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Abstract—3D object reconstruction of deformable objects is a
long standing challenge for computer vision. Here we develop a
system for the 3D reconstruction of a single marker-less object
– a freely moving biological swimmer in 3D space – using a
passive, fixed-camera set-up. We focus on microscopic, long and
thin (1 mm long, 80 µm thick) roundworms. Our set-up provides
the resolution required both to track the animal’s coordinates
across a large volume and to reconstruct its 3D posture at
every frame. A data-pipeline is presented which combines model
calibration, 2D image analysis and 3D reconstruction of the body
midline, representing the complete posture up to orientation and
internal twist. We present results, validation and open challenges,
including instances of occlusion due to insufficient projected
information, and experimental limitations of resolution and focus.

I. BACKGROUND

The study of animal behavior spans a number of related
challenges. Trajectories of animals in space help to inform
models of decision making, strategies for predation, spatial
mapping and navigation. Underpinning these trajectories are
motor behaviors, principally locomotion which, in swimmers,
arises from internal control of postures and kinematics, subject
to the body biomechanics and fluid dynamics. Capturing the
range of spatial information within a single data set requires
an imaging setup that can be used to resolve postures within a
sufficiently large field of view so as to capture long trajectories.
When the behavior is fundamentally three dimensional and
not well approximated by movement on a surface, fixed-
camera, passive imaging systems must balance between the
resolution and depth of field. High resolution imaging tends
therefore to focus on very short durations. Here, we describe
a system capable of imaging the locomotion of the nematode
(roundworm) Caenorhabditis elegans over many minutes, and
propose a computer vision system capable of reconstructing
both 3D body shapes and trajectories of a freely moving
animal in 3D volumes.

C. elegans locomotion has been the focus of a large body
of work, almost all of which is restricted to planar motion,
although interest in 3D locomotion has recently increased
[1]. The animal moves primarily by propagating sinusoidal
undulations along the body, opposite to the direction of motion
(either forward or backward). On a surface, it steers by biasing
the undulations on either side of the body, and it performs
occasional maneuvers to undertake sharp turns, the most com-

mon of which is dubbed an ‘omega turn’ [2]. In contrast, the
reconstruction of postures and characterization of behaviors
in 3D are, as yet, open questions [3]. Due to the size of the
worm (∼1mm in length), optical effects such as distortion
and relative positioning are no longer negligible, and protocols
must therefore address dynamic calibration problems.

Fig. 1. One axis of the imaging setup including a telecentric lens pointing
at a fluid-filled cube.

Here, we focus on microscopic worms: freely bending and
twisting, long and slender objects. For our purposes the length
and local diameter of the swimmer is assumed to be fixed in
time and hence of fixed volume. Despite the transparency of C.
elegans, it can be (partially) self-occluding, and, because there
is a resource limit to the number of simultaneous projections
which can be collected, there can be (rare) instances in which
all projections are far from ideal.

Multiple tools have been developed to reconstruct the pos-
ture of C. elegans in 2D [4]–[8] (see [9] for a review). Most of
these methods are based on a combination of ‘shrinking and
pruning’ algorithms which were first formulated in the prairie-
fire model [10]. The images are transformed into a silhouette
of the worm which can then be shrunk to a skeleton using
standard methods. 3D spatio-temporal reconstruction from
multiple views similarly often relies on silhouettes of the 2D
projection images. In principle for convex objects, intersected
back-projections of a sufficient number of silhouettes obtained
from multiple projections can recover a volumetric description.

In our setup, wild-type C. elegans worms are placed in
a 3D glass cube filled with transparent gelatinous fluids of
various concentrations. Our current study is limited to the
volumetric reconstruction of wild-type worms, in which self-
occlusion, e. g. due to coiling body shapes, becomes the
dominant challenge for both machine and human vision. Our
imaging setup consists of 3 fixed, passive, nearly orthogonal
views of our sample using telecentric lenses (Fig. 1), with
back-lighting in each direction (as the worms are transparent).
The imaging setup is illustrated in Fig. 2. The quality of



the microscopic imagery is limited by the trade-offs between
the magnification, numerical aperture and depth of field. For
biological reasons, only red light is suitable, and plays against
the achievable optical resolution due to its high wavelength.
With worms undulating at up to 2Hz, and a sampling at 25-
40 frames per second, a further constraint on the quality of
reconstruction is given by the difference in posture between
consecutive frames.

We tested two additional approaches: (i) 3D videogra-
phy, using 3 microscopic cameras focused on the swimmer,
mounted on a motorized frame with 3 orthogonal degrees of
freedom controlled with real time closed loop tracking, but
hardware lacked robustness for extended recordings (losing the
object if tracking along any of the axes momentarily failed)
(ii) 3D holographic imaging [11]. We found the holographic
approach lacked sufficient resolution given the low magnifica-
tion required to capture the entire field of view.

