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Fig. 1: Visualization of the tracking output on different sensor data. From left to right: tracking on grayscale frames of a
conventional camera, on images reconstructed from event data using E2VID [1] and on time maps obtained from event data.

Abstract—This work introduces a co-capture system for multi-
animal visual data acquisition using conventional cameras and
event cameras. Event cameras offer multiple advantages over
frame-based cameras, such as a high temporal resolution and
temporal redundancy suppression, which enable us to efficiently
capture the fast and erratic movements of fish. We furthermore
present an event-based multi-animal tracking algorithm, which
proves the feasibility of the approach and sets the baseline for
further exploration of combining the advantages of event cameras
and conventional cameras for multi-animal tracking.

I. INTRODUCTION

Quantification of animal behavior is a critical part of
neuro-scientific and biological research. The first step towards
quantifying animal behavior consists of tracking the animal’s
movements. In recent years a multitude of methods have
emerged to leverage recent advances in Computer Vision
for visual tracking of animals [2]. However, current tracking
systems are limited by the capabilities of the used hardware,
like sensors, processors and power supply. Some of these
limitations can be overcome by the use of event cameras.

Event cameras [3] are bio-inspired sensors that differ from
conventional frame-based cameras in the way that visual data
is acquired. While frame-based cameras capture images at a
fixed frame rate, event cameras measure brightness changes
at each pixel independently and output them in the form of
an event stream (which encodes the pixel location, time and
sign of the brightness changes). The different principle of
operation endows event cameras with attractive properties over
conventional cameras, such as a very high temporal resolution
(µs), a very high dynamic range and low power consumption.
We refer to a comprehensive survey for details [4].

The quantification of animal behavior can be performed in
a wide variety of ways ranging from observations in natural

conditions to experiments in controlled laboratories. Further-
more, there are a multitude of representations of captured
movements, which differ in complexity (e.g., centroid tracking
vs. 3D animal pose estimation) and number of tracked ani-
mals. The wide variety of tracking tasks with their respective
modalities places different requirements on the hardware and
algorithms. This opens different possibilities for the applica-
tion of event cameras in animal behavior analysis.

We propose a stereo co-capture system for recording and
tracking of animals. Each monocular system consists of a
frame-based camera and an event camera, with their views spa-
tially aligned via a beamsplitter. A hardware trigger provides
high precision temporal alignment of all camera signals. The
system enables a fair comparison with frame-based tracking
algorithms and furthermore allows us to perform tracking
using both data streams to combine their advantages.

We show an application to fish tracking in a laboratory
environment using the stereo co-capture system (Fig. 1).
Acquiring the fast and erratic movement of fish with conven-
tional cameras requires high frame rates. The high temporal
resolution of event cameras allows us to effectively capture
these fast movements. In summary, our contributions are:

• A co-capture system providing temporally and spatially
aligned frames and events for animal recording,

• A baseline multi-object tracking algorithm using events,
with an application to fish tracking.

II. RELATED WORK

A. Animal Tracking Technology

There is a vast variety of methods and tools available for
tracking animals. They can be roughly categorized according
to the movement representation and the number of tracked



animals. The simplest form of tracking is the description of
an animal movement as a trajectory of points or ellipses, for
example obtained by background subtraction or thresholding
[5]. This method is computationally light and in different
variations is widely adopted in many open source tracking
tools [6]. However, classical methods like this one fail in more
difficult scenarios with complex or dynamic backgrounds and
occlusions. The technique can be extended to multiple animals,
which introduces the problem of identity assignment. The gen-
eral task of multi-object tracking usually follows the tracking-
by-detection paradigm. In a first step objects are detected
in the camera frames; in a second step the detected objects
are associated between frames. This decouples the tasks of
object detection and data association, allowing researchers
to adopt state-of-the-art deep-learning–based object detection
methods. Recently, end-to-end learned approaches, like [7]
show promising results to further improve tracking accuracy,
beyond the tracking-by-detection paradigm.

Generally, the association task can be addressed by mod-
elling the appearance and/or motion of the animals. A simple
and widely used approach is described in [8]. A constant
velocity model is assumed, to predict motion using a Kalman
filter. Bounding box predictions of the next frame are asso-
ciated according to their intersection over union (IoU) with
the predicted bounding boxes of existing trackers using the
Hungarian algorithm. The authors of [9] use an offline method,
where tracklets over several frames are built and a learned
approach is used for animal re-identification. We adopt the
algorithm in [8] and extend it for usage on event data.

