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Abstract. This work was undertaken to evaluate the regeneration of the
priority invertebrate species following the 2019/2020 Black summer wild-
fires within the northeast forest region of New South Wales, Australia.
The goal was to develop an AI-driven application that can be used to
identify a range of invertebrate species in the bushfire-affected areas,
in order to verify if regeneration has taken place. To achieve this goal,
models were built using 9 different state-of-the-art convolutional neural
network architectures. Initial evaluation of the models was performed us-
ing IP102 and Museum public datasets consisting of 75222 images of 102
distinct species and 63394 images of 291 different species respectively.
To identify target species, a Bushfire dataset consisting of 948 images
of 14 different species was acquired in house. The best performance was
achieved by an ensemble of 5 models built by combining Inception V3
with channel attention blocks using “Squeeze and Excitation” and “Con-
volution Block Attention” Modules, achieving an accuracy of 65.59% on
IP102, which is about 2% less than the best state-of-the-art accuracy,
95% on Museum which is possibly the best result achieved so far, and
93% on the Bushfire dataset.

Keywords: Invertebrate Species · Convolutional Neural Network · In-
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1 Introduction

This study examines the recovery of key invertebrate species following the Black
Summer wildfires of 2019/2020 in the northeastern forests of New South Wales,
Australia. The field of ecoinformatics has long been concerned with insect iden-
tification to better understand their vast numbers, distribution and crucial roles
within ecosystems [1][2]. A significant portion of this research has focused on pest
detection to enhance agricultural productivity and reduce pesticide overuse[3][4][5].

A variety of techniques, including traditional image processing and machine
learning, have been developed for detecting insects; these include monitoring
pests on yellow sticky tapes [6], devising automated methods for identifying
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whitefly, aphid and thrip species in greenhouses [7], employing multiple task
sparse representation and multiple kernel learning [8] strategies, and using sup-
port vector machines for pest detection [9][10] and quantifying whiteflies on
sticky traps [11]. However, these methods are tailored to their specific use cases
and cannot be easily generalised for other contexts.

Over the past decade, deep learning (DL) methods, particularly Convolu-
tional Neural Networks (CNN), have gained prominence for their ability to out-
perform traditional machine learning techniques. CNN have made significant
strides, achieving impressive results in object detection, image classification and
segmentation, and are widely applied across various fields. The primary ad-
vantage of CNN is their capability for automatic feature extraction from data.
However, they require extensive labelled datasets. This challenge is mitigated
by Transfer Learning (TL), which applies knowledge from one task to a related
one [14]. Popular CNN models, pre-trained with ImageNet data, can be adapted
for feature extraction or fine-tuned for specific domains. In this study, TL has
been extensively used to adapt well-known architectures. Recently, Transform-
ers, which are self-attention-based architectures, have become the preferred mod-
els for Natural Language Processing [22] and have been adapted for Computer
Vision [22]. The innovations that contributed to ViT’s success have been incor-
porated into the latest CNN evolution, namely ConvNext, proposed by Liu et
al [23].

CNN-based methods are widely used for identifying agricultural pests. Teix-
eira et al.[3] and Li et al.[4] have provided comprehensive surveys on deep learn-
ing for insect detection, highlighting TL as a favoured approach. The primary
objective of this study is to determine the best model for identifying prior-
ity invertebrate species in bushfire-affected areas. We achieve this by fine-tuning
pre-trained versions of well-known architectures: VGG16 [15], ResNet50 [18], Ef-
ficientNet [20] ,ConvNext [23], ViT [22], MobileNet [21] and Inception V3 [17].
Besides the above 2 other models were experimented with some plugin attention
mechanisms on top of Inception V3 as they were proven to produce excellent re-
sults namely: Squeeze and Excitation (SE) [24] and Convolution Block Attention
Module (CBAM) [25]

2 Materials and Methods

2.1 Datasets

Four different datasets were used in this study:

– IP102[5]: This dataset comprises 75,222 images across 102 unique cate-
gories, organised into an hierarchical structure. Categories are grouped based
on the type of produce affected by the pests.

– Museum[2]: Held at the Natural History Museum in London, this dataset
features a collection of 63,364 images representing 291 species of ground
beetles (Coleoptera: Carabidae).
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– Bushfire invertebrate species original images: This collection com-
prises 948 high-resolution images with an aspect ratio of 8600x5700, cover-
ing 14 different species as detailed in Table 1. These images were gathered
in-house and not publicly available.