II. OUTLINE

Our reconstruction approach relies on photogrammetry: a
set of methods for reconstructing three dimensional objects
from planar camera images. For rigid objects, photogrammetry
typically relies on triangulation of a set of control points.
Generalizing such approaches for spatio-temporal reconstruc-
tion of deformable objects typically requires tracking a set
of features or markers on the body. In our case, as C. elegans
worms are radially symmetric along most of the body, the mag-
nification is necessarily too limited to resolve local anatomical
features such as the vulva. We are also unable to identify
features of the animal’s internal or reference coordinate frame
other than the tip of head and tail based on the fuzzy shadow-
like images. Capturing only calibration images and triplets
of 2D grayscale projection images, our reconstruction aim is
therefore restricted to determining the midline of the body,
represented as a curve in 3D, over time.
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Fig. 2. Experimental setup schematic.

An example of a grayscale camera image is shown in Fig. 3.
The goal of the reconstruction is a curve along the centerline
of the animal in real-world coordinates. The reconstruction
procedure is as follows:

a) Calibration of the camera setup using calibration images
taken before the experiment.

b) Image normalization, object tracking and triangulation.
c) 2D image segmentation to find midlines using a trained

equivariant convolutional neural network.

Fig. 3. Close-up of raw camera views with projected reconstruction, 200×200
pixels cropped from 2048× 2048 8bpp microscope image.

d) Correlation-based fine tuning of the camera calibration
along the moving object.

e) Space carving with three-way majority voting to obtain
a discrete skeleton.

f) Curve fit optimization using a finite element formulation
and weighted candidate points.

III. METHODS

a) Calibration: To map a set of projection pixels to
the three dimensional metric space, we first parametrize our
camera model. The calibration protocol is performed on im-
ages of an oriented grid of circular feature points in many
(>100) different configurations captured simultaneously in all
three camera views (Fig. 4). Due to technical reasons, these
images must be taken hours before the video recording. First,
intrinsic parameters (the focal length and lens distortion), are
established for each camera individually. Each view is modeled
as a single pinhole camera A bundle adjustment algorithm
is used to fit extrinsic parameters that describe where each
camera is located relative to the sample. The pattern detection
and calibration routines are performed using customized C++
code derived from the OpenCV software library [12]. Using
this algorithm we typically obtain root mean squared (RMS)
reprojection error on the feature points of less than 10 pixels.
Both the intrinsic and extrinsic camera model parameters may
change in the hours between the initial calibration and the
experiment, e. g. due to the setting of our gel-based fluid.
To account for these changes, we recalibrate the extrinsic
parameters further as described below (d).

b) Normalization: In the recordings of the swimming
animals, the transparent worm appears dark on a light gray
background. In most cases, the background is virtually static
over time, with an RMS noise level of around ±1%. Excep-
tions occur due to transient appearances of bubbles in the
medium. For each camera we obtain a single background
image per clip (typically minutes long) from the maximum
values of temporally low-pass filtered pixel intensities. The
background image is subtracted from the video frames and
the residual intensities are then normalized in each frame.

c) Segmentation: To generate informative 2D projections
the frames are passed through a convolutional neural network
(CNN) [13] to produce a triplet of initial 2D midline estimates
before this information is lifted and combined in 3D. We have
implemented a CNN with 28 layers that processes 200× 200



Fig. 4. Calibration image (2048 × 2048) showing grid of about 1 cm2 in
size. Green overlay: detected structure used in the calibration algorithm.

floating point 2D-arrays and outputs arrays of the same di-
mension. The first half of the network gradually downsamples
the data using strided convolutions, the other half uses the
corresponding ‘inverse’ convolution layers for upsampling.
Three convolution layers are usually followed by a linear
rectification unit (ReLU). The CNN was trained on a set of 120
unrelated 2D images for which the midlines have been hand-
annotated. This curated data set was constructed so as to cover
the range of observed postures with and without occlusions. As
the training loss function we use the `2 distance between hand
annotations and output, after masking a two pixel grace area
around the annotation. The masking compensates for spatial
inaccuracies in the manual annotations and avoids over-fitting.
Our filters are equivariant with respect to mirroring and 90◦

rotation. Equivariant networks are constructed such that similar
inputs produce similar outputs, and can be trained without the
need for data augmentation. They have been proposed and
used in classifiers [14].

