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Abstract—Camera traps have become a standard tool to survey
wildlife distribution, abundance and behaviour. Unfortunately,
the detection mechanisms are neither sensitive nor selective
enough to trigger in case of insect visitations so that current
systems can only be used for bigger vertebrates. In this progress
report, we present our effort towards a visual insect camera trap.
In particular, we discuss why current systems fail, summarise the
involved challenges, trained several models on a novel realistic
wildlife insect dataset and present the results of our current
prototype. Our dedicated deep learning based small object
detectors achieve an average precision of 78% while being trained
on colour and motion features to identify insects within the
field of view of the camera. Finally, we discuss which technical
requirements and steps will be necessary to provide a versatile
tool for future behavioural, ecological and agricultural studies.

I. INTRODUCTION

Camera traps are a powerful and widely used method for
the visual assessment of wildlife animal populations [1]. These
imaging systems have been used for a variety of studies, for
example to assess the biodiversity [2] or to measure animal
travel speed and day range [3]. In most cases, passive infrared
based motion sensing is used to trigger the collection of an
image sequence [4]. Unfortunately, this triggering mechanism
is not sensitive enough to detect small objects that do not
generate own body heat, such as insects, so that biodiversity
monitoring of insects still heavily relies on invasive techniques
such as malaise traps [5].

The absence of any non-invasive visual insect camera trap
(VICT) is particularly problematic since we live amid a global
wave of anthropogenically driven loss of insect biodiver-
sity [6]. This loss is expected to provoke cascading effects
on food webs and to jeopardize ecosystem services since 90%
of flowering plant species benefit from insect pollinators [7].
In fact, insects promote 75% of major global agricultural
crops, thereby contributing ∼ 150 billion EUR to the global
economy [8], [9]. Moreover, insects are an important food
source for other organisms so that its loss threatens the overall
functioning of our ecosystems all over the world. Last but not
least VICTs could also be used to monitor crops allowing more
targeted use of pesticides [10].

In particular, five algorithmic (A1 – A5) and three hardware
challenges (H1 – H3) have to be considered to develop a robust
triggering mechanism for a versatile insect camera trap:

A1 The trigger mechanism has to be sensitive enough to
detect small objects in cluttered natural environments.

A2 The mechanism must be robust to dynamic and om-
nipresent background motion such as wind-induced plant
movements.

A3 The entering speed of insects into the field of view can
vary severely, ranging from slow crawling to fast jumping
and flying (e.g. inducing motion blur).

A4 Many insects show a camouflaged appearance inducing
low contrast differences between the target and the back-
ground.

A5 The decision to trigger must be made within milliseconds
to not miss short events.

H1 The visual properties of such a system must be a trade-
off between a reasonably big field of view (fov), image
magnification and depth of field.

H2 The energy consumption of this triggering mechanism has
to be low in order to allow surveys in remote areas.

H3 Real-time image transmission is required if these systems
are to be used for pest control.

Here, we are mainly focusing on the algorithmic challenges
by training customised deep learning models to detect tiny,
fast moving and low contrast objects in front of dynamic back-
grounds. The hardware difficulties will however be discussed
in the context of our proposed methodology.

A. Related Work

The use of deep learning models for image-based insect
classification and detection is not new. In particular, for species
classification, a variety of different studies can be found.
For example Squeeze-and-Excitation Networks in combination
with attention modules have been used to recognise different
insect species [11]. The images used for this study, however,
were of comparatively high quality and thus do not address the
challenges A1 to A4. This is true for almost all visual insect
classification strategies [12]. Others have tried to circumvent
this problem by analysing audio data for insect recognition,
which however can only be applied for particular species [13].
In a different approach, challenges A1 to A4, as well as H1
have been addressed by constraining the imaging conditions
using a white box [14].

In order to localise insects in images, object detection is
required. For this reason, the MPest dataset was published in
2018 [15]. By using an adapted version of Faster RCNN, the
authors achieved a mean average precision (mAP) of 89%.
As the MPest dataset only comprised imagery in which the
animals covered a relatively large proportion of the image,



Fig. 1. Insect camera trap dataset. The first image does not comprise an insect visitation. Insect locations in the second and third image are specified by a
red box. Note the small size, cluttered background and motion blur of the animal.

this approach is still insufficient for real-life applications such
as insect biodiversity monitoring.

A more realistic dataset was proposed by Grant et al. called
iNaturalist [16]. This dataset includes ∼ 1,000 insect classes
and more than 125,000 bounding boxes. Using the Inception
ResNet-164 V2, the authors achieved a top-1 accuracy of
77.1%. However, since only selected image stills (i.e. no image
sequences) are available in the iNaturalist dataset, it can not
be used to develop a VICT.

