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Fig. 1. The examples of the frames in ButterFlySet containing a non-toxic butterfly
Papilio polytes (A) and a toxic butterfly Euploea mulciber (D). Manually annotated
nine keypoints (B, E). Results of the deep-learning-based pose estimation (C, F). The
black and red points represent ground truth and estimation, respectively.

Abstract. Automated pose estimation remains underdeveloped for in-
sects compared to humans and other animals, largely due to a lack
of pose datasets. This challenge should be acute for butterflies, whose
unique body structures and flight patterns differ significantly from other
insects. Current studies on butterflies’ flight behavior rely on manual
scoring, which is labor-intensive. To address this, we propose ButterFl-
ySet, the first video dataset of flying butterflies and the largest dataset
for insect pose estimation recorded in the wild, containing 7440 frames
with nine key points annotation. Using ButterFlySet, we evaluated two
animal pose estimation models (DeepLabCut and SLEAP) and mea-
sured wingbeat frequency. We found that toxic butterflies fly slower than
non-toxic species, offering an insight into predator-prey visual commu-
nication. This dataset enables automated analysis of flight patterns of
butterflies, reducing labor in data collection and filling a critical gap in
datasets collected in the wild and laboratories. Our dataset is available
at: https://github.com/KaiAmino/ButterFlySet.
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1 Introduction

Automated animal pose estimation has provided useful insights into studies re-
lated to animal behavior, such as behavioral neurogenetics, animal conservation,
and evolutionary ecology [1]. Compared to the ongoing innovations in human
pose estimation, animal pose estimation remains underdeveloped, primarily due
to the many obstacles it faces, of which the scarcity of pose datasets is viewed
as the primary factor [2]. Unlike human pose estimation, the diversity in the
shape of animal body parts makes it difficult to use the pose dataset of other
groups in the analysis of focal subjects (for example, using a model trained on a
dataset of horses in pose estimation of dogs). Moreover, this challenge is likely
to be even more pronounced in insects, which exhibit a wide diversity in body
shapes, including variations in body structure, leg length, and wing morphology.
Because insects are easily utilized in genetic research due to their short life cy-
cles, and understanding their ecology is critical for addressing agricultural pests
and exploring potential food resources, automated behavioral analysis in insects
is highly valuable [3] [4].

In contrast to the richness of the pose datasets in mammals (e.g., primates [5],
dogs [6] [7], and other quadrupeds [8] [9]) the number of insect datasets is quite
limited [2]. Two pose estimation models, DeepLabCut [10] and LEAP [11] in-
troduced pose datasets of single fruit flies, whereas SLEAP [12], a multi-animal
pose estimation model, was evaluated using two datasets ‘flies13’ and ‘bees’
which contains two individuals of fruit fly and bumble bee. However, to the best
of our knowledge, no similar datasets exist aside from these four.

In addition to the scarcity of datasets, it seems also undesirable that all of the
datasets above were collected in laboratories. Videos captured in the wild, with
their diverse backgrounds and lighting conditions, are useful in validating pose
estimation models that need to perform accurately under varying conditions.
Furthermore, the wild data is desirable because animal behavior recorded in the
wild and laboratories can be entirely different and the former appears to reflect
their behavior in natural conditions better [13].

Butterflies, known for their beautiful and diverse wing patterns, have at-
tracted researchers worldwide who have accumulated extensive knowledge from
various perspectives (e.g., morphology, host plant selection, and mating behav-
iors), among which flight behavior is studied by both behavioral sciences and
biomechanics [14] [15]. Although previous studies describing butterfly flight pat-
tern used manual scoring [14], automated keypoint estimation may significantly
reduce the effort required for data collection. However, the challenge in pose esti-
mation is likely to be even more pronounced in butterflies, whose body structure
(i.e., large wings compared to their body) and behavior (i.e., flight pattern) is
entirely different not only compared to other animals but even among other
insects. Nevertheless, there has been no dataset for butterfly pose estimation.

