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Abstract—Bark beetle outbreaks can dramatically impact for-
est ecosystems and services around the world. For the devel-
opment of effective forest policies and management plans, the
early detection of infested trees is essential. Despite the visual
symptoms of bark beetle infestation, this task remains challeng-
ing, considering overlapping tree crowns and non-homogeneity
in crown foliage discoloration. In this work, a deep learning-
based method is proposed to effectively classify different stages
of bark beetle attacks at the individual tree level. The proposed
method uses RetinaNet architecture (exploiting a robust feature
extraction backbone pre-trained for tree crown detection) to
train a shallow subnetwork for classifying the different attack
stages of images captured by unmanned aerial vehicles (UAVs).
Moreover, various data augmentation strategies are examined
to address the class imbalance problem, and consequently, the
affine transformation is selected to be the most effective one
for this purpose. Experimental evaluations demonstrate the
effectiveness of the proposed method by achieving an average
accuracy of 98.95%, considerably outperforming the baseline
method by ∼10%. The code and results are publicly avail-
able at https://github.com/rudrakshkapil09/BarkBeetle-Damage-
Classification-DL

I. INTRODUCTION

Bark beetle outbreaks significantly impact forests worldwide,
thereby disrupting the functioning and properties of natural
ecosystems. As a result of various factors (e.g., population
density, tree moisture & condition, beetle & host tree species),
a successful bark beetle attack gradually reveals itself by
affecting various parts of the host tree [1]. Over time, the
crown of an infested tree begins to fade – there is a gradual
change in foliage color from a healthy green to yellow, red, and
finally a leafless (i.e., needle-less) gray. These are referred to
as different attack stages). The rate of discoloration depends
on the progress of bark-beetle induced fungal infection that
interrupts nutrient and water flow through the phloem and
xylem, as well as environmental conditions such as soil mois-
ture content [2]. The fading process is linked to the ecology
of bark beetles (see Fig. 1), in which female bark beetles
bore tunnels (called oviposition galleries) in the phloem to
lay their eggs, and the larvae hatch and excavate additional
larval galleries to feed on phloem tissue. If colonization is
successful, the tree ultimately dies, and the next generation of
beetles disperses from the parental tree in search of new hosts
[3]. The detection of infested trees by Dendroctonus mexicanus
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Fig. 1. Typical life cycle of bark beetles and their effect on host tree foliage
over time. Beetle images have been adapted from [3].

is studied in this paper, which is among the most damaging
insects to pine forests in Mexico.

Emerging bark beetles disperse in a number of ways in
search of new hosts, with the majority partaking in short-
range dispersal [4]. They fly below the forest canopy and
attack suitable host trees within a few hundred meters. Hence,
identifying attacked trees will help determine the next likely
location of infestations and guide beetle management activ-
ities (e.g., sanitation, removal, or disposal) to prevent infes-
tations from further spreading [5]. Automated systems can
be designed to detect and analyze bark beetle infestations
using remote sensing and machine learning (ML), avoiding
labor- and cost-intensive efforts of traditionally employed
ocular assessments. Although satellite and aircraft platforms
are widely used at the landscape level, recent research has
focused on leveraging UAVs for data collection due to their
advantages at the individual tree level (e.g., higher spatial and
temporal resolution). Besides, classical ML-based approaches
(e.g., random forests (RF) or support vector machines (SVM))
require feature selection which demands prior experience and
extensive effort to achieve satisfactory results. Thus, exploiting
deep learning (DL)-based models is of interest due to their
capacity for “learning” powerful representations and exhibit-
ing good generalization through the discovery of intricate,
underlying data patterns.

Although DL has achieved great success in a wide range
of computer vision applications, a few recent studies have
attempted to use DL-based models to classify infested trees
from UAV-captured images [7], [8], [9]. Due to the lack of
sufficient samples, these works either train customized shallow
networks (i.w., six convolutional layers in [7], [9]) or apply
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Fig. 2. An overview of the proposed method. First, the backbone and feature pyramid network (FPN) are initialized using the DeepForest model [6] trained
for tree crown detection. Following that, the network is modified and trained to classify the stages of bark beetle attack.

transfer learning to models pre-trained on ImageNet [10] (i.e.,
VGGNet [11] or ResNet [12] in [7], [9]). However, transferring
pre-trained models has produced lower results potentially due
to the frozen weights that were previously trained for generic
object classification purposes (e.g., cats vs. dogs).

This paper proposes a DL-based method that exploits
modified RetinaNet architecture (pre-trained for tree crown
detection) to classify four infestation stages of trees attacked
by bark beetles (see Fig. 2). The simple and efficient ar-
chitecture allows handling data class imbalance problems
and performs well in aerial imagery applications with dense
targets. Moreover, the proposed method considers various data
augmentation strategies to alleviate the problem of limited
number of samples and investigates their effects on network
performance. Empirical evaluations demonstrate that the pro-
posed method outperforms the baseline and classical ML
methods considerably.