– Bushfire invertebrate species cropped images: To mitigate compu-
tational constraints, this dataset contains cropped versions of the original
Bushfire invertebrate images.

Sample images for IP102, Museum and in house samples are presented in Fig 1

(a) IP102 Samples (b) Museum Samples (c) In house Samples

Fig. 1. Sample Images

2.2 Methods

We conducted experiments using transfer learning (TL) to fine-tune pre-trained
models with ImageNet weights. The models included VGG16 [15], ResNet50 [18],
EfficientNet [20], ConvNext [23], ViT [22], MobileNet [21], and Inception V3 [17].
Fine-tuning was achieved by replacing the classification layer with one specific
to our dataset while keeping all other layers frozen, using TensorFlow 2.5 on a
workstation running Ubuntu 18.04 with NVIDIA GeForce RTX 2080 Ti GPUs.
Training was performed for 80 epochs for each fold using the Adam optimizer,
with an initial learning rate of (1 × 10−3). The learning rate was then allowed
to decay by a factor of 0.1 until a minimum level was reached. Early stopping
was applied if there was no improvement after a set patience limit.

Additionally, we integrated two attention mechanisms into Inception V3:
Squeeze and Excitation (SE) [24], which applies channel attention with mini-
mal computational cost, and the Convolution Block Attention Module (CBAM)
[25], which combines channel and spatial attention. Both mechanisms have shown
excellent results in previous work. The input images were resized to 224 × 224
for all models, except for Inception V3 with SE and CBAM, where the input
size was set to 299 × 299.

For all datasets except IP102, which had its own holdout test set of 22,619
images, approximately 20% of the data was allocated for holdout. The remaining
data was divided into 5 folds for cross-validation. Five models were built, each
using one fold for validation and the other four for training. Hyperparameter
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Table 1. Class distribution for the Bushfire dataset

Class Name Sample Size
Oncophysa Vesiculata Vesiculata 48

Amphistomus Trispiculatus 25
Daerlac Cephalotes 31
Epimixia Vulturna 86
Kirkaldyella Rugosa 60
Epimixia Tropica 62

Eritingis Trivirgata 20
Setocoris Binataphillis 152

Amphistomus Cunninghamensis 25
Amphistomus Primonactus 25

Eritingis Aporema 112
Epimixia Dysmica 172
Epimixia Vittata 36
Woodwardiola Sp 94

tuning was performed on the validation set, and the final evaluation was con-
ducted on the holdout test set. This process was repeated for each fold, resulting
in five-fold cross-validation. Finally, the performance on the holdout test set was
assessed using an ensemble of the five models built during cross-validation.

3 Results and Discussion

Six different metrics—Sensitivity, Specificity, Precision, Recall, Balanced Accu-
racy, and Accuracy—were employed to evaluate the performance of the five-fold
cross-validation, as well as the ensemble performance of the five models on the
holdout test set. Tables 2, 3, 4, and 5 display the five-fold cross-validation re-
sults for the IP102, Museum, Bushfire Original, and Bushfire Cropped datasets,
respectively. Meanwhile, Tables 6, 7, 8, and 9 present the performance of the
ensemble of the five models on the holdout test set for each dataset.

Here are the definitions for each metric: true positives (TP), true negatives
(TN), false positives (FP), and false negatives (FN) for a given class(c) using
the micro averaging method discussed in [29]:

TP =
∑

c

TPc (1)

TN =
∑

c

TNc (2)

FP =

∑
c

FPc (3)

FN =

∑
c

FNc (4)
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Table 2. Average performance of five-fold cross-validation on the IP102 dataset.