Therefore, we propose ButterFlySet (Fig. 1), the first dataset on the videos of
butterflies’ flight behavior. We directly recorded the flying butterflies in the wild,
and manually annotated 9 key points from a total of 7440 frames (Fig. 2), which
is the largest number of frames among the insect pose datasets mentioned above.
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Based on our dataset, we evaluated the accuracy of two widely used animal
pose estimation models, DeepLabCut [10] and SLEAP [12]. We also measured
wingbeat frequency (WBF), which is a well-used trait to quantify flight behavior.
In butterflies, it is known that non-toxic species fly with high WBF, whereas toxic
species fly with low WBF [16], which may contribute to the learning of the color
patterns of toxic species by avian predators. Because there have been no studies
quantitatively comparing flight patterns in the wild, we compared them using
ButterFlySet (Fig. 2).
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Fig. 2. Overview of our study. ButterFlySet was created using 7440 frames of
videos recorded in the wild and manually annotated nine keypoints (red arrows).
Using ButterFlySet, the accuracies of two CNN-based pose estimation models
were evaluated (blue arrows). Using the inference by trained models and the defi-
nition of single wingbeat determined by mannual count of wingbeats in separated
datasets, we automated the estimation of wingbeat frequency (WBF) from videos
of flying butterflies in the wild (green arrows).
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2 ButterFlySet: a pose video dataset of flying butterflies

2.1 Dataset characteristics

Although there are increasing numbers of 2D datasets on mammals [1], num-
ber of insect datasets is scarce, with only four [2]. In developing DeepLabCut,
Mathis et al. [10] introduced a pose dataset of fruit flies, which consists of 589
frames with 12 keypoints. LEAP [11], the predecessor to SLEAP [12], has been
evaluated using ‘fly32’ dataset, containing 32 keypoint annotations performed on
1500 frames collected from 59 videos of fruit flies. In addition to fly32, Pereirra
et al. [12] introduced two multi-animal datasets, ‘flies13’ and ‘bees’ in developing
SLEAP. The ‘flies13’ dataset contains 2000 frames of two fruit flies with 13 key-
points, whereas ‘bees’ contains 804 frames of two bumble bees with 21 keypoints.
Compared to these four datasets for insect pose estimation, our ButterFlySet,
which contains 7440 annotated frames, is the largest dataset in terms of frame
numbers.

In terms of the computer vision analysis in butterflies, there have been sev-
eral investigations on butterfly image recognition [17], which is accompanied by
development of large-scale datasets. For example, ‘Leeds Butterfly Dataset’ [18],
which contains 832 wild butterfly images, has been used by several studies
benchmarking classification and segmentation accuracy [17]. Lin et al. [19] devel-
oped a dataset of 24836 butterfly specimen images for 56 species classification.
Adityawan et al. [20] used a dataset of 13594 wild butterfly images from Kag-
gle repository for 100 species classification. However, there has been no dataset
available for videos or pose estimation.

2.2 Dataset collection

Video data was collected between May 17 and May 20, 2024, in grassland and
forest road near Mt. Otoha, Okinawa, Japan. We used digital still cameras (DSC-
RX0M2, SONY, Tokyo, Japan) equipped on tripods, which were adjusted to
a height corresponding to the flying height of butterflies (about 0.3 − 1.5m
above ground). The videos were recorded at 240 frames per second (fps) in
XAVC S format with a resolution of 1920 × 1080 pixels. We recorded five species
commonly observed in the Okinawa Island, including three non-toxic species;
Papilio polytes, Papilio memnon, Graphium sarpedon, and two toxic species;
Ideopsis similis and Euploea mulciber. We set multiple cameras from various
angles to capture each butterfly individual freely flying in an open space from
a closer distance and selected 33 scenes in which individuals are captured from
close distances.

We manually annotated nine keypoints; head, thorax, abdomen, left/right
forewing 1 (tip), left/right forewing 2 (anal edge), and left/right hindwing (Fig.
3). Some keypoints which were difficult to identify due to rapid movements and
varying postures of the butterflies were estimated by human annotators.
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Fig. 3. The names of the nine keypoints (A) and the examples of annotated
butterflies. (B) Papilio polytes. (C) Graphium sarpedon. (D) Euploea mulciber.