II. EXPERIMENTS

To derive insights into the possibilities and limitations of
deep learning based VICT, we implemented the following
steps: We (i) built a realistic visual insect camera trap database
(Section II-A); (ii) evaluated a binary classifier for insect
visitations (Section II-B); (iii) implemented and evaluated a
more targeted insect detection approach (Section II-C); (iv)
evaluated the impact of temporal information onto the detec-
tion accuracy (Section II-D) and (v) evaluated the performance
of a deployable small network which could be used for an
embedded stand-alone VICT system (Section II-E).

A. VICT Dataset

Insect imagery was acquired in the field within the frame-
work of an agricultural field experiment, where experimen-
tal field plots of ∼ 2 × 4.5 m2 were recorded using a
waterproof outdoor camera (Ricoh WG-50) under suitable
weather conditions. In total we installed 16 cameras to monitor
different crop combinations in monocultures and mixtures.
These cameras captured continuous 30 frames per second
(fps) interval recordings resulting in 1920 × 1080 × 3 pixel
images1. For classification, we extracted 35,129 frames from
these videos of which 22,008 images included at least one
insect. To enable insect detections, location information for
50% of the videos were specified by a domain expert using a
custom annotation tool resulting in 14,847 bounding boxes in
total. In contrast to the existing data, our dataset included the
challenges A1 – A4 and H1: With respect to the entire image,
the average bounding box had a height of 7.5%, a width of
4.4% and covered an area of 0.4% pixel. Exemplary images
are given in Figure 1.

1An additional dataset was created using the same camera setup in a field
experiment in salt marsh ecosystems (not shown here); datasets are available
upon request.

Fig. 2. Exemplary image after highlighting the pixel most relevant for the
overall classification result in red. As can be seen almost no pixel within the
blue bounding box (i.e. animal location) were responsible.

B. Binary Classification

To analyse the performance of a deep learning based image
classifier, we trained a ResNet-14 V1 on this dataset [17]. We
changed the input dimension to (700, 700, 3) by rescaling the
images and the output dimension to 2 (visitation, no visitation)
resulting in 232,354 parameters. The batch size was set to
25 and the network was trained for 175 epochs using Adam
with a learning rate of 0.001 on 30,736 training images. The
remaining images were used as a validation set on which a
maximum accuracy of 75.7% was reached after 77 epochs.

Next, we used the resultant model to investigate which
pixel in the input image were responsible for the classification
result. In particular, we used guided backpropagation [18] and
manually inspected hundreds of images of the validation set.
An exemplary image is given in Figure 2: The prediction
accuracy for this frame was 97.87% for the visitation class.
However, as highlighted in red almost no pixel responsible
for this result are actually located on the insect. This confirms
that binary classification can be error prone for the underlying
task and suggests that more targeted object localisation is
preferable.

C. Spatial Insect Detection

In order to evaluate state of the art object detection models
for our insect camera trap dataset, we trained two different
algorithms on the annotated images, namely YoloV3 [19] and
Faster RCNN [20]. The results are summarised in Table I:
The first block indicates the results if trained on the RGB
images and the second block shows the results if trained on
the modified HSV image space (c.f. Section II-D).



TABLE I
QUANTITATIVE EVALUATION OF THREE DETECTION NETWORKS. AP:

AVERAGE PRECISION WITH AN IOU ≥ 50%.

Architecture AP Precision Recall F1 Time

R
G

B YoloV3 74.15% 96% 70% 81% 2.5 fps
Faster RCNN 71.95% 91% 80% 85% 0.3 fps
MobileNet 69.82% 90% 70% 79% 0.45 fps

H
SV

∗ YoloV3 78.07% 92% 72% 81% 2.5 fps
Faster RCNN 74.39% 86% 82% 84% 0.3 fps
MobileNet 72.41% 92% 71% 80% 0.45 fps

YoloV3: The YoloV3 architecture was used since it was
particularly improved for small object detections compared to
earlier Yolo versions [19]. We used a batch size of 64 and
trained it for 25,000 iterations (∼ 102 epochs) by using Adam
with a learning rate of 0.001. The dataset was split into 15,671
training and 3,918 validation images. The input layer size
was changed to (1216, 704, 3) using a subdivision of 32 and
average precision (AP) was used to calculate the accuracy.
After 10,340 iterations the maximal validation accuracy of
74.15% AP was reached revealing a precision of ∼ 96%,
a recall of ∼ 70% and an F1 score of ∼ 81%. The mean
processing time for inference was 2.5 fps (measured on an
Intel i7-9750h CPU and a TX 1660 Ti GPU). These values
reveal a low false positive detection rate but also imply many
false negatives (i.e. should have detected a visitor but missed
it) at relatively high frame-rates.

Faster RCNN: The Faster RCNN architecture was cho-
sen because it has improved performances when calculating
the regions of interest and it has also been the top performing
model in a similar study for insect detection [15]. Images were
resized to (1280, 1280, 3) using the same training/validation
split as described above and a batch size of 8 to fit in the
GPU memory. The network was trained for 250,000 steps
(∼ 128 epochs) using the Adam optimiser and a learning rate
of 0.00005. Best AP was reached after 32,500 steps reaching
71.95% accuracy, a precision of ∼ 91% and a recall of ∼ 80%
resulting in an F1 score of ∼ 85%. In contrast to YoloV3,
Faster RCNNs had more false positive detections but less false
negatives. The mean inference time for Faster RCNN was
substantially slower compared to YoloV3 by reaching only
0.3 fps.