Model Sensitivity Specificity Precision Balanced Accuracy F1 Score Accuracy
mean ± SD mean ± SD mean ± SD mean ± SD mean ± SD mean ± SD

ResNet50v2 59.42 ± 0.1 99.6 ± 0 59.42 ± 0.1 79.51 ± 0.05 59.42 ± 0.1 59.42 ± 0.1
VGG16 53.21 ± 0.19 99.54 ± 0 53.21 ± 0.19 76.31 ± 0.1 53.21 ± 0.19 53.21 ± 0.19

EfficientNetV2L 17.48 ± 0.63 99.18 ± 0.01 17.48 ± .63 58.33 ± 0.32 17.48 ± 0.63 17.48 ± 0.63
ConvNeXTLarge 50.5 ± 0.53 99.51 ± 0.01 50.5 ± 0.53 75.01 ± 0.27 50.5 ± 0.53 50.5 ± 0.53
MobileNetV2 57.38 ± 0.27 99.58 ± 0 57.38 ± 0.27 78.48 ± 0.14 57.38 ± 0.27 57.38 ± 0.27

Vitb32 44.36 ± 0.24 99.45 ± 0 44.36 ± 0.24 79.91 ± 0.12 44.36 ± 0.24 44.36 ± 0.24
InceptionV3 57.41 ± 0.46 99.56 ± 0.04 57.41 ± 0.46 78.49 ± 0.23 57.41 ± 0.46 57.41 ± 0.46

SEInceptionV3 59.56 ± 0.66 99.60 ± 0.01 59.56 ± 0.66 79.58 ± 0.33 59.56 ± 0.66 59.56 ± 0.66
CBAMInceptionV3 59.21 ± 1.93 99.59 ± 0.02 59.21 ± 1.93 79.4 ± 0.98 59.21 ± 1.93 59.21 ± 1.93

Table 3. Average performance of five-fold cross-validation on the Museum dataset.

Model Sensitivity Specificity Precision Balanced Accuracy F1 Score Accuracy
mean ± SD mean ± SD mean ± SD mean ± SD mean ± SD mean ± SD

ResNet50v2 65.11 ± 0.16 99.88 ± 0 65.11 ± 0.16 82.49 ± 0.01 65.11 ± 0.16 65.11 ± 0.16
VGG16 64.05 ± 0.55 99.88 ± 0.01 64.05 ± 0.55 81.97 ± 0.28 64.05 ± 0.55 64.05 ± 0.55

EfficientNetV2L 6.38 ± 0.031 99.67 ± 0.02 6.38 ± 0.031 53.03 ± 0.16 6.38 ± 0.031 6.38 ± 0.031
ConvNeXTLarge 23.45 ± 0.54 99.73 ± 0.01 23.45 ± 0.54 61.49 ± 0.23 23.45 ± 0.54 23.45 ± 0.54
MobileNetV2 57.94 ± 0.28 99.86 ± 0 57.94 ± 0.28 77.90 ± 2.17 57.94 ± 0.28 57.94 ± 0.28

Vitb32 43.76 ± 1.54 99.80 ± 0.01 43.76 ± 1.54 72.53 ± 2.09 43.76 ± 1.54 43.76 ± 1.54
InceptionV3 64.26 ± 0.39 99.88 ± 0.00 64.26 ± 0.39 82.10 ± 0.39 64.26 ± 0.39 64.26 ± 0.39

SEInceptionV3 93.42 ± 0.08 99.98 ± 0.00 93.42 ± 0.08 97.18 ± 1.4 93.42 ± 0.08 93.42 ± 0.08
CBAMInceptionV3 93.24 ± 0.97 99.98 ± 0.00 93.24 ± 0.97 96.61 ± 0.48 93.24 ± 0.97 93.24 ± 0.97

Table 4. Average performance of five-fold cross-validation on the Bushfire Original
dataset.

Model Sensitivity Specificity Precision Balanced Accuracy F1 Score Accuracy
mean ± SD mean ± SD mean ± SD mean ± SD mean ± SD mean ± SD

ResNet50v2 88.06 ± 2.95 99.08 ± 0.23 88.06 ± 2.95 93.57 ± 1.59 88.06 ± 2.95 88.06 ± 2.95
VGG16 86.24 ± 2.2 98.94 ± 0, 17 86.24 ± 2.2 92.59 ± 1.19 86.24 ± 2.2 86.24 ± 2.2

EfficientNetV2L 31.29 ± 8.12 94.71 ± 0.63 31.29 ± 8.12 63 ± 4.37 31.29 ± 8.12 31.29 ± 8.12
ConvNeXTLarge 73.77 ± 2.23 97.98 ± 0.17 73.77 ± 2.23 85.87 ± 1.2 73.77 ± 2.23 73.77 ± 2.23
MobileNetV2 89.15 ± 1.03 99.18 ± 0.08 89.15 ± 1.03 94.27 ± 0.56 89.15 ± 1.03 89.15 ± 1.03

