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Abstract—Insect flight is a complex interdisciplinary phe-
nomenon. Understanding its multiple aspects, such as flight
control, sensory integration and genetics, often requires the
analysis of large amounts of free flight kinematic data. Yet,
one of the main bottlenecks in this field is automatically and
accurately extracting such data from multi-view videos. Here,
we present a model-based method for pose-estimation of free-
flying fruit flies from multi-view high-speed videos. To obtain a
faithful representation of the fly with minimum free parameters,
our method uses a 3D model that mimics two new aspects of wing
deformation: a non-fixed wing hinge and a twisting wing surface.
The method is demonstrated for free and perturbed flight. Our
method does not use prior assumptions on the kinematics apart
from the continuity of one wing angle. Hence, this method can
be readily adjusted for other insect species.

I. INTRODUCTION

Insect flight is an impressive example of highly maneuver-
able and robust locomotion [1]. It both challenges our scientific
understanding and inspires us to develop tiny bio-mimetic
drones [2]. Still, the mechanisms underlying insect flight
maneuvers, control and genetics, are elusive and a subject of
active study. Modern high-speed cameras and computational
tools have greatly advanced insect-flight research. Yet, a
significant bottleneck in this field is automatically extracting
accurate kinematics from vast amounts of multi-view free-
flight videos, where the main challenges are wing deformations
and occlusions.

Current tracking methods can be divided into several cate-
gories. (1) Manual tracking, where a 3D model of the insect
is manually fitted to individual frames, is relatively accurate
but extremely laborious [3]–[5]. (2) Landmarks tracking of
feature points on the insect body and wings [6]–[8]. This
method might require gluing markers on the insect wings,
might suffer from marker occlusion, and often requires manual
input. (3) Deep learning is a promising method for pose
estimation [9], [10], though has not yet been applied to flying
insects due to lack of annotated data. (4) Structured light
illumination has been used to track dragonfly wings and their
deformation, but is currently limited to large insects [11].
(5) Hull reconstruction methods generate a 3D hull of the
insect by tracing the rays from each pixel in each camera
view. The hull is segmented into body and wings voxels, from
which the insect degrees-of-freedom (DOFs) are extracted
[12]–[16]. This approach relies on a generic insect morphology
and, hence, can potentially handle a wide range of species.
However, its current applications do not handle occlusions very
well which might require as many as 8 cameras [16] and often
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Fig. 1. Basic 12 DOF model parameters. (a) Body 6 DOF describing
its position and orientation. (b) Each wing is described by 3 Euler angles
relative to the stroke plane: stroke (φ), elevation (θ) and wing pitch (ψ). The
annotations are for the left wing.

require significant manual input. (6) Model-based methods fit
a 3D insect model by projecting it onto the camera planes
and matching the projections to the data images [17], [18]
or by fitting the model to a 3D hull [19]. This approach, first
applied for flies in [17], was used in later works (e.g. [20]) for
analyzing many flight events. Still, obtaining accurate results
using this approach requires a 3D model that mimics the insect
and its DOFs very faithfully. For example, insect wings are
typically not rigid and deform during flight [21], and the wing
hinge, connecting the wing to the insect body, is flexible. These
deformations cannot be described by modeling the wing as a
rigid plate connected at a fixed hinge point.

In this paper, we present a novel work-in-progress model-
based algorithm for extracting free-flight kinematics from
high-speed multi-view videos of fruit flies. Our 3D model
embodies realistic wing deformations using only few addi-
tional parameters. This method may alleviate a significant
data analysis bottleneck, allowing us to analyze complex
phenomena, such as flight control and sensory integration, with
high statistical power.

II. PROBLEM DEFINITION

We aim to solve the pose estimation problem for fruit-flies
(Drosophila melanogaster) in free flight. The input consists
of multi-view videos of a fly, and the output is its body
and wing kinematics. Body parameters (Fig. 1a) consist of
6 DOFs: 3 translational DOFs and 3 Euler angles (roll, pitch,
yaw). The wing parameters are Euler angles that represent
wing rotation (Fig. 1b): the stroke angles φ`, φr represents
the wing’s forward and backward sweeping motion within
the stroke plane; the elevation angles θ`, θr describes wing
elevation with respect to the stroke plane; and the wing-pitch
angles ψ`, ψr measures wing rotation around its leading edge.
Thus, the minimal kinematic description consists of 12 DOFs.



Fig. 2. Experimental setup. Three orthogonal high-speed cameras focused
on a transparent chamber. The non-Cartesian setup reduces wing occlusions.