In summary, this evaluation reveals that deep learning
detection models outperform binary classification architec-
tures while successfully avoiding the use of non-informative
background pixel. However, up to now only spatial colour
information were used.

D. Spatio-Temporal Insect Detection

In order to provide a more realistic VICT triggering sce-
nario, we evaluated the performance of the above mentioned
detection architectures in the presence of temporal cues. In
particular, we combined spatial with temporal cues by a
straight forward image processing routine. First, we took the
pixel-wise absolute difference between consecutive frames
Dt = |Ft − Ft+1|. The resultant difference image was

Fig. 3. Integration of motion cues into the HSV space. For details see text.

converted to a mask Mt by setting all values above a threshold
T to 1 and all other values to 0.3 (i.e. 30% intensity). Next,
frame Ft was transformed into the HSV space, where the V
(value) dimension was weighted by the mask: V ∗

t = Vt ◦Mt.
As a result, novel HSV∗

t images for all frames t are generated
in which pixel with high motion differences comprise higher
intensity values (Figure 3). A motion enhanced image is given
in Figure 4. Note that both, the insect position (red box) and
edges of the plant are highlighted in this HSV∗ image.

YoloV3: When training the YoloV3 model with the
spatio-temporal enhanced HSV∗ images the AP increases to
78.07% (+3.92%; reached after 10,340 steps). Interestingly
the precision drops to ∼ 92% while the recall increases to
∼ 72% resulting in the same overall F1 score of ∼ 81%.
These measures indicate that the false negatives dropped but
with an increase of false positives. Since erroneously captured
empty images are less problematic than missed visitations,
these results show a clear improvement.

Faster RCNN: In a similar fashion the performance of
Faster RCNNs improve by +2.44% to 74.39% after 10,000
steps and the precision decreases to 86% whereas the recall
increases to 82% (F1 score 84%). Again, these results are
favourable if low false negative rates are required.

E. Towards an Embedded VICT via the SSD MobileNet V2

A stand-alone VICT requires that potential visitation de-
tections are performed on the build-in hardware of the trap.
Considering challenge A5 fast inferences are vital for real-
time applications and also the energy efficiency is crucial
(challenge H2). Therefore, we evaluated an edge TPU ready
neural network which could be used to build an embedded
VICT by training the SSD MobileNet V2 [21] on the dataset
described above. After training, the model is quantized to
enable accelerated inferences.

In this experiment an image resolution of (1280, 720, 3) was
used. Again we used the Adam optimiser with a batch size of
4 and a learning rate of 0.00005 and trained the network for
200,000 steps (∼ 51 epochs). For the RGB images a maximum
AP of 69.82% was reached after 195,000 steps. The overall
mean computational time for inference was 0.45 fps. By using
the HSV∗ dataset the performance of the SSD MobileNet



Fig. 4. Motion enhanced HSF∗ frame from Figure 1 (red box: insect location).

V2 increased by 2.59% to 72.41% after training for 72,500
steps. As can be seen in Table I both, the precision and recall
improves when including temporal information, which is also
reflected in a slight improvement of the F1 score.

III. DISCUSSION & CONCLUSION

In summary, temporal motion cues can help to avoid false
negative detections (i.e. missed visitations) which is of utmost
importance for a VICT triggering mechanisms. All tested
architectures achieved higher recall values once motion was
included but at the cost of slightly reduced precision measures.

In this study, we evaluated the possibilities and limitations
of deep learning based visual insect camera traps. In particular,
we summarised the challenges involved in such a system
and generated a novel dataset to investigate the underlying
difficulties. We tested a binary classification mechanisms (vis-
itation vs. no visitation) on this dataset revealing that too many
irrelevant background pixel were involved in the classification
decision. Moreover, we evaluated three detection architectures,
namely YoloV3, Faster RCNN and SSD MobileNet V2. We
gathered evidence that more targeted detection mechanisms
have to be used to identify the location of the insects to result
in a comparatively better trigger mechanism. By involving
temporal cues we could further demonstrate, that this addi-
tional information can help to reduce the false negative rate
in order to avoid missed visitations.

Additional research is necessary to improve the accuracy of
a visual insect camera trap. In particular, the impact of the
above mentioned challenges, as well as the ambiguous cues
which induce false positive and false negative detections for
particular species need to be studied in more detail. Consider-
ing the highly diverse and complex imaging conditions, deep
learning algorithms appear to be most promising to enable
robust triggering mechanisms. Furthermore, advances in IoT
hardware are also crucial to accelerate the image analysis via
edgeTPUs while reducing the energy consumption necessary
for an embedded image analysis system.
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