II. RELATED WORK

This section briefly describes DL-based approaches that
seek to detect infested trees by different bark beetle species
from UAV captured images (i.e., individual tree level). First,
the potential of deep neural networks (DNNs) to detect bark
beetle outbreaks in fir forests is studied in [7]. It employs a
two-stage method consisting of a classical image processing-
based crown detection and a six-layer convolutional neural
network (CNN) for predicting red- and gray-attacked trees by
four-eyed fir bark beetles (Polygraphus proximus Blandford,
Coleoptera, Curculionidae). This method uses RGB images
captured by a DJI Phantom 3 Pro quadcopter, and the perfor-
mance is compared with six well-known CNN models (e.g.,
VGGNet [11], ResNet [12], and DenseNet [13]). After that, the
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Fig. 3. RGB color space distribution of bark beetle dataset images. The
borders of the highlighted challenging samples indicate their true labels.

classification accuracy of infested trees in a temperate forest is
investigated in [8] by training two shallow CNNs (with three
and six convolutional layers) and applying transfer learning to
a pre-trained DenseNet-169 [13]. Despite the availability of
multi-spectral images from a DJI Matrice 210 RTK, the best
results of this method are obtained using only RGB bands
for detecting yellow-attacked trees. Finally, the health statuses
of Maries fir trees are evaluated [9] by adopting pre-trained
CNN models of AlexNet [14], SqueezeNet [15], VGGNet [11],
ResNet [12], and DenseNet [13]. Using a DJI Mavic 2 Pro &
DJI Phantom 4 Quadcopter, this method uses RGB images to
select treetops in a traditional manner and classify healthy and
gray-attacked trees.

In contrast, we propose to adapt a state-of-the-art deep
network [16] for the classification of bark beetle attacks by
exploiting the weights that have been specifically trained for
tree crown detection from UAV images and training a shallow
subnetwork for discriminating attack stages.

III. PROPOSED METHOD

Even though this task seems like a simple color clas-
sification, ill-defined attack labels and imbalanced datasets
make it more challenging than it appears. For instance, the
distribution and some challenging samples are visualized in
Fig. 3, in which green and leafless (needle-less) classes overlap
with other classes. Also, Fig. 4 shows the RGB color space
histograms for each class that reveals similarities between the
yellow and red attack stages due to the gradual nature of
foliage discoloration.

Our proposed method is based on the RetinaNet architecture
[16], which has been successfully used for other remote
sensing applications (e.g., [17]) owing to its ability to de-
tect dense targets from data with highly imbalanced classes.
The proposed RetinaNet-based architecture includes the back-
bone network (i.e., ResNet-50 [12]), feature pyramid network
(FPN), classification subnetwork, and focal loss. Although
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Fig. 4. Histograms showing RGB color space distribution of the different
attack stages with leaves.



the backbone network seeks to extract multi-scale features,
the FPN combines semantically low-resolution features with
low-level, high-resolution ones. The classification subnetwork
then predicts the category of bark beetle attacks (i.e., green
(healthy) tree, yellow-/red-attacked tree, or leafless) using
focal loss. This loss function helps to simultaneously handle
the inherent similarity of attack classes and limited-sized data
by focusing on hard samples and avoiding easy negatives.

As shown in Fig. 2, the cropped images of tree crowns
are normalized according to the mean and standard deviation
of the training set images and then fed into the backbone
network. The computations are forward propagated through
the bottleneck layers, as well as being combined with the
layers in the feature pyramid network. Each level of the
pyramid feeds its computation to a classification subnetwork,
each of which consists of four convolutional layers. Then,
the network outputs a score for each attack stage. At last,
one-hot encoding is done to get the class prediction for each
individual tree1. In contrast to previous studies that train either
a shallow network or deep models pre-trained on ImageNet
[10], we exploit a pre-trained deep model (i.e., DeepForest [6]
for tree crown detection) and train the modified network for
the classification of attack stages. As a result of appropriately
initializing network weights with features relevant to tree
crowns, the classification subnetwork can learn to differentiate
different bark beetle attack stages. Meanwhile, several differ-
ent data augmentation strategies are considered to address the
imbalance in the dataset. Although it is generally assumed
that data augmentation will result in higher performance, we
will show that blindly utilizing these techniques can drastically
affect classification results for this task.

IV. EMPIRICAL EVALUATIONS

We evaluate the proposed method using the dataset pre-
sented in [18] that utilized a hexacopter with a Tarot FY680
Pro to capture multiple RGB video sequences of a forested
region in Northern Mexico from a top-down perspective.
Five flights in total were conducted at three different average
heights above ground (60m, 90m, and 100m) during three
months (June, July, and August). The individual frames from
each flight were combined into five different orthomosaics,
and the ground truth information for each tree’s center and
attack stage were made available (see [18] for more details).
The proposed method is compared with the baseline method
[18] as well as the most promising SVM, RF, and K-nearest
neighbors (KNN) classifiers. Hyperparameter tuning was done
in a grid search manner for each classifier.

A. Implementation Details

We cropped individual tree crowns from the five orthomo-
saics as square patches and then split them into five separate
training, validation, and testing sets, as shown in Table I. For
each flight, one model is trained and evaluation is performed
for each individually and averaged. The proposed networks

1Bounding box regression subnetwork has been removed considering the
available tree crown collections.