III. METHOD

A. Experimental setup

The experimental setup (Fig. 2) consists of 3 orthogonal
high-speed cameras (Phantom v2012, Vision Research), op-
erating at a rate of up to 22,000 frames/sec and 1280×800
pixel resolution. The cameras are back-lit by IR LEDs and
tilted upwards by ∼36◦ to reduce wing-wing and body-wing
occlusions with respect to the standard Cartesian camera
configuration. The volume mutually seen by the cameras is
∼5×5×5 cm3, located at the center of a custom-made 3D-
printed cage. The camera system is calibrated [22], allowing
us to convert between 3D world-points and 2D image-points.
10-30 female flies (2-5 days old) are placed in the cage and
recorded as they fly through the filming volume. To study
insect flight control, we exert mechanical perturbations to the
flies by gluing a tiny magnet to the back of each fly and using
a magnetic pulse to rotate it in mid-air [14], [15], [23].

B. Background subtraction

Back-lighting makes the fly pixels darker than the back-
ground. Thus, the background is computed by taking the pixel-
wise maximum across two frames: the first and the last video
frames. To obtain a binary mask from each frame, we first sub-
tract its background, use the transformation p→ 1− (1− p)6
to deal with wing transparency and apply a binary threshold.

C. Generative model

Our model for the fly’s body is based on [17] with slight
rescaling and a modified head pose. The wing model was
obtained by imaging a fly’s wing on a microscope and tracing
its outline. The accuracy of model-based pose estimation
strongly depends on how well the model and its DOFs mimic
the target object. We found that using the 12 DOF description
(Fig. 1) leads to significant tracking inaccuracies, because this
model does not include two important geometrical features of
the fly (Fig. 3). First, due to the flexibility of the wing base,
the wing hinge cannot be accurately described as a single
point (Fig. 3a). In our model, this feature is described by
allowing the two wing hinges to translate symmetrically with
respect to the body, which requires 3 additional kinematic
parameters: δx, δy and δz hinge translations in the body

Fig. 3. Wing deformations. (a) Top: 3 frames from different phases of a
single wing beat. Bottom: Superimposing the 3 frames shows that the wing
hinge is effectively not fixed during the stroke. The solid lines marking the
leading edge of the wing, do not intersect at a single point (dashed lines). (b)
An unsuccessful fitting attempt using a rigid wing on a frame with twisted
wing during supination. (c) Wing deformation used in our 3D model. Color
represents deformation level and the black line shows the rigid wing outline.
(d) A successful fit using a flexible wing.

Fig. 4. Single-frame loss function. XOR operation on the camera image
mask and the projected model.

frame of reference. Allowing asymmetric hinge translation (6
parameters) favored motion of the wing hinges over the wing
angles, which hindered the optimization. Second, the wing
surface deforms due to the interplay between aerodynamic,
inertial and elastic forces acting on the wing [24]. Although
these deformations are small, they cannot be captured by a
rigid wing model, which introduces sizeable tracking errors,
especially during wing pronation and supination (Fig. 3b).
In our model, wing deformation is described by a single
parameter per wing: α`, αr. As observed experimentally, wing
deformation is largest near its base and decreases towards
the wing tip [21]. Each α parameter quantifies twist per unit
length; twist increases linearly from the wing tip (no twist) to
the wing base (maximum twist). The model wing is twisted
only at the bottom half below its center-line (Fig. 3c).

In summary, our model consists of 17 kinematic parameters:
the standard 12 DOF, 3 translational offsets of the wing hinge
and 2 twist parameters.

D. Loss function optimization

To quantify the disagreement between the model and a
single image, we first project the 3D model onto the corre-
sponding camera plane using the calibrated camera matrix and
represent the projection as a 2D polygon. The single-frame



Fig. 5. Degeneracy in ψ. (a)-(b) The 3D model generated by two sets of
parameters. The orange arrow shows the direction of the camera taking the
images on the bottom. (c)-(d) The projection of the corresponding models on
the camera plane. The projections are nearly identical.

loss function is defined as the non-overlapping area (XOR)
between the model polygon and fly’s binary mask (Fig. 4). The
multi-view loss function is a weighted mean of the single-view
losses. As tracking the wings is more difficult than tracking
the body, we assign greater weight to views that hold more
information about the wing pose. The weight of each view,
calculated from the initial condition, is proportional to the
percentage of wing area unoccluded by the body.

