. An example image (with predictions)
can be seen in Figure 3.

c) Model training: we trained a RetinaNet (12) with ResNet-18 as feature extractor (13) on three
data set combinations: (i) exclusively rendered data (5000 images); (ii) a mixture of rendered (5000) and
real (1000) images; and (iii) exclusively real images (8000). For the mixture, we examined two training
modes, one with a combined data set (i.e., mixing both rendered and real images from the start), and
one where we train the model on the rendered data for 20 epochs, but then add the real images and
fine-tune for another seven. We trained the model on batches of four images for 20 epochs, using the
Adam optimizer (14) with a learning rate of 10−5 and no weight decay. We performed data augmentation
through random horizontal flipping and Gaussian blurring in 50% of the cases each. During testing, we
applied non-maximum suppression and retained all predictions with confidence 0.01 or greater, to ensure
a high recall. Predictions with an IoU ≥ 0.2 with the ground truth were treated as positives; n double
detections as one true and n− 1 false positives.
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Fig. 2. Precision-recall curves on the test set for the four models.

Fig. 3. Prediction results (blue) and IoU values with ground truth (red) for the “exclusive rendered” (left), mixed (middle), and exclusive
real (right) model.

III. RESULTS AND DISCUSSION

Figure 2 shows the precision-recall curves on the held-out test set (1500 real images, 345 animals)
for all four models; Figure 3 shows a visual example for three models. Quite surprisingly, the “exclusive
rendered” model (purple) found up to 85% of the animals, albeit with a low precision, and even managed
to predict correctly sized bounding boxes. The equally low precision of the mixed model (blue) at high
recall values indicates that there still is a strong discrepancy between the synthetic AirSim-W and real
Kuzikus data, but this can be dramatically improved for free by performing a two-step fine-tuning approach
(green). In this case, the performance is not far behind the model trained on exclusively real data (orange),
but requires only a fraction of real images and annotations.

2Images can be downloaded at: https://doi.org/10.5281/zenodo.1204408.
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IV. CONCLUSION

We presented a first case study on using synthetic images from a virtual, computer-generated environ-
ment to train detectors for wildlife in UAV imagery. This task is highly challenging, primarily due to
the tedium involved in creating image annotations. In our experiments we were able to show that this
workload can be significantly reduced by replacing a great part of the real images with synthetic ones,
which are available for free. Results show only a marginal drop in precision and recall, compared to the
upper bound. Future works may improve over these figures by including domain adaptation strategies like
image-to-image translations as in (15).
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