B. Event-based Object Tracking

Event cameras capture pixel-level brightness changes asyn-
chronously, called events. Assuming constant illumination,
events are caused by moving edges [4]. This motivates their
use for efficient object tracking. Early approaches follow a
blob-tracking [10] or pattern-tracking [11], [12] paradigm.
These approaches work on a per-event basis, associating in-
coming events with existing objects, subsequently updating the
position according to the associated events. Similar classical
approaches are computationally light but mostly tailored to
specific applications. The authors of [13] use a template
matching approach to track space objects (satellites, etc.).
A second class of event-based tracking algorithms leverages
deep-learning–based approaches. In a first step, frame-like
representations are obtained from the events, for compatibil-
ity with mainstream computer vision methods. Subsequently,
methods like CNNs that rely on a grid-like data representation
can be used [14]. The signals obtained from event- and frame-
based cameras are complementary, therefore a third class of
algorithms proposes to jointly use events and frames to solve
the tracking task. The authors of [15] extract features from
frames and subsequently tracks them asynchronously using
events. In [16] cluster-based event tracking is used to generate
regions of interest (ROIs); in a second step a CNN is used to
classify the region proposals on the frames.

Fig. 2: Part of our co-capture system. Stereo is shown in Fig. 4.

C. Co-capture Systems

In the literature we find cameras that jointly capture frames
and events, such as the DAVIS [17], [18]. However, these
prototypes have a low spatial resolution and produce low-
quality grayscale frames, with a dynamic range of ≈ 55dB.
Recently researchers have resorted to building custom sensing
devices, using a beam splitter mirror to spatially align the field
of views of an RGB and an event camera [19], [20].

III. CO-CAPTURE SYSTEM AND FISH TRACKING METHOD

Event cameras offer several interesting properties to over-
come limitations of conventional cameras (motion blur, low
dynamic range, redundant data in static environments, etc.).
Under the constant brightness assumption event cameras cap-
ture moving edges, which are very informative footprints for
object tracking tasks. However, as is usual in an emerging
field, there is a lack of datasets and benchmarks, to evaluate
the performance of event-based algorithms.

For this reason we propose using a co-capture system to
acquire spatially and temporally aligned (e.g., synchronized)
data from event and frame-based cameras. In the following,
we describe the co-capture system and a basic algorithm for
multi-object tracking with event cameras as well as a frame-
based baseline algorithm, for comparison.

A. System Specification and Calibration

The co-capture system consists of an event camera (Prophe-
see EVK3 Gen4.1, 1280 × 720 pixels), a frame-based camera
(Basler acA1300-200um, 1280 × 1024 pixels), a beamsplitter
(Plate Bs C-Mount VIS50R/50T) and a custom-build trigger-
box. Figure 2 shows the system and its components. Every
camera receives a synchronized trigger signal from a micro-
controller in the trigger-box. At each rising edge of the rect-
signal a grayscale frame is acquired and a timestamp is
generated in the event camera. Thereby, the frames can be
accurately time-aligned with the event data.

The beamsplitter approximately aligns the field of views of
both cameras. To achieve a more accurate alignment it is nec-
essary to warp the data from one of the cameras onto the other
using the homography between their coordinate systems. To
estimate the planar homography we use a standard calibration
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Fig. 3: Processing steps of the event tracking algorithm.

software, obtaining the extrinsic and intrinsic calibration of
the two cameras (we used [21]). Afterwards the homography
H can be decomposed as [22, p.327]:

H = R− tn⊤

d
, (1)

where R is the 3 × 3 rotation matrix, t is the translation
vector between the the two coordinate systems, and n and
d parameterize a world plane of the form n⊤x + d = 0.
Since the camera centers are very close to each other, we can
assume the ratio t/d to be small and therefore approximate the
homography by its rotational part H ≈ R. The homography
is mapping from one pixel-domain to the other.

B. Tracking Method
To validate the approach and the comparability of the

data, we propose a baseline algorithm to perform event-based
multi-animal tracking. Our method uses a classical tracking-
by-detection approach, combined with common CNN-based
object detectors. The basic pipeline is depicted in Fig. 3.

Event-based cameras detect pixel-independent brightness
changes. Specifically, they output an event ek = (xk, tk, pk)
whenever the logarithmic intensity L(x, t) = log I(x, t)
changes by a certain threshold. Where x = (x, y)⊤ is the pixel
position, t is a timestamp, typically in microsecond resolution
and pk ∈ {−1,+1} signals if the brightness change was
positive or negative.