To evaluate the model parameters at a given timepoint,
we minimize the multi-view loss function using a derivative-
free interior-point method (fmincon in MATLAB). The initial
condition for the optimization is the result of the previous
frame. The initial condition for the first frame is obtained semi-
automatically, where the user applies manual adjustments to
automatic optimization results via a graphical user interface.
At this step, the user can also determine constant scaling
parameters of the model to handle flies of different sizes.
The fitted angles were constrained to the entire physiologically
possible range for flies. The body roll angle was constrained
to ±2◦ from its initial condition.

We identified that the combination of our loss function
and camera configuration leads to degeneracy of the model
in certain body and wing poses. As shown in figure 5, two
values of the wing-pitch angle ψ of the left wing, which differ
by ∼30◦, generate almost identical projections of the model.
Consequently, in such cases, optimization might converge to a
wrong local minimum. To address this degeneracy, we exploit
temporal information by detecting discontinuities in either ψ
or the loss function. Then, we use multi random start, where
we restart the optimization process from 15 random points in
parameter space and then re-fit previous ’suspected’ frames
using the same constraints as detailed above.

IV. RESULTS

A. Validation

To validate our method, we first tested it on an ensemble of
synthetic images generated from the basic 12-DOF model used
for optimization. We used previously measured and manually-
corrected flight kinematics [14] to generate 36 videos of 100
time points each (a single wing beat). Each video differs by the
body yaw angle. Fig. 6 shows a box plot of the resulting errors
for each DOF. The fly’s center of mass position was accurate

Fig. 6. Model validation on synthetic data. Tracking errors box plot. Each
box contains 75% of the data. Whiskers correspond to 99.3% of the data.

Fig. 7. Results on an unperturbed flight event. (a) The projection of a
fitted 3D model superimposed on the corresponding frames. (b) Body pitch
and wing φ (c) The path of the wing tip by its elevation (θ) and azimuth (φ)

within 10µm (≈0.2 pixel). In the angular parameters, in 98%
of the frames the error in all angles was <2◦.

B. Unperturbed Flight

Fig. 7 and Movie 1 demonstrate pose estimation of a real
free-flight sequence. Interestingly, the oscillations in the body
pitch angle (Fig. 7b) correspond to the natural periodic pitch
motion of the fly: when the wings are in the forward half of
the stroke plane (φ<90) they exert a pitch up torque on the
body, and when φ>90 the wings exert a pitch down torque.
Together, these torques result in small, ∼2◦ amplitude pitch
oscillations that are clearly seen in both the raw and measured
data. Tracking the wing angles (Fig. 7c) shows the typical 8-
figure-like trajectory of the wing-tip. The mean loss across the
entire movie was 0.1049±0.0068 (mean±standard deviation),
better than the loss of fitting the rigid 12 DOF model, which
was of 0.1501±0.0204 (Movie 3).

C. Roll Perturbation

Fig. 8 and Movie 2 show pose estimation of a real roll
correction maneuver in response to a mid-air magnetic per-
turbation (Section III-A). Here, we modified the 3D model to
include the magnetic rod and determined its position manually



Fig. 8. Roll correction. (a) Body angles during the maneuver. Magnetic
pulse was activated between t=0−7.5ms. (b) Wings stroke angles. Blue line
and red dashed line mark φ`, φr respectively. Rectangle marks the main wing
asymmetry during the maneuver. (c) Top view of the fitted model shows every
two wing beats when the left wing is at supination. Wing stroke asymmetry
is clearly visible.

along with the initial condition. Tracking the body angles (Fig.
8a) shows the fly was rolled to its left by 62◦ at t=17ms after
the onset of the perturbation. Body yaw and pitch were also
perturbed by −12◦ and 40◦, respectively, because the magnetic
torque was not aligned with any body principal axis.

Tracking the wing stroke angles demonstrates the fly’s roll
control mechanism [14], where the ’bottom’ wing (here, left)
increases its stroke amplitude and the ’top’ wing decreases
its stroke amplitude. The roll reflex latency was ≈9ms and
the perturbation was fully corrected after ∼9 wing beats
(t≈40ms). A characteristic feature of these maneuvers is the
residual error in yaw [14], which was 10◦ in this example.

V. CONCLUSION

We presented a pose-estimation algorithm for tracking free-
flying fruit flies. The novel features of the model include wing
deformation, non-fixed wing-hinge and the addition of mag-
netic rod for perturbation experiments. Further, our algorithm
does not use any prior assumptions on the kinematics, except
for the continuity in ψ for error detection. Future improve-
ments might involve deep learning using synthetic data and
our current results to fully automate the process. Overall, this
work-in-progress defines a streamlined data analysis pipeline,
that can be easily converted to work with other types of insects.
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