With this network, we obtain triplets of gray-scale images
each highlighting a proposed midline of the animal in its
respective plane. To sift midline pixels, we post-process the
output of the CNN. This step consists of applying a high-pass
filter with a cut-off on the set of candidate midline points
followed by selection of the largest connected component. The
inferred midlines are about 2 pixels wide, but often include
imperfections such as branching or loss due to occlusion or
limited contrast. These imperfections most frequently occur
near the head and tail ends where the (mostly transparent)
worm tapers out. Our approach resolves these uncertainties
when the three views are combined.

d) Local re-calibration: To improve the geometry of the
camera setup near the object of interest, we consider the visual
overlap of the images seen in the three nearly orthogonal
camera views. Starting from the initial global calibration we
use a model of light rays crossing the object in a Cartesian
cube centered around the object of interest. Using stochastic
gradient descent, we optimize the three-way correlation of the

Fig. 5. Top: 13 minute trajectory to scale with worm size (about 1mm).
Bottom: Shape reconstruction showing weighted control points (green) with
projections. The blue dots show the respective past and future head and tail
trajectories to indicate reconstruction jitter.

brightness with respect to shifts along the local coordinate
axes. This optimization is performed on batches of 20 frame
triplets, at the original resolution, and repeated every 10
frames. Our implementation with pytorch [15] makes use of
gradient back-propagation and extensive parallel processing
across GPUs.

After temporal smoothing we obtain a camera model with
1-2 pixel accuracy.

e) Skeletonizing: Given a triplet of recalibrated binary
images showing midlines of a worm from three views, we now
choose the 3D voxels that best match the midlines in all three
views. We define this selection of voxels in the Cartesian cube
as the discrete skeleton, centered around the object constructed
for calibration.

We compute thin skeletons of the 2D midline segments
using the Guo-Hall algorithm [16]. These 2D skeletons give
rise to a thin 3D skeleton constructed as the Lee skeleton [17]
of the voxels common in the 3D lifts of the 2D skeletons.
A thin 3D skeleton is a 3D shape approximating the desired
set of midline voxels from below, but it lacks voxels that are
missing from one or more of the projections. This loss is due to
inaccuracies in calibration and in the 2D image segmentation,
especially towards the transparent head and tail regions. To
compensate for the loss, for each voxel, we consider the three
pixels in the projections it maps to. We recover voxels that
map into at least two of the regions close to the midlines, so
long as these include the thin 2D skeleton at least once.

f) Curve fitting: For each time point, we fit an arc-
length parametrized 3D curve to the skeleton with control
points at the centers of the voxels obtained in the previous
step. The curve is modeled as a 1D mesh representing an
elastic rod in a fluid with an internal stiffness using a finite



element formulation [18]. Control points are weighted by
the product of the corresponding respective pixel intensities.
Forces determine the position and shape of the curve. Each
control point pulls on the nearest mesh point with a spring
force proportional to the distance and the weight of the control
point. Similarly each mesh point is pulled to its nearest control
point. In a simulation, the model rod immersed in a fluid grows
over time to a predetermined full length while giving in to the
forces. In the time limit, we obtain a reconstructed midline
for a single frame as a local minimum of the energy in the
stiffness and applied forces. A shortened curve serves as the
initial position of the rod the subsequent frame. In this way,
the orientation of the curve is propagated through time.

g) Applying the pipeline: We have successfully pro-
cessed about one hour of video recordings. These include a
range of different magnifications and animals swimming in
a range of different fluids. An example trajectory along with
posture reconstruction is shown in Fig. 5.

IV. SUMMARY

The study of microswimmer locomotion in 3D presents
many technical and experimental challenges. Here we present
a detailed approach for recovering not just the trajectory of
the swimmer in a large volume but also parametrized 3D
postures at every point in time. Our method takes synchronized
microscopic videos together with calibration images. It in-
cludes a camera model with a two-phase calibration procedure,
a convolutional neural network trained with a hand-curated
data set to identify the worm in each 2D image, and finally
a numerical optimization scheme to estimate the shape. The
feature detection is parallelized through batch processing, and
the recalibration optimization uses multiple GPUs in parallel.

Many of the challenges addressed in this work are well
known to researchers interested in studying 3D motility and
behavior of swimmers or flyers. Indeed, in addition to often
costly equipment, the absence of well established and reliable
image analysis pipelines makes it hard to obtain and prepare
data for further analysis. This presents a significant barrier
to entry for new researchers and is undoubtedly one of the
main reasons why many species are overwhelmingly studied
only in 2D. The 2D space however, while more accessible for
the experimentalist, frequently does not capture the natural
environment or behavior of the subject.

Here we have presented and demonstrated a pipeline that
we have validated for about 1 hour of video footage. Analysis
of this data will fuel a variety new biological and biophysical
insights on animal behavior, biomechanics and active swim-
ming more generally. This paper presents the methods, and the
data will be made available upon publication of the analysis
results. While relatively robust, a limitation of the pipeline
includes a slow recovery after poorly-reconstructed or failed
frames. Further work is under way to improve the robustness,
speed and automation of this pipeline. It is our hope that
this proposed methodology will provide a reliable outline for
similar studies and will assist in supporting the research on
small species in 3D environments.
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