In the first step of the pipeline (Fig. 3), we compute time
maps T (x, y) from the event stream [23], where each pixel in
this time map stores the timestamp of the latest event which
occurred at that pixel location. This step adapts the events
into a grid format that is compatible with a large body of
algorithms designed for image-based data. Another advantage
of this representation is that it can be updated asynchronously
on every event and therefore in principle enables processing
without loosing temporal accuracy. Similarly to [23], we apply
a pixel-wise exponential decay τ of the form

Ii(x, y, ti, p) = e−(ti−T (x,y,p))/τ (2)

where ti is the current timestamp. For each polarity one
timestamp map is created, resulting in two output maps, which
will be the input channels for the next processing step.

After computing the time maps, we apply modern CNN
approaches on this representation. We use the latest imple-
mentation [24] of [25], obtaining n bounding boxes for each
frame. Subsequent tracking is performed using [8] (see II-A).

To compare the methods, the same approach is tested with
reconstructed [1] and grayscale frames, using the same object
detector and tracking algorithm. For each of the three repre-
sentations a separate detector is trained using transfer learning
with a small hand-labelled dataset of ≈ 150 snapshots.

(a) (b)

Fig. 4: The setup for the fish recordings. One co-capture
system with front view (a), one with top view (b).

IV. EXPERIMENTS

A. Data Acquisition

To show the capabilities of the co-capture system we
recorded live fish (Poecilia formosa) during ongoing exper-
imental work in the laboratory of Prof. Jens Krause. Two
synchronized co-capture systems were used to record fish in
a water tank, using one co-capture system from the front
and one from the top (see Fig. 4). The method currently
presented uses only the top-view recordings. Stereo extensions
are planned: tracks from both views will be fused using an
EKF to reconstruct the 3D trajectories of the animals.

We recorded 12 sequences with 1 to 6 fish. The Basler
camera recorded at 120 fps. The event cameras delivered an
average event rate of 675 thousand events/s. The fish were
located in a tank of size 20×20×20 cm. Figure 5 shows the
overlay of events and grayscale frames. A visualization of the
top view in the three different representations and tracking
methods tested can be seen in Fig. 1.

B. Results and Discussion

The goal of the approach is (i) to compare tracking algo-
rithms working on event-based and frame-based data and (ii)
to combine events and frames to increase tracking accuracy.
The asynchronous time maps allow us to increase the fre-
quency at which the trackers are updated up to µs accuracy.
The introduced tracking algorithm shows the feasibility of the
approach. Table I reports the mean average precision of the
object detector trained on the different representations and
evaluated on a hand-labeled validation dataset. The training
sets for the grayscale frame and the time-map detector are
identical, in the sense that the time maps were queried at
the times of the frames and identical annotations were used.
Furthermore, Tab. I presents the average tracklet length of
the three approaches validated on three recorded sequences
containing 1 to 3 fish. With more than 10 seconds of average
tracking time, the trackers are stable.



Fig. 5: Event-data visualized overlaid on the grayscale frames.
The blue and red dots represent positive and negative bright-
ness changes (events), respectively.

gray frames E2VID time-surface

mAP.5:.05:.95 0.6169 0.4936 0.4224

Avg. tracklet time [s] 20.42 16.28 14.11

TABLE I: Mean-average precision and average tracklet time
of the object detectors trained on the three different input data.

The mAP and the tracklet time in the conducted experiment
are lower for both event-based representations compared to
the gray-scale frames. However, the preliminary results serve
as a proof of concept for the chosen approach. They show
that event-based multi-animal tracking following the tracking-
by-detection paradigm is possible. This sets the baseline
for further exploration of event-based tracking. The classical
CNN-based object detectors do not exploit the sparse nature of
event-data. This motivates the adoption of event-based object
detectors for animal tracking.

V. CONCLUSION

We have presented a co-capture system for recording and
tracking animals using frames and events. We have also
described a baseline algorithm to use the event data for
multi-animal tracking, which provides the base for qualitative
comparison and development of advanced tracking algorithms
combining the strengths of both sensor types. With asyn-
chronous object detectors the event data can be used for com-
putationally efficient tracking, to capture very fast movements
or to perform tracking under challenging lighting conditions.
We plan to extend and test our method to more challenging
scenarios, such as long-term observation of wildlife animals.
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