3 Experiments

3.1 Benchmarking ButterFlySet

To verify animal pose estimation performance, we evaluated two most widely
used [2] models (DeepLabCut [10] and SLEAP [12]). For DeepLabcut, we used
a single animal pose estimation pipeline with the backbone of ResNet50 with
default hyperparameters. For SLEAP, we used U-Net backbone with ‘baseline–
large’ hyperparameters, whose ‘input scaling’ was set to 0.30 because the recep-
tive field size covers the size of butterfly individuals under this parameter. Out
of 33 scenes, five pairs of scenes featuring same individual from two different an-
gles (a total of 10 scenes) were removed, and half of these were used for testing.
Remaining 23 scenes (4,733 frames) were used for training with a 70/30 train-
validation split (Fig. 2). For DeepLabCut, we found that test error was 18.61
± 82.8 pixels. A large standard deviation compared to the mean would suggest
that in a small number of frames, keypoints were detected at locations signifi-
cantly different from correct ones, such as in the background. For SLEAP, we
found that the test error was 108.44 ± 271.3 pixels, which may be due to smaller
size of our training data. It might be possible that default hyperparameter of
DeepLabCut makes it more accurate than SLEAP, which means that further
tuning may narrow gap between the two models. In addition, for SLEAP, we
had to down-sample input frames in order to fit size of butterflies in ‘receptive
field size’ of SLEAP, which might have lowered the model performance. To assess
the detection performance, we also show Percent of Detected Joints (PDJ) [21]
for nine keypoints (Table 1). Because DeepLabCut [10] exceeded SLEAP [12] in
performance on ButterFlySet, we used the former model in the following WBF
analysis.
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Keypoints Head Thorax Abdomen FW1(L) FW2(L) HW(L) FW1(R) FW2(R) HW(R)
DeepLabCut 99.5% 99.4% 99.5% 99.4% 99.5% 98.1% 98.7% 99.8% 99.6%
SLEAP 69.3% 69.6% 71.4% 71.6% 72.9% 73.0% 73.1% 72.4% 72.5%

Table 1. PDJ of nine keypoints. Keypoints are considered detected if the normalized
distance between the predicted and ground truth keypoint is under 0.2 [21]. FW and
HW stand for forewing and hindwing, respectively.

3.2 Wingbeat frequency (WBF) analysis

The overview of our analysis is shown in Figure 2. To estimate WBF automati-
cally in the wild, at first, we manually identified ‘Wings closed’ frames, where the
wings are most closed during a single wingbeat, from five scenes which were not
used for training and testing phases. Using the ground truth of the coordinates
data and reffering to the WBF mannually counted, we found that the frames
when the difference in height between Forewing 1 (averaged left and right) and
Thorax is greatest within ± 12 frames can detect ‘Wings closed’ within ± 3
frames with 0.826 F1–score. Using this threshold, we automatically estimated
‘Wings closed’ from five scenes used for the test phase, of which butterfly pose
was estimated by DeepLabCut, and detected 44 frames with 0.893 F1–score.
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Fig. 4. Examples of the automated detection of ‘Wings closed’ frames in non-toxic (A,
B) and toxic species (C, D). Dotted vertical lines represent the ground truth of ‘Wings
closed’ frames identified by manual scoring.

As shown in Figure 4C and 4D, ‘Wings closed’ tended to be incorrectly
detected when keypoints were detected with a large error, suggesting that the
improvement in pose estimation accuracy may also raise the detection accuracy
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of ‘Wings closed.’ By defining the duration of a single wingbeat as the duration
between ‘Wings closed’ frames, we calculated WBF of both toxic and non-toxic
species, and found that the WBFs were 9.13 ± 3.13 Hz for toxic species and
10.46 ± 1.85 Hz for non-toxic species. Although it has relativelly small sample
size (total of 43 wingbeats) and detection error of ‘Wings closed’ frames, it may
suggest that toxic species fly slower than non-toxic species in the wild.

4 Conclusion

In summary, we introduced ButterFlySet, the largest video dataset for pose es-
timation in the wild insects. We benchmarked DeepLabCut and SLEAP on our
dataset to assess the performance of existing approaches, and compared WBF
between toxic and non-toxic butterflies. Our dataset can help researchers auto-
matically examine the characteristics of butterflies’ flight behavior in the wild
conditions, which conventional studies in the laboratory have not been able to
access. Moreover, the relationship between the scale and diversity of our dataset
and its impact on the improvement of deep learning models’ generalization per-
formance is expected to provide valuable insights for future pose estimation of
flying insects, other than butterflies, in the fields.
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