Vitb32 20.97 ± 4.38 93.92 ± 0.34 20.97 ± 4.38 57.44 ± 2.36 20.97 ± 4.38 20.97 ± 4.38
InceptionV3 88.28 ± 2.45 99.30 ± 0.36 88.28 ± 2.45 93.69 ± 1.32 88.28 ± 2.45 88.28 ± 2.45

SEInceptionV3 90.97 ± 3.62 99.30 ± 0.28 90.97 ± 3.62 95.14 ± 1.95 90.97 ± 3.62 90.97 ± 3.62
CBAMInceptionV3 90.86 ± 3.06 99.30 ± 0.23 90.86 ± 3.06 95.08 ± 1.65 90.86 ± 3.06 90.86 ± 3.06

Table 5. Average performance of five-fold cross-validation on the Bushfire Cropped
dataset.

Model Sensitivity Specificity Precision Balanced Accuracy F1 Score Accuracy
mean ± SD mean ± SD mean ± SD mean ± SD mean ± SD mean ± SD

ResNet50v2 86.56 ± 3.49 98.96 ± 0.27 86.56 ± 3.49 92.76 ± 1.88 86.56 ± 3.49 86.56 ± 3.49
VGG16 88.92 ± 1.64 99.15 ± 0, 13 88.92 ± 1.64 99.04 ± 0.88 88.92 ± 1.64 88.92 ± 1.64

EfficientNetV2L 31.94 ± 2.91 94.67 ± 0.23 31.94 ± 2.91 63.35 ± 1.56 31.94 ± 2.91 31.94 ± 2.91
ConvNeXTLarge 76.02 ± 1.8 98.16 ± 0.14 76.02 ± 1.8 87.09 ± 0.97 76.02 ± 1.8 76.02 ± 1.8
MobileNetV2 88.07 ± 2.09 99.08 ± 0.16 88.07 ± 2.09 93.57 ± 1.13 88.07 ± 2.09 88.07 ± 2.09

Vitb32 21.08 ± 4.58 93.93 ± 0.35 21.08 ± 4.58 57.5 ± 2.47 21.08 ± 4.58 21.08 ± 4.58
InceptionV3 88.39 ± 1.05 99.11 ± 0.08 88.39 ± 1.05 93.75 ± 0.57 88.39 ± 1.05 88.39 ± 1.05

SEInceptionV3 91.29 ± 3.43 99.33 ± 0.26 91.29 ± 3.43 95.31 ± 1.85 91.29 ± 3.43 91.29 ± 3.43
CBAMInceptionV3 89.25 ± 3.63 99.17 ± 0.28 89.25 ± 3.63 94.21 ± 1.96 89.25 ± 3.63 89.25 ± 3.63
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Table 6. Average performance of an ensemble of 5 models on the holdout test set for
the IP102 dataset.

Model Sensitivity Specificity Precision Balanced Accuracy F1 Score Accuracy
% % % % % %

ResNet50v2 63.38 99.64 63.38 81.51 63.38 63.38
VGG16 57.04 99.57 57.04 78.31 57.04 57.04

EfficientNetV2L 17.99 98.39 17.99 58.59 17.99 17.99
ConvNeXTLarge 53.99 99.54 53.99 76.77 53.99 53.99
MobileNetV2 61.63 99.62 61.63 80.63 61.63 61.63

Vitb32 49.64 99.5 49.64 74.57 49.64 49.64
InceptionV3 61.38 99.62 61.38 80.5 61.38 61.38

SEInceptionV3 65.32 99.66 65.32 82.49 65.32 65.32
CBAMInceptionV3 65.69 99.66 65.69 82.68 65.69 65.69
Table 7. Average performance of an ensemble of 5 models on the holdout test set for
the Museum dataset.