TABLE I
DATASET DISTRIBUTION FOR EACH FLIGHT BY CLASS.

Subsets of Samples Jun60 Jul90 Jul100 Aug90 Aug100

Green Trees 68 81 103 141 98
Yellow Trees 34 19 28 45 49

Red Trees 24 26 48 52 48
Leafless Trees 25 28 26 33 25

Train 128 130 174 230 187
Augmented Train 232 276 352 480 332

Validation 7 7 10 13 11
Test 16 17 21 28 22

were trained using the AdamW optimizer for 50 epochs and a
batch size of 2 (five models for flights). The training procedure
was performed on a Nvidia GeForce RTX 3090 GPU, with
each model taking approximately 1.5 hours to train. The
dataset was augmented by generating minority class samples
using i) random affine warps, ii) vertical/horizontal flips, iii)
90°/180°/270° rotations, iv) cropping by a factor of 85%, v)
color jittering with random brightness, contrast, & saturation,
and vi) Gaussian blurring with kernel size 5. Furthermore,
early stopping was considered to avoid overfitting during the
training procedure.

B. Experimental Results

The experimental comparison of the proposed method (in-
cluding the best model with affine warping data augmentation)
with the baseline and best performing models for classical
ML methods is shown in Table II. According to the results,
the proposed method considerably outperforms (by 9.9%
(& 7.6%) with (& without) data augmentation in average
accuracy) the cellular automaton baseline method. Also, the
classical ML methods have achieved significantly lower ac-
curacy than our method, which can be explained by the ill-
defined separation between classes in the RGB color space, as
shown in Fig. 3. The confusion matrices for the challenging
flights are shown in Fig. 5. Accordingly, the proposed method
has no misclassifications for four of the flights, and only one
leafless image is incorrectly predicted as red in the June 60m
flight due to the considerable overlap from nearby red attack
stage trees. Since classic ML methods rely on manual feature
selection, applying them directly to raw data results in poor
performance. However, the proposed DL-based method can

TABLE II
COMPARISON OF CLASSIFICATION ACCURACY FROM VARIOUS MODELS.

Model Average Accuracy (↑)

SVM 53.10%
KNN 53.10%
RF 40.24%

Baseline [18] (Best result) 89%
Ours (with warping) 98.95%

A
bl

at
io

n
St

ud
y Ours (without augmentation) 97.69%

Ours (with cropping) 96.29%
Ours (with flips) 94.74%

Ours (with blurring) 92.23%
Ours (with rotation) 84.71%

Ours (with color jittering) 83.90%



Green
Yellow Red

Leafless

Green

Yellow

Red

Leafless

Tr
ue

 la
be

l

8 0 0 0

0 3 0 0

0 0 3 0

0 0 1 4

jun60

Green
Yellow Red

Leafless

9 0 0 0

0 4 0 0

0 0 3 0

0 0 0 2

jul90

Green
Yellow Red

Leafless

11 0 0 0

0 3 0 0

0 0 6 0

0 0 0 6

aug100

0

2

4

6

8

10

Predicted label

Fig. 5. Confusion matrices for our best performing network (Jul100m and
Aug90m omitted since there were no misclassifications).

automatically learn the most relevant and robust features from
the dataset, enabling it to perform significantly better.

C. Ablation Study
To assess the effectiveness of data augmentation, various

probabilistic augmentation strategies are applied. In each strat-
egy, additional samples belonging to the red, yellow, and
leafless classes are randomly generated to obtain the same
number as the green samples (i.e., balancing the dataset).
The classification results for models trained on each strategy
are shown in Table II. Accordingly, affine warping is found
to be the most effective strategy considering tree crowns
are not always circular. This strategy changes the apparent
geometry of the trees, promoting more diversity in the dataset.
Also, it accounts for angular variation in the UAV during
data collection. Color jittering unsurprisingly leads to the
most performance degradation (major effect based on visual
symptoms of trees). These results can further be explained
using the t-SNE visualizations in Fig. 6. The middle and
left plots display similar separations in the dataset, indicating
that warping adds minority class samples without adversely
impacting the separation of the classes. On the other hand,
the right plot is obtained from the color-jittered dataset, and
significantly more overlap between the classes can be observed
(e.g., in the bottom right corner). The other augmentation
strategies do not improve performance either.

V. CONCLUSION

A DL-based approach was proposed to classify bark beetle-
infested trees in this work. Based on the RetinaNet architec-
ture, the proposed method simultaneously trains a shallow sub-
network and exploits a deep network initialized with weights
trained to detect tree crowns from UAV images. To over-
come the data imbalance problem, different data augmentation
strategies were investigated and affine warping is found the
most effective for this purpose. Despite the challenges of inter-
class overlap and intra-class non-homogeneity in the dataset,
the proposed method achieves an average accuracy of 98.95%,
thereby significantly outperforming the baseline method. Fu-
ture work involves accurate detection of tree crowns from
aerial orthomosaic images and discrimination of non-beetle
factors that may result in similar foliage discoloration (e.g.,
drought).
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Fig. 6. T-SNE visualization of dataset with different augmentations.
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