Model Sensitivity Specificity Precision Balanced Accuracy F1 Score Accuracy
% % % % % %

ResNet50V2 69.6 99.9 69.6 84.75 69.6 69.6
VGG16 67.84 99.89 67.84 83.67 67.84 67.84

EfficientNetV2L 6.67 99.68 6.67 53.17 6.67 6.67
ConvNeXTLarge 25.66 99.74 25.66 62.7 25.66 25.66

MobileNetV2 62.18 99.87 62.18 81.02 62.18 62.18
Vitb32 47.02 99.82 47.02 73.42 47.02 47.02

InceptionV3 67.91 99.89 67.91 83.9 67.91 67.91
SEInceptionV3 95.45 99.98 95.45 97.72 95.45 95.45

CBAMInceptionV3 95.63 99.98 95.63 97.81 95.63 95.63
Table 8. Average performance of an ensemble of 5 models on the holdout test set for
the Bushfire Original dataset.

Model Sensitivity Specificity Precision Balanced Accuracy F1 Score Accuracy
% % % % % %

ResNet50V2 90.86 99.3 90.86 95.08 90.86 90.86
VGG16 88.71 99.13 88.71 93.92 88.71 88.71

EfficientNetV2L 18.28 93.71 18.28 56 18.28 18.28
ConvNeXTLarge 76.88 98.22 76.88 87.55 76.88 76.88
MobileNetV2 93.01 99.46 93.01 96.24 93.01 93.01

Vitb32 23.12 94.09 23.12 58.6 23.12 23.12
InceptionV3 90.86 99.3 90.86 95.08 90.86 90.86

SEInceptionV3 93.55 99.5 93.55 96.53 93.55 93.55
CBAMInceptionV3 93.01 99.46 93.01 96.24 93.01 93.01
Table 9. Average performance of an ensemble of 5 models on the holdout test set for
the Bushfire Cropped dataset.

Model Sensitivity Specificity Precision Balanced Accuracy F1 Score Accuracy
% % % % % %

ResNet50V2 92.47 99.42 92.47 95.95 92.47 92.47
VGG16 90.32 99.26 90.32 94.79 90.32 90.32

EfficientNetV2L 33.33 94.87 33.33 64.1 33.33 33.33
ConvNeXTLarge 78.49 98.35 78.49 88.42 78.49 78.49
MobileNetV2 94.62 99.59 94.62 97.11 94.62 94.62

Vitb32 28.49 94.5 28.49 61.5 28.49 28.49
InceptionV3 90.86 99.3 90.86 95.08 90.86 90.86

SEInceptionV3 95.7 99.67 95.7 97.68 95.7 95.7
CBAMInceptionV3 93.01 99.46 93.01 96.24 93.01 93.01
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The measures Sensitivity, Specificity, Precision, Balanced Accuracy, F1 Score
and Accuracy are defined as follows: Sensitivity also known as Recall measures
the proportion of actual positives that are correctly identified by the model.

Sensitivity (also known as Recall) =
TP

TP + FN
(5)

Specificity measures the proportion actual negatives that are correctly iden-
tified by the model.

Specificity =
TN

TN + FP
(6)

Precision measures the proportion of positive predictions that are actually
correct.

Precision =
TP

TP + FP
(7)

Balanced Accuracy is the average of Sensitivity and Specificity, providing a
more balanced measure when dealing with imbalanced datasets.

Balanced Accuracy =
Sensitivity + Specificity

2
(8)

F1 Score is the harmonic mean of Precision and Sensitivity (Recall), providing
a single metric that balances both. It’s particularly useful when there is a need
to balance the trade-off between Precision and Sensitivity.

F1 Score =
2TP

2TP + FP + FN
(9)

Accuracy measures the overall proportion of correct predictions made by the
model.

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

As explained in [29], Micro Average Precision = Micro Average Sensitivity =
Micro Average F1 Score = Accuracy.

As shown in the tables, Inception V3 with SE and CBAM consistently outper-
formed the other models. Inception V3, ResNet50V2, MobileNetV2 and VGG16
also demonstrated relatively good performance.

On the IP102 dataset, the proposed approach achieved an accuracy of 65.69%,
which is close to the 67.13% accuracy reported by Ayan et al. [26], and it outper-
formed the accuracies of 61.93% by Nanni et al. [28], 55.24% by Ren et al. [27],
and 49.5% by Wu et al.[5] . The performance on the Museum dataset was ex-
cellent, achieving 95.63%, which is significantly higher than the 51.9% achieved
by Hansen et al. [2]. An improvement could be to evaluate an ensemble of the
best-performing models or a weighted ensemble of all models, which is planned